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Abstract

In this work, we evaluate performance of a real-world image processing application that uses a

cross-correlation algorithm to compare a given image with a reference one. The algorithm processes

individual images represented as 2-dimensional matrices of single-precision floating-point values us-

ing O(n4) operations involving dot-products and additions. We implement this algorithm on a nVidia

GTX 285 GPU using CUDA, and also parallelize it for the Intel Xeon (Nehalem) and IBM Power7

processors, using both manual and automatic techniques. Pthreads and OpenMP with SSE and VSX

vector intrinsics are used for the manually parallelized version, while a state-of-the-art optimization

framework based on the polyhedral model is used for automatic compiler parallelization and opti-

mization. The performance of this algorithm on the nVidia GPU suffers from: (1) a smaller shared

memory, (2) unaligned device memory access patterns, (3) expensive atomic operations, and (4)

weaker single-thread performance. On commodity multi-core processors, the application dataset is

small enough to fit in caches, and when parallelized using a combination of task and short-vector

data parallelism (via SSE/VSX) or through fully automatic optimization from the compiler, the ap-

plication matches or beats the performance of the GPU version. The primary reasons for better

multi-core performance include larger and faster caches, higher clock frequency, higher on-chip mem-

ory bandwidth, and better compiler optimization and support for parallelization. The best performing
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versions on the Power7, Nehalem, and GTX 285 run in 1.02s, 1.82s, and 1.75s, respectively. These

results conclusively demonstrate that, under certain conditions, it is possible for a FLOP-intensive

structured application running on a multi-core processor to match or even beat the performance of

an equivalent GPU version.

1 Introduction

One of the key game-changing technical events in the recent past has been the emergence of Graph-

ics Processing Units (GPUs) as a viable platform for general purpose scientific computing. With the

transistor count doubling every six months and a reasonable amount of on-card memory (currently

from 1 GB to 4 GB), GPU-based cards have brought TFLOPS-scale performance computing to the

masses. Availability of cheaper and faster GPUs from nVidia and AMD, along with associated pro-

gramming models such as CUDA and OpenCL have further led to increased usage of GPU-based

systems.

In the mean time, there has also been tremendous progress in conventional CPU processor archi-

tectures. The current multi-core processors exhibit multiple (at least four) powerful cores, deeper

(currently 3-level), bigger, and faster caches, higher clock frequency, and higher on-chip memory

bandwidth. These processors also possess improved hardware support for floating point operations

and parallel execution, e.g., short-vector data parallelism, and simultaneous multi-threading. Re-

cent advances in compilation technology, especially in auto-parallelization and simdization, have also

enabled efficient utilization of these resources for applications in the scientific domain. Thus, the

modern CPU, with its hardware and software infrastructure, has emerged as a formidable competitor

to the GPU, even for traditional scientific applications.

Therefore, one of the key questions to be addressed is whether a FLOP-intensive scientific appli-

cation should be parallelized on a multi-core CPU or accelerated on a GPU. This paper presents

our experiences in parallelizing a real-world image processing application from the computational
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biology domain. This application performs cross-correlation operations on 2-dimensional images to

compute spatial correlation statistics of natural scenes. The core kernel involves O(n4) computation

over 2-dimensional single-precision floating point matrices, where each step involves 4 multiplica-

tions and 4 additions. Our results illustrate that on a nVidia GTX 285 GPU, this application suffers

from increased accesses to slower off-chip device memory due to smaller shared memory, and un-

aligned device memory accesses, expensive atomic operations to support collective aggregation, and

weaker single-threaded performance. Due to nVidia GPU’s architectural constraints, an inherently

compute-intensive application such as this becomes memory-bound. In contrast, on a multi-core

CPU, the application’s data set can fit into its cache, and the CPU’s hardware capabilities and

compiler support can together exploit the application’s inherent parallelism effectively. Our results

illustrate that performance of the cross-correlation application optimized on a latest nVidia GPU

can be matched by hand-tuned or compiler-optimized versions of the application executing on the

Intel Xeon (Nehalem) or IBM Power7 processors. The best performing versions on the Power7, Ne-

halem, and GTX 285 run in 1.02s, 1.82s, and 1.75s, respectively. The application when optimized

with advanced compiler auto-parallelization technology ran in 1.67s on a single Power7 processor,

still beating the GPU version. In addition, a significantly higher amount of effort was put into de-

veloping the GPU implementation when compared to CPU ones; the compiler-optimized code was

generated fully automatically. This paper helps understand the reasons behind these results.

