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ABSTRACT  
In this paper we share lessons learned in designing, developing, and testing 
features for a high-assurance smart card operating system. In particular, this paper 
describes our software design, development, and testing processes, and the 
advantages reaped from following established process guidelines. We describe the 
project impact experienced from external influences and count among them 
market pressure from a rapidly changing commercial landscape which demands 
agility in order to assure continued funding and product success. 

1 Introduction  
The Caernarvon smart card operating system is a high assurance operating system designed and 
built with security in mind from the start. It is targeted at Evaluation Assurance Level EAL7, the 
highest possible level of the Common Criteria, the international standard for evaluating the 
security components of information systems [3].   High assurance systems like Caernarvon are 
useful in commercial, government, and military applications, where valuable assets or human 
lives must be protected from accidents and malicious attacks. 
 
The operating system was named “Caernarvon”2 after the magnificent castle in North Wales (See 
Figure 1), which was built at the end of the thirteenth century and is still standing. Construction 
of the original Caernarvon lasted 47 years [23]. Construction of its electronic namesake was also 
expected to be an arduous and lengthy development effort. 
 
A Caernarvon smart card is designed to withstand hardware and software attacks, and continue 
to function correctly even when the client system has been compromised. Security critical 
functions include establishment of one end of strong two-party authentication, digitally signing 
sensitive transactions, protecting and processing confidential data without leaking information, 
and performing sensitive cryptographic operations that cannot be entrusted to the host client.  
 
The Caernarvon operating system was designed from the start to be evaluated under the 
Common Criteria [3] at EAL7, the current highest level of assurance.  Levels EAL6 and EAL7 
are often called the high assurance levels, because systems evaluated at those levels under the 
Common Criteria are the only systems that have been shown to be generally resistant against 

                                                 
1 Now with the National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, sweber@nsf.gov 
2 In Welsh it is pronounced approximately “kire-NAR-fon”; in English, “KAR nar vən.” 



2 

sophisticated penetration attacks. These attacks are currently commonplace, but previously were 
considered only the concern of the military      , and include such problems as buffer overflows, 
incomplete argument validation, spyware, Trojan horses, and root kits. High assurance is 
specifically designed to address these problems.   
 

 
Figure 1.  Caernarvon Castle in North Wales 

1.1 Motivation 
Electronic identification cards, passports, and mobile phones are used in security-sensitive 
applications, such as assuring national security and performing banking transactions. Additional 
platforms, such as sensors and actuators, also share the same need for reliable and trustworthy 
information.  These devices can provide trustworthy information if applications are run in a 
secure operating system such as Caernarvon. As the sensor and actuator market evolves, 
businesses, governments, private citizens, and autonomous systems will leverage information 
from local and globally distributed sensors in their decision-making process. The end-user, be it 
an organization, a human, or an autonomously thinking and acting piece of software running in a 
computer, a mobile phone, or a robot, will assume that the source of that data can be trusted to 
deliver reliable information. This is a dangerous assumption if the operating system that runs the 
sensor application is not a high-assurance operating system and becomes compromised, either 
through malice (by an attacker) or by accident (by a co-resident application). In addition to 
sensors, we are also concerned with actuators – can they be trusted to perform precisely the 
requested action at the indicated time if they are managed by a compromised, non-secure 
operating system?  
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1.2 Features of the Caernarvon Operating System 
The Caernarvon operating system supports multiple applications from mutually distrusting (and 
potentially hostile) sources and provides high assurance by enforcing mandatory access controls 
and using hardware protection mechanisms to enforce security. 
 
Caernarvon provides for field-downloadable applications and manages the controlled sharing of 
data between applications. It reduces development and evaluation costs for applications because 
cryptographic and other common functions such as communication and authentication are 
provided by Caernarvon and have been tested and verified. The cryptographic library is already 
Common Criteria certified at EAL5+. 
 
A more detailed description of the major features of the Caernarvon operating system can be 
found in [32]. 

1.3 Strong Authentication 
Smart card systems typically leave authentication to application programs, resulting in potential 
security flaws, breaches of privacy,  and inconsistencies in protocols. Caernarvon takes a 
different approach by providing a very high quality, standardized, cryptographic authentication 
protocol that also protects the smart card holder’s identity [31].  It relieves application developers 
from the task of inventing, designing, implementing, testing, and evaluating their own protocols, 
thereby reducing development costs. The Caernarvon privacy-preserving authentication protocol 
has been incorporated into the European CEN standard for digital signature applications on smart 
cards [1].  By using a standard protocol, it is easier for a multi-application card to work reliably 
and securely with applications from many different sources. Authentication is an important 
component of the operating system, and is within the scope of the EAL7 evaluation, thus 
assuring that it actually works and is secure. 