The intent of this work is not to claim that the performance of any GPU can be matched by a multi-

core processor1. Our results identify certain scenarios where performance of an application running

on the nVidia GPU can be matched by its multi-core counterparts. Our observations regarding the

GPU performance are not restricted to the application under evaluation or to the image processing

domain. They are applicable to all those problems that require global collective reduction operations

(that require usage of atomic instructions), cannot use shared memory for storing the input or

intermediate data, and generate accesses that are difficult to be optimized via hardware coalescing.

1The results are restricted to nVidia GPUs only
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For example, we have also observed similar issues with the GPU implementation of relational grouping

and aggregation operators (e.g., SQL GROUP BY and COUNT) on large data sets; in this case, multiple

GPU threads perform atomic updates on random locations in a large hash table stored on the device

memory.

The rest of the paper is organized as follows. Section 2 discusses the application. Section 3

describes its acceleration on the nVidia 285 GPU. Section 4 discusses how our compiler framework

automatically parallelizes and optimizes it, while Section 5 describes hand optimization through

vector intrinsics and task parallelism. Finally, results are presented in Section 6.

2 Description of the Application

In this study, we investigate parallelization of a computational biology application that computes

spatial correlations for large image datasets derived from natural scenes [6]. The motivation for

performing this computation is to relate the spatial correlation statistics of natural scenes with the

properties of neurons in the primate visual cortex, such as their orientation and color selectivity,

and their receptive field sizes. Though the computation can be carried out relatively quickly for one

dimensional scalar values such as image intensity, the computation becomes challenging when the

input consists of multi-dimensional matrices over large (in the hundreds) image ensembles.

There are many techniques to compute statistical properties of interest. We use a method that

involves computing an orientation or color vector at a given image location, and its correlation

with other orientation or color vectors at different displacements. Here, orientation and color are

represented using 2-element tuples. The orientation consists of a magnitude and direction, and can

be represented in Cartesian form as (x1, x2). We also use a 2-dimensional matrix consisting of the

2-element tuples (a, b), which represents the color in the a− b plane [9]. There are many techniques

to compute orientation and color, and there are multiple parameters involved, such as the filter sizes

used to estimate orientation [7]. We would like to compute the joint orientation and color distribution

repeatedly over a large image ensemble while varying the different methods, and their parameters. At

4



present, the sequential algorithm processes images from an ensemble of 100+ images, one at a time.

For each image, the correlation algorithm computes a small correlation matrix. These correlation

matrices are then further analyzed to explore statistical properties of the natural scenes. As we shall

see in Section 2, the core correlation computation is extremely expensive and any improvement in its

performance, would significantly improve overall running time of processing an ensemble of images.

Core Computation Kernel The cross-correlation kernel processes an 500×500 pixel image using

four input data sets, representing 2-element color and orientation tuples of each image pixel. Each

data set represents a two-dimensional space of size 500 × 500 using single-precision floating point

numbers. Thus, total space consumption per image is 4 MB. The result of the correlation is a

250 × 250 single-precision matrix, consuming 250 KB of space.

x

y

SAMPLE_SIZE=500

CORR_SIZE=250

2
5
0

5
0
0

(a)  Input Image (b) Computing Correlation at offset(x, y)

Figure 1. Computing 2-dimensional correlation

The cross-correlation algorithm compares the base image against its shifted version, both in X-

and Y-dimensions (Figure 1(a)). In both dimensions, the extent of the shift is 250 (henceforth,

referred to as the CORR SIZE), leading to a two-dimensional correlation space of 250× 250 (62500)

positions. For each position in the correlation space, the overlapped sections of the base image,

and its shifted version, called the mask, are correlated (shaded region in Figure 1(b)). Figure 2

presents the corresponding psuedo-code. The correlation computation is implemented using 4-level

nested loops over 4 arrays: color1, color2, orientation1, and orientation2. The outer-most
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1 for(offset y=0; offset y < CORR SIZE; offset y++) {
2 for(offset x=0; offset x < CORR SIZE; offset x++) {
3 base index = 0;

4 mask index = 0;

5 dot product = 0.0f;

6 for(rows=0; rows < SAMPLE SIZE−offset y; rows++) {
7 for(columns=0; columns < SAMPLE SIZE−offset x; columns++) {
8 base index = (offset y + rows)*SAMPLE SIZE + offset x + columns;

9 mask index = (offset y + rows)*SAMPLE SIZE + columns;

10 correlation index = offset y*SAMPLE SIZE + offset x;

11 dot product = (color1[base index]*color1[mask index])+

12 (color2[base index]*color2[mask index])+

13 orientation1[base index]*orientation1[mask index])+

14 orientation2[base index]*orientation2[mask index]);

15 correlation array[correlation index]+=dot product;

16 }
17 }
18 }
19 }

Figure 2. Psuedo-code for the two-dimensional correlation algorithm

two loops correspond to shifts in the two-dimensional correlation space, while the inner-most two

loops correspond to computation over individual data sets. In every step, two elements of each

array are fetched with two different offsets: base index and mask index. The correlation operation

implements a pair-wise dot-product over aligned pair of values from base and mask from overlapped

sections of every data set and adds the computed dot-product values to determine the final correlated

value for that shift (Figure 2, lines 11–15). In a parallel environment, this corresponds to a collective

reduction operation over (O(n2)) data.

The overall computation requires O(n4) steps, where n is 500. Each step requires 4 single-precision

floating point multiplications and 3 single-precision floating point additions. In addition, there are

(250 × 250 × O(n2)) additions (when parallelized, 250 × 250 collective reduction operations, each

adding O(n2) dot-products) for computing the final result. The rest of the paper focuses on evaluating

different strategies for parallelizing this correlation kernel.
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Figure 3. Thread mapping in the CUDA implementation

3 GPU Implementation

The first step in developing any CUDA application is to determine the number and mapping of

the CUDA threads used in the computation. The correlation algorithm (Figure 2) exhibits two key

characteristics: (1) the computation is inherently unbalanced; the amount of computation required

for the correlation offset (0,0) is four times that for the correlation offset (249, 249), and (2) the

result space, (250, 250), is smaller than the input data space, (500, 500). Therefore, if we were to use

500 × 500 threads, with one thread per element in the input data space, many threads will have no

work due to the unbalanced nature of the computation. Also, computing every result value requires

coordination among all participating threads, leading to excessive synchronization costs.

Therefore, we decided to use 250×250 threads to parallelize the correlation computation (Figure 3:

A). Each thread would be busy throughout the application, but each thread would perform a different

amount of work. The 250 × 250 threads are allocated as a 1-dimensional grid of 125 thread blocks,

each with 512 threads. Each thread block is assigned to a separate symmetric multiprocessor; thus

512 processors share the 16 KB shared memory. Logically, the 250 × 250 threads are viewed as a

2-dimensional grid, in which each thread block corresponds to a thread group with 250 columns and

2 rows (Figure 3: B). Each thread is assigned a logical ID in the logical (250, 250) 2-dimensional

space.

The next step is to determine the optimal memory layout for the correlation algorithm. The
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algorithm reads each image using four data sets, each representing a 500 × 500 single precision float

array. Thus, the total memory usage per image is 4 MB. The result is stored in a 250 × 250 single-

precision float array which consumes 250 KB of space. Neither the input arrays nor the result array

can be stored in the shared memory. Each step of the correlation algorithm performs two read

accesses per each array (e.g., color1) (Figure 2: lines 11–14); thus the memory requirement of each

correlation step is 32 bytes. The two accesses to an array are strided by an offset determined by the

correlation shift. Such accesses cannot be coalesced. Considering the mapping of 250 × 250 threads

into a logical two-dimensional 250 × 250 grid, the memory footprint of a 2 × 250 thread group is

500× 32 bytes (16 KB). In practice, shared memory on a GPU stores data less than 16 KB of data.

Thus, the shared memory region in a symmetric multiprocessor cannot store even the data consumed

by threads in a thread group for a single step in the correlation algorithm. We run into the same

problem even if we use 500 × 500 threads. Hence, we store both the input data arrays and the

result array on GPU device memory. It should be noted that the proposed thread-mapping enables

cross-thread hardware coalescing while accessing individual arrays. However, strided accesses to

individual arrays cannot be optimized using hardware coalescing. Accesses to individual arrays can

be further improved by packing four single-precision float arrays into a single large float4 array: the

ith float4 element of the packed array consists of ith elements of the four input arrays. Thus, a single

memory access to a packed array can return a float4 element that contains four single-precision

float elements from four different arrays. Finally, since the inout data arrays are read-only, they can

be accessed using GPU’s texture memory. Thus, for the correlation algorithm, we have four different

memory access alternatives based on separate and packed arrays, each accessed using either texture

memory or direct memory.

Given the thread mapping and memory layout, the correlation algorithm can be implemented

in three different ways, depending on how aggregation is performed: (1) local aggregation, (2)

shared aggregation, and (3) global aggregation. These three approaches primarily differ in the way

intermediate results are added to compute the correlation value at any offset (x, y). The shared and
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global aggregation approaches produce numerically incorrect results as CUDA currently supports

atomic operations only for integers. We still describe them for comparison with the local aggregation

solution. Figure 4 illustrates computation of correlation at offset (73, 109) using the three different

implementations.