1.4 Mandatory Security Policy 
The Caernarvon system enforces a mandatory security policy. Each directory or file in the 
system’s storage has an associated access class. Access is granted only to those users (programs) 
that have the appropriate access class, which is determined during the authentication process. 
Caernarvon introduces a new approach for multi-organizational mandatory access controls. It 
provides a mechanism for access controls between different organizations (such as Payroll vs. 
Purchasing or Department of Defense vs. Department of Energy). This new scheme can handle 
millions of different organizations with organization-specific security policies, all connected to a 
common Internet.  
 
Caernarvon has a new approach for defining access classes dynamically in the field. A smart 
card holder can securely download new applications and access classes from application 
providers who were not even known to the card issuer at the time the card was issued to the card 
holder. This feature provides significant benefits, both in commercial applications (where, for 
example, an airline frequent flier program may sign on new hotel or car rental partners long after 
issuing a card to a customer) and in the military (where new coalitions may require access by 
personnel from countries with whom the issuer has never been allied before). 
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2 Using the Common Criteria Evaluation Process 
To pass an EAL7 evaluation, the Common Criteria requires the strongest software engineering 
techniques known.  These techniques include a formal security policy model, a full system 
design with a formal high-level design specification, and a formal proof of correspondence 
between the security policy model and the high-level design specification.  It also requires a 
specification of all internal functions in a semi-formal low level design with a demonstration of 
correspondence between the high-level design, the low-level design, and the actual software code. 
The value of formal specifications was shown when the formal specification of the Caernarvon 
formal security policy model [30] actually identified a security problem in the original version of 
the informal security policy model. 
 
The development cycle must include intensive design and code reviews and full configuration 
control. There was value derived from conducting code reviews.  For example, one code review 
revealed a problem in the implementation of the Digital Signature Standard (DSS) as shown in 
Section  7.1 below. There must be comprehensive testing, including code coverage analysis that 
every path has been exercised, and that no dead code exists. Finally, there must be an extensive 
vulnerability analysis for possible security loopholes, as well as a search for covert 
communications channels. 
 
Certification at a high assurance level requires that the system have comprehensive 
documentation - this documentation has been written and maintained from the very start of the 
project.  The documentation for Caernarvon can be regarded as falling into a number of 
categories, including the system specification, system internals documentation, test system 
documentation, and development tool documentation.  Large portions of the internals 
documentation and test generation are actually embedded in comments in the source code and 
test scripts. One of the development tools is a program that extracts the documentation from the 
source code and produces the necessary Common Criteria documentation in book form. 
 
Meeting the strict documentation standards of the Common Criteria proved very helpful to us. 
The ISO standards for smart cards have ambiguities that all implementations have had to resolve.  
However, other implementations have not clearly and openly documented how those ambiguities 
were resolved, leading to interoperability problems between different readers and smart cards. 
The strict documentation requirements forced us to identify these ambiguities early and to clearly 
document exactly how we chose to resolve them. This will help end users and integrators 
understand where the problem areas lie and how they were resolved in the Caernarvon OS. 

3 Collaboration Matters 
“Something magical happens when you bring together a group of people from 
different disciplines with a common purpose.”  

- Mark Stefik, Fellow, Palo Alto Research Centre3 
 

Creating a high assurance operating system smart card requires deep skills from multiple 
technical disciplines: software design and development, hardware design and development, 
exhaustive testing, vulnerability analysis, formal modeling, and security evaluation.  Likewise, it 
                                                 
3 http://www.leading-learning.co.nz/famous-quotes.html 
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requires skills from multiple business disciplines:  market analysis and development, 
requirements gathering, relationship management (with customers, business partners, and 
executives), project management, budgeting, procuring funding, and public and media relations.   
 
From the outset, we realized that no one organization held all the skills (nor the necessary 
funding) to support the entire effort on its own.  Therefore, we enlisted the help of business 
partners, and divided the project into six nearly equal technical efforts:  hardware design and 
implementation, software design and implementation, test framework / testing, Common Criteria 
documentation, formal modeling, and vulnerability / covert channel analysis.   Initially, the 
project team spanned seven enterprises in five countries:  IBM® (in New York, Kentucky, 
Germany, and Switzerland), Philips Semiconductors (now NXP) (in Germany and Austria), atsec 
Information Security, the German Federal Office for Information Security (BSI), the German 
Research Center for Artificial Intelligence (DFKI), the University of Augsberg, and a Common 
Criteria evaluation laboratory in Germany.  We found it absolutely necessary that the enterprises 
have legal agreements in support of full disclosure of proprietary technical details. The technical 
rationale behind this finding of full disclosure is given in [18].  In essence, the hardware and the 
operating system are bound as a united front to protect the operating system from applications, 
and the applications from each other.  Thus, there are many security-sensitive interactions among 
the hardware, software, formal model, Security Targets, and detailed evaluation technical 
reports.  Details of the interactions can be gleaned from careful study of proprietary documents 
tightly held by each organization.  Unfortunately, organizations are often bound by restrictive 
evaluation contracts, which actually prohibit full disclosure of this information to third parties.  
One of the most important lessons we learned was that information sharing among partners was 
critically important to the success of the project and to the security of the system we were 
developing. 
 