(73, 109)

250

250

250

250 250

250

(73, 109)
(73, 109)

(a) Computing Correlation at offset (73, 109) (b)  Three Implementation Alternatives

(II) Shared Aggregation(I) Local Aggregation

(III) Global Aggregation

Thread Group
(Mapped to a SM)

(73, 109)

Figure 4. Three alternative CUDA implementations. The shad ed regions in (b) represent the
processors involved in computing the correlation at the off set (73,109). The shared and global
aggregation approaches produce numerically incorrect res ults.

In the local aggregation approach, a thread at position (x, y) in the (250, 250) logical map is

responsible for computing the correlation at offset (x, y) in the (250, 250) correlation space. Each

thread serially fetches data required for computing correlation at that offset. For example, for

computing correlation at offset (73, 109), a thread with logical ID (73,109) fetches all elements in

the shared region of the four arrays. It performs the necessary dot-products and additions (Figure 2:

lines 11-14) and updates a register variable, dot product to maintain a running sum. Once the

computation is completed, the thread updates the corresponding position in the correlation array

in the device memory (Figure 2: line 15) without any synchronization. Thus, this approach is an

embarrassingly parallel implementation of the correlation algorithm, where all threads concurrently

compute results for their corresponding offsets, without the need for any coordination on global or

shared memory variables.

In the shared aggregation approach, a logical thread group (Figure 3(b)) is assigned the corre-
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sponding set of offsets in the 2-dimensional correlation space. Moreover, computation of each offset

in the assigned set is executed in parallel by all 500 threads in the thread group. For an offset in the

correlation space, all 500 threads from the corresponding thread group read the relevant portions of

the four arrays in parallel, perform the dot-products and additions, and then atomically update (via

the CUDA atomicAdd() function) a variable stored in the shared memory to maintain the running

sum (Figure 2: lines 11–14). Therefore, the collective addition operation is implemented using a

variable stored in the shared memory of a symmetric multiprocessor. Once all threads have com-

pleted their work, one thread in the thread group stores the final sum to the corresponding offset

in the correlation array in device memory without any synchronization (Figure 2: line 15). This

approach improves over the local aggregation approach on two aspects: memory accesses to fetch

data sets and corresponding computation are made in parallel. However, CUDA 3.0 supports the

atomicAdd() function only for integer values. Hence, we cast the float values as integers in the

atomicAdd() function. Thus, the final result would be numerically incorrect2.

The final implementation approach further improves the parallelism employed in the correlation

process. In the global aggregation approach, computation of each offset in the correlation space is

implemented using all 250× 250 threads. For each correlation offset, every thread in the application

fetches relevant portions of the arrays in parallel, performs dot-products and additions, and then

uses atomicAdd() to update a shared variable in the shared memory of the corresponding symmetric

multiprocessor. Once all threads within a thread block have completed their work, one thread

updates the correlation array in the device memory using the atomicAdd() function. While this

approach enables maximum parallelism with respect to memory accesses and computation, it suffers

from maximum synchronization overhead as it needs to update shared variables both in shared and

device memories. Finally, like the shared aggregation approach, this approach computes numerically

incorrect values.

2One can use atomic compare-and-swap operations to implement floating-point atomic additions. But this approach

would be slower than the current one as it involves busy waiting.

10



4 CPU Implementation: Compiler-driven auto-parallelization

The compiler we use to study this aspect is IBM XL [4], IBM’s compiler for C, C++, and Fortran,

targeting IBM microprocessor architectures. It includes the polyhedral compiler framework as one of

its passes as part of its high-level loop optimization phase. The polyhedral framework applies a long

sequence of transformations on a mathematical representation of the intermediate language. Trans-

formations include affine transformations encompassing permutation, skewing, fusion, cache/register

tiling, with extraction of parallelism. In the rest of this section, we describe how the polyhedral

framework in the XL compiler optimizes the application. Most optimizations described below are

either known or state-of-the-art; however, as we will see, some of these are applicable to our applica-

tion in a context completely different from what has been previously explored. We now discuss the

transformations performed by the compiler for parallelization and simdization.

4.1 Parallelization

The core computation involved is a 4-dimensional loop nest as was shown in Figure 2. Before this

code can be further analyzed in a polyhedral representation, one should note the way traditional

compiler passes transform it. The code in its original form does not appear to be affine at all.

However, after propagation of constants and copies, all array accesses are indeed affine. Data accessed

in the core computation is via pointers passed to the procedure containing the loop nest. Hence,

without some amount of inter-procedural analysis, it would not be known whether these pointers

alias. At the -O5 optimization level of the XL compiler, all its interprocedural data flow and alias

analysis is enabled. When the polyhedral pass is called at this level, we are able to view these as

array accesses as well as disambiguate between these for dependence testing purposes. Hence, the

entire nest is extracted for analysis and transformation in the polyhedral representation.