Good design begins with honesty, asks tough questions, comes from collaboration 
and from trusting your intuition.  

- Freeman Thomas, Director, Strategic Design, Ford Motor Company4  
 
Project management was simplified by a clear delineation of duties, was carried out by each 
organization, and was coordinated by the global project manager.  Organizations exchanged 
Gantt charts, which detailed their deliverables, schedules, and manpower.  We held weekly 
conference calls, with all team members participating, during which we discussed both technical 
and business matters.  We also held an initial face-to-face kickoff meeting (for building trust and 
relationships among the team members), followed by bi-annual face-to-face meetings.   
 
The multi-organizational nature of the project helped to protect the project when budget 
pressures threatened the participants.   Organizations were reluctant to cancel a project with 
contractual commitments to long-established business partners. 

4 High Assurance Requires a Long Term Commitment 
Building a high assurance system is like building a brick house from the old fairy tale, The Three 
Little Pigs 5 only making it earthquake, fire, and flood-resistant, as well as wolf-resistant.  Such 

                                                 
4 http://www.brainyquote.com/quotes/authors/f/freeman_thomas.html 
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an effort takes longer and has a higher upfront investment than one of lower assurance.  In 
addition to being resilient to attacks, a rarely noted side effect is that the high assurance system is 
extremely reliable.  (See the discussion of high-assurance robustness in section VII.b of [20].) 
 
Unfortunately, it has been our experience that the time required to complete high assurance 
systems exceeds the typical funding horizons of commercial organizations.  It is quite common 
for a high assurance project to be cancelled, just as it is nearing completion.  The problem of 
limited horizons is not unique to commercial organizations.  Government efforts to develop high-
assurance projects have suffered similar problems as higher authorities abruptly cancel efforts [8, 
28] that are otherwise progressing very well. 
 
It is advisable, therefore, to divide a high assurance project into one with intermediate 
marketable deliverables, even though they do not attain the ultimate target level of assurance.  
These intermediate deliverables will provide evidence to management, customers, and, most 
importantly, those who fund the project, that the project is indeed on target, progressing, and 
within budget.  To continue the analogy, it is possible to design a robust brick house, but then 
make carefully thought-out compromises during final construction to lower costs and expedite 
delivery of an interim system, for example, by designing for heavy, bullet-proof windows, but 
temporarily replacing them with ordinary glass, and selling the house at a lower cost.  This 
strategy is likely to garner continued management support by generating some interim funding, 
so that the project can survive long enough to reach its end goal. 
 

Even if you are on the right track, you will get run over if you just stand there. 
- Will Rogers6  

 
The resulting product is still better than others on the market, but as built, could not rate a high 
assurance certificate.  In the case of the Caernarvon project, the business partners worked 
together to create an intermediate deliverable, the cryptographic library, which earned the 
world’s first EAL5+ (the highest to have been awarded at that time) for a cryptographic library 
[2].  It was shipped as a product, and was a strong foundation for the remainder of the 
Caernarvon project.  In the course of completing this interim deliverable, the team gained 
valuable experience with Common Criteria.  Two valuable lessons learned were that the 
requirements at high assurance are often vague (for example, what, exactly, qualifies as a 
Measurable Life Cycle), and that interpretations of the requirements may change as the 
evaluation staff changes over the long life of the project.  
 
Note that it is very important to stick with the original high assurance design, and simply make 
compromises where retrofitting is feasible later. It is not possible to build a house of straw, then 
attempt to strengthen it later.  No matter what, it still has only straw at its foundation, and it can 
never be fortified into a house of bricks.   
 

                                                                                                                                                             
5 One pig builds a house of straw, one pig builds a house of sticks, and the other pig builds a house of bricks.  A 
wolf destroys the houses of straw and sticks, but the house of bricks remains standing, despite the onslaughts of the 
wolf. 
6 http://www.brainstorming.co.uk/quotes/creativequotations.html 
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In the long run, producing intermediate, lower-assurance deliverables takes even longer than 
building only one high assurance product.  Later in the project, formal modeling and design 
reviews will inevitably expose weaknesses that must be corrected.  Therefore, maintaining 
compatibility between the intermediate and long term deliverables may not be feasible.  
Furthermore, if the intermediate deliverables are no better than those of the competition, they are 
not worth the extra time and cost.   
 