The algorithm driving loop transformation in our polyhedral pass is aimed at reducing dependence

distances hierarchically, bringing parallelism to outer levels while keeping reuse at inner levels [1].
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In addition, maximal bands of permutable loops are detected to maximize cache and register tiling

opportunity as well as reason about certain late transformations to enable loop vectorization or

further improve spatial reuse. A band of loops is a consecutive set of loops that is fully permutable.

For this code, the core affine transformation chosen by the framework is, trivially, the identity one

with two such bands. Properties of its loops are as follows:

Figure 2 Line # Property Band

Loop 1 1 parallel band 0

Loop 2 2 parallel band 0

Loop 3 6 fwd dep band 0

Loop 4 7 seq band 1

The outer two loops are detected as parallel, which is also not surprising to the programmer. The

inner two loops perform a reduction. The third loop has all dependence components in the forward

direction along it, and so the outer three loops form a single permutable band, i.e., a 3-d blocking

can be performed on those. All four dimensions are not identified as being blockable here due to

the presence of a reduction on the innermost two loops, which strictly speaking, is serializing if one

does not relax non-associativity of floating-point additions. Assuming floating-point additions to

be associative would lead to certain dependences being discarded here, and allow the code to be

inferred as 4-d blockable. However, in this case, we do not perform any cache tiling due to data

sets completely fitting in caches. The obvious choice for parallelizing the nest is the one parallelizing

the outermost loop as it provides the coarsest granularity of synchronization-free parallelism with

no other downsides with respect to how data would be shared between processors. Hence, auto-

parallelization of this loop nest is fairly straightforward.

4.2 Simdization

SIMD parallelism [3, 8, 5] when extracted from loops is a form of fine-grained parallelism that obeys

certain constraints with respect to accessed data. Data accessed by simdized loop iterations has to be

aligned and contiguous. The amount of parallelism is limited to the width of vectors, at least from the

compiler’s code generation viewpoint. Hence, SIMD parallelism can be readily extracted from any
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parallel loop that also satisfies data alignment and contiguity constraints. Misaligned accesses can

be handled through various compile-time or runtime techniques involving shifting, shuffling, and/or

code versioning [3, 8]. In some cases, these can be done efficiently, while in others, its impact can

completely negate the benefits of SIMD. In addition to innermost loops that are parallel, outer loops

can be vectorized too. Outer loop vectorization [5] is a technique through which a few iterations of a

non-innermost loop are moved all the way inside and the resulting short trip count loop is vectorized.

The number of iterations brought is the same as the SIMD width. Hence, a parallel loop at any

particular position, not necessarily innermost, can be simdized subject to data contiguity constraints.

Our application presents an interesting puzzle for simdization owing to its data access pattern.

Consider the accesses on the RHS of the code. The arrays are subscripted by:

base index : (offset y + i) ∗ SAMPLE SIZE + offset x + j

mask index : (offset y + i) ∗ SAMPLE SIZE + j

Note that there are two ways loop vectorization can be performed here. One can perform outer

loop vectorization on loop offset x, while reduction vectorization can be performed along loop j.

However, the base index subscript is the problematic one. Irrespective of which loop is simdized,

all four accesses using base index would be misaligned whenever offset x is not a multiple of four.

Accesses using mask index do not suffer from this issue. We find that performing loop simdization

here with misaligned accesses leads to a significant degradation in performance: this is in spite of

special techniques to reduce alignment overhead. However, a much simpler and effective simdization

technique can be applied here. It involves extracting simd parallelism from a single iteration of the

loop nest. Such simdization can only be performed here after a particular data layout transformation,

array interleaving, described below.

Array Interleaving: Transformations that convert a structure of arrays to an array of structures

or those that interleave arrays to improve locality have been studied [2, 10, 11]. Array interleaving

(also known as array regrouping) interleaves a group of arrays so that elements at a particular index
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of each array are contiguous in the new data structure. If the same index is used to access each

array, say in the same iteration, regrouping the array can (1) improve spatial reuse, (2) reduce the

number of prefetch stream buffers, and (3) enable basic block simdization. Enabling vectorization

through array interleaving has not been previously reported or utilized to the best of our knowledge.

Array interleaving is same as the array packing employed in the GPU implementation. However, the

compiler simdization framework has limited support for basic block simdization and in this case is

unable to perform it. We perform this optimization for the version optimized manually, as described

in the next section.

5 CPU Implementation: Hand Optimization

In this section, we describe different strategies used to manually parallelize and optimize the

original sequential program on Intel Xeon and IBM Power7 processors.

0 vector sum, base, mask;

1 for(offset y=0; offset y < CORR SIZE; offset y++) {
2 for(offset x=0; offset x < CORR SIZE; offset x++) {
3 Set sum to 0.

4 Set dot product to 0;

5 Compute correlation index;

6 for(rows=0; rows < SAMPLE SIZE-offset y; rows++) {
7 for(columns=0; columns < SAMPLE SIZE-offset x; columns++) {
8 Compute base index and mask index;

9 base=vector load(input[base index]);

10 mask=vector load(input[mask index]);

11 sum = vector sum(sum, vector mult(base, mask);

12 }
13 }
14 Aggregate sum elements to compute dot product;

15 correlation array[correlation index]+=dot product;

16 }
17 }

Figure 5. Psuedo-code for the SIMD version of the two-dimens ional correlation algorithm

Simdization using vector intrinsics The first strategy applies short-vector data parallelism (aka

SIMD) to the core computational kernel of the sequential program (Figure 2). In this approach, we

rewrite the key step in the computation (Figure 2: lines 11–14) using architecture-specific SIMD
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intrinsics (i.e., SSE on Intel Xeon and VSX on Power7 processors). We store four single-precision

float values in a 128-bit SIMD vector variable, and use the corresponding SIMD multiply() and

add() intrinsics to implement pair-wise dot-products and additions. Figure 5 shows psuedo-code for

the corresponding SIMD kernel. In our SIMD implementation, we use three 128-bit vectors: sum,

mask, and base: base and mask are used to hold elements for four different arrays at the given

offset (e.g., base index, and mask index) and the sum vector is used to store the running sum. As

described earlier, the packed input array stores elements from the four arrays in four consecutive

memory locations, and can be directly indexed for populating the vectors (Figure 5: lines 10-11).

For a correlation offset (x, y), the sum vector stores and updates four partial sums, which are finally

aggregated to compute the resultant dot product value.

Task Parallelization We further parallelize the simdized version. Using this strategy, the tasks

of computing correlations are distributed among participating threads, in an embarrassingly paral-

lel manner. Each thread works on tasks assigned to itself, and update corresponding positions in

correlation array without any synchronization. In our implementation, we parallelize the outer-

most loop (Figure 5: line 1) that traverses the Y-axis of the (250 × 250) iteration space (in other

words, the correlation space gets partitioned in a row-block manner). We implement the task-parallel

version using both, the pthreads library and OpenMP.

6 Experimental evaluation

Experimental setup All parallel GPU and CPU versions of the correlation application share the

same sequential pre-processing component. This component reads the image data from four input

files (two each for color and orientation components), and populates the four 500×500 single-precision

floating point arrays. Once the arrays are populated, the algorithm performs a pass over the image

data in which color and orientation data sets are normalized. The normalized image data is then

processed by the correlation kernel either using a single packed array or four separate data arrays.
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Processor architectures
nVidia GTX 285 Intel Xeon E5570 IBM Power7

Cores 30×8 Symmetric Processors 4 cores with 2-way SMT 8 cores with 4-way SMT
Frequency 1.476 GHz 2.93 GHz 3.55 GHz
Memory 16 KB Shared Memory per SM 32 KB L1 I and D caches 32 KB L1 I and D caches

1 GB Device Memory 256 KB L2 cache per core 256 KB L2 cache per core
8 MB Shared L3 cache 32 MB L3 cache (eDRAM)

Memory bandwidth 159 GB/s 22.89 GB/s 100 GB/s (sustained)
SIMD 2 64-bit FMA or 4 32-bit FMA 4 32/64-bit FMAs

Table 1. Architectural summary of the three multi-core proc essors being used in our experiments.

The original correlation algorithm processes images from an ensemble of 100+ images. The stan-

dard size of all images in the datasets is 500 × 500 pixels [6], and each image is represented by

four files of 1 MB each. We ran our tests on twelve randomly selected images from the repository.

The images share many similarities in the color and orientation features, hence individual execution

performance on every image is very similar. Hence, results are presented for only one image.

Evaluation on nVidia GTX285 We have evaluated the three CUDA versions of the correlation

algorithm on a nVidia GTX 285 GPU hosted on a dual quad-core Intel Xeon (Nehalem) MacPro

system running MacOS 10.6. As discussed in Section 3, the shared and global aggregation versions

of the code produce incorrect results. Hence, we will provide detailed experimental results for the

local aggregation code, and discuss the remaining two alternatives only for performance comparison.

The CUDA correlation kernel fetches the four input data sets either as four separate arrays or as

a single packed array, and returns a single result array. In both cases, we have observed that the cost

of data transfer is minuscale (0.05% of the overall kernel execution time, as reported by the CUDA

Performance Analyzer). A majority of the time spent in the CUDA correlation kernel is spent at the

core computational component illustrated in Figure 2.

Among the three different CUDA versions, the local aggregation approach takes the least amount

of time, and the global aggregation code takes the most. On a sample image, the local aggregation

code required 1.72 seconds, the shared aggregation code took 2.58 seconds, and the global aggregation

code took more than 10.5 seconds! The key reason for the performance degradation is the cost of
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atomic operations to implement collective operations on the nVidia GPU. For every correlation

offset, the global aggregation strategy invokes 500*125 atomic locks on a shared memory variable

and 125 atomic locks on a device memory variable. In contrast, for every iteration offset, the shared

aggregation strategy uses 500 atomic locks on a shared memory variable. The local aggregation

strategy does not use any atomic locks, hence performs the best among the three alternatives.

Packed array (time in s) Separate arrays (time in s)
Image texture direct texture direct

0 1.75 5.43 3.66 2.84

Table 2. Performance comparison of different memory access patterns for the local aggregation
strategy (time in s)

Table 2 presents evaluation of the local aggregation strategy using different memory configurations.

Referring back to the code fragment presented in Figure 2, each step makes 8 memory accesses, 2

accesses each to the four arrays. The two accesses to an array use distinct varying offsets, and

cannot be coalesced. To optimize memory accesses, we packed the four arrays and accessed them

by treating the packed elements as float4 values from a single array. Table 2 presents results

of the correlation algorithm for the packed and separated array configurations, using both direct

and texture memory accesses. The results demonstrate that: (1) The execution time for the local

aggregation application varies from 1.75 sec to 5.42 sec depending on how data is accessed (i.e., the

application is memory bound), and (2) Packed and separated memory accesses respond differently to

texture and direct memory accesses. Texture memory works the best for packed memory accesses and

direct memory accesses to separated arrays provide the highest performance. While accessing packed

arrays directly, each consecutive access is separated by a 16-byte offset, and cannot be optimized

via hardware coalescing (the number of coalesced accesses to the device memory went up by 4 when

packed arrays were used.) Similarly, when multiple arrays are accessed via texture memory, the

texture cache gets thrashed due to contention among fetched data blocks (on a nVidia GPU, the

texture memory fetches data into a cache in a blocked fashion3.) Each step results in 8 separate

3The texture memory layout has not been publicized. It has been guessed that data in the texture memory is laid

out using some form of space-filling curve. The texture memory accesses are also not reported in the CUDA profiler.
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memory accesses, resulting in fetching 8 blocks, and leading to cache thrashing. For packed texture

and separated direct memory accesses, we further explored unrolling of the innermost loop (Figure 2:

lines 7–15); unrolling produced little or no improvement for the separated direct memory scenario

and for the packed texture case, the performance degraded. The performance numbers presented in

this section do not include any unrolling.

These results demonstrate that on a nVidia GTX 285 GPU, the best performance of the correlation

application (1.725 sec) is achieved using the local aggregation strategy that accesses input data as

packed arrays via texture memory.

Evaluation on Intel Xeon We ran the original sequential version SIMDized using SSE4, and a

pthreads version of the SSE code on a dual (2-way SMP) quad-core Intel Xeon (2.93 GHz X5570)

running RHEL 5.3 server. Since each core of the Intel Xeon supports 2-way SMT, the total number

of threads per chip is 8, and the total number of threads per system is 16. We used the GCC version

4.3.4 compiler to build the application. The compiler is invoked with the requisite optimization flags

(e.g., -O3, -mtune, -march, -funroll-loops etc.). We found the OpenMP support in gcc 4.3.4. to

be problematic. Hence, we only present pthread performance numbers. We expect the OpenMP

performance to be similar to that of the pthreads version.

Seq Pthreads+SSE #Threads (time in s)
Image no SSE 1 2 4 6 8 10 12 14 16

0 30.17 12.900 7.482 3.944 2.646 2.188 2.245 1.984 1.901 1.875

Table 3. Performance of the multi-threaded version of the co rrelation code on a dual quad-core
Intel Xeon(Nehalem) system using Pthreads (time in s)

The original sequential code, compiled with gcc, ran for 30.17 seconds. The SSE4 version of the

code implements the simdized version of the core computation kernel (Figure 5) and executed in 12.89

seconds. This result demonstrated the efficacy of simdizing the innermost step using short-vector

data parallelism with 128-bit vector variables. Table 3 presents the results of a multi-threaded version

of the simdized correlation algorithm on the Intel system. We found that the OpenMP support in

gcc 4.3.4 does not work properly on the Intel Xeon architecture and hence, we only present numbers
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from experiments that use the pthreads threading library. Results illustrate that the performance

increases linearly as the number of threads is increased to 8 (12.9 sec to 2.64 sec), after 8 threads

(across the chip boundary) the performance improves slightly, and we observe the best performance

of 1.86 seconds for 16 threads.

Seq-packed (no VSX) 14.27

#Threads

1 4 8 8×2 8×4

Manual (VSX+OpenMP) 12.55 3.76 1.79 1.38 1.02

Compiler (XL) 14.37 4.51 2.37 2.92 2.15

Compiler (XL/Poly) 14.37 3.67 1.84 2.24 1.69

Table 4. Performance of hand-parallelized and compiler-dr iven auto-parallelized versions of the
correlation code on a single Power7 processor (time in s)

Evaluation on Power7 We measure the performance of the original code optimized and paral-

lelized by the compiler and that of a manually optimized version using VSX vector intrinsics on a

system with a single Power7 processor (Table 1) running AIX 6.1. The latter hand-vectorized code

was parallelized with OpenMP. The XL C/C++ compiler (v11.1) was used with flags ‘-q64 -O5 -qhot

-qtune=pwr7 -qarch=pwr7 -qsmp -qthreaded’, with an additional flag to enable the polyhedral pass

in case of ‘XL/Poly’. Table 4 presents results for: (1) code manually optimized with VSX vector

intrinsics and parallelized with OpenMP, (2) auto-parallelized by the IBM XL compiler without the

polyhedral pass, and (3) auto-parallelized by the IBM XL compiler with the polyhedral pass. 8×2

and 8×4 in the table corresponding to two and four SMT threads on each of the eight cores, re-

spectively. We see linear scalability in all cases. As mentioned in Section 4, the compiler is unable

to auto-simdize this code. However, even without simdization, we see that the compiler generated

code performs nearly as well as the hand-simdized code. One would have expected better single-

thread performance for the hand-vectorized code, but we believe this was not the case because of

the manually vectorized and OpenMP parallelized code not being as well optimized by the backend

(and other lower-level optimization passes in the compiler) as the original unmodified code. This is

also strongly supported by the fact that SMT (8×2, 8×4) provides significant improvement for the
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hand-vectorized code, but not for the compiler optimized versions, an indicator of poor ILP exhibited

by the former. Though unrolling and register tiling could have been explored in conjunction with

hand-vectorization, we did not perform this study as SMT seemed to have satisfactorily recovered

these losses to a good extent. In future, we would like to find ways in which a compiler can auto-

matically simdize applications such as this one efficiently: this will provide even higher performance,

mostly likely beating the hand-vectorized version.

6.1 Analysis of Results

The results show the nVidia GPU 285 implementation of the correlation algorithm being outper-

formed by versions on the Power7 processor. The Power7 implementations, both the hand-optimized,

and the one optimized by the compiler, provide improvements of 18% and 3% over the best GPU

implementation. Similarly, performance of the application on a dual quad-core Xeon (2-way SMT)

system matches GPU performance. In addition, the results also highlight the amount of performance

that can be achieved by the compiler fully automatically with absolutely no effort on part of the

programmer to parallelize or simdize the code.

What are the reasons for such a result? On the GTX 285, due to the smaller shared memory, the

application was forced to keep all its data in the device memory. Further, to avoid expensive atomic

operations in the collective reduction step, the application used individual threads in an embarrass-

ingly parallel manner. Weak single-thread performance and un-optimized device memory accesses

transformed a numerically-intensive application into a memory-bound one. In contrast, the CPUs

can hold the application data in their caches, and exploit available software and hardware resources

to effectively parallelize the embarrassingly parallel application (e.g., on the Power7 processor, the

application performance improved from 14.27 seconds to 1.02 seconds using VSX and OpenMP). Note

that the correlation application was not constrained by device memory size and compute resources

(GTX 285 can host many more threads than 250 × 250). In summary, the application performance

was affected by key architectural features of nVidia GPUs.
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Figure 6. Best performance for different versions of the cor relation algorithm

7 Conclusions

We evaluated the performance of a real-world image processing application on the latest GPU and

commodity multi-core processors using a wide variety of parallelization techniques. A pthreads-based

version of the application running on a dual quad-core Intel Xeon system was able to match nVidia

285 GPU performance. Using fully automatic compiler-driven auto-parallelization and optimization,

a single Power7 processor was able to achieve performance better than that on the nVidia 285 GPU.

This is a compelling productivity result, given the effort required to develop an equivalent high-

performance CUDA implementation. Our results also conclusively demonstrate that, under certain

conditions, it is possible for a program running on a multi-core processor to match or even beat the

performance of an equivalent GPU program, even for a FLOP-intensive structured application. In

future, we plan to compare performance of such applications on upcoming GPU architectures from

AMD and nVidia, e.g., nVidia Fermi.
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