As evidenced by the collaboration described above, no one party need foot the entire bill, but all 
have to agree to stay in the game for the long haul. We have often been asked about the actual 
cost of our project.  Although the actual costs are protected by confidentiality agreements, the 
relative costs of each task over a four year period are estimated as follows:  
 

Operating System development and documentation 44% 
Testing 24% 
Formal Modeling 10% 
Vulnerability Analysis   9% 
Combined Software + Hardware evaluation   7% 
Hardware documentation   6% 
total 100% 

 

5 Tools in Support of High Assurance Development 
Although our primary goal was to develop a high assurance operating system, we ultimately 
purchased and developed a considerable amount of tooling in support of our efforts.  The effort 
to develop new tools and extend existing ones was significant, and was measured in multiple 
person-years rather than in a few person-months.   Although the tools required much up-front 
effort, they reduced the overall effort required to complete the system.  Our tools enabled us to 
generate the complex documentation required by Common Criteria, facilitated automated testing 
of the system software, and helped us perform vulnerability analysis on the system software.  
Some of the tools are discussed briefly below, and details can be found in [33]. 

5.1 Design and Implementation Documentation 
A product which is designed to be evaluated at a high level under the Common Criteria must 
necessarily have a coherent and comprehensive set of documentation.  The Caernarvon project 
relied heavily on the robustness of FrameMaker7, as we created and updated multiple volumes 
totaling several thousand pages with thousands of cross-volume cross-references (all this for a 
relatively small system of approximately 47,000 lines of code).  From its inception, the 
Caernarvon project had a full specification and documentation, including (but not limited to) the 
high-level design, the low-level design, and the test suite. 
 
The project coding standards required that the specification of each function be included in 
comments at the start of the function. The Common Criteria also required that this specification 
be included in the low-level documentation of the system submitted for the evaluation. Hence it 
was decided that much of the low-level documentation for the code (and the test suite) would be 
                                                 
7 FrameMaker is a trademark of Adobe Systems Incorporated. 
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generated from the source code, rather than being written twice (once in the code, and once in 
the documentation).  While this practice is common in object-oriented systems, tools to support it 
were not available in our development environment with specialized compilers, assemblers, and 
device emulators for smart cards.  Simple extraction of comments was not difficult.  What was 
difficult was maintaining cross references to documentation that was in other parts of the code or 
that wasn’t in the code at all, and keeping track of the origin of the documentation.   
 
We also solved other difficult problems associated with generating Common Criteria 
documentation: automatically generating lists of which functions tested other functions, which 
functions were tested by other functions, and getting the machine-generated information into a 
format suitable for importation into FrameMaker.  In the end, we created (and generated) a 
comprehensive and professional set of documentation, with a consistent style, which included the 
system specifications, the low-level code documentation, and the test suite documentation, 
available in hardcopy and electronic format (with hyperlinks).   

5.2 Tools for Development, Testing, and Analysis 
One of the philosophies behind the Common Criteria is that no one technique or tool can 
guarantee a secure product, and as a result, multiple approaches should be used so as to reduce 
the chance of security flaws.  Likewise, we do not claim that any particular tool or strategy 
(including the ones we used) is “best,” and we actively recommend the use of a wide variety of 
security-related tools. Broadly speaking, the tools can be divided into a number of categories 
based on their scope, such as life-cycle approaches, test generation, and high-level design 
analysis. 
 
In ordinary development projects, such tools are readily available and work satisfactorily.  In our 
high assurance project, however, the lack of suitable commercial off-the-shelf tools in support of 
high assurance requirements significantly affected the process of development, prolonged the 
schedule, and increased the budget.   

5.2.1 Development environment 
We chose a smart card processor based on strong hardware features that could support a high 
assurance operating system, and there was no other alternative at the time we began the project.  
For this processor, there was only one vendor that offered a complete suite of tools for 
development and testing (compiler, assembler, linker, utilities, hardware emulator, and 
interactive development environment).  When we encountered bugs in those tools, we either 
developed workarounds or waited until the vendor could fix the bugs.  Had an open source 
compiler or a competitor’s development suite been available, we would have had more flexibility 
in recovering from such unfortunate events.  

5.2.2 Configuration Management System 
The Common Criteria requires the use of a configuration management system (CMS) to store the 
implementation, the system documentation, all tools, all tests, lists of common commercial 
software used, and various other project-related documents.  Hence we decided to use the IBM 
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Rational8 ClearCase and ClearQuest products, which provided full integration of configuration 
management, bug reporting, and fault and change management.  

5.2.3 Test Suite 
Development of a system targeted at Common Criteria EAL7 requires extensive testing of the 
system, which in turn requires a comprehensive test suite.  In our case, the test suite included 
thousands of tests.  Furthermore, each test case verified that the state returned from the system 
under test matched the expected result (i.e., success or a specific error or failure).  It is clearly 
impossible for a person to reliably check a large number of tests manually.  
 
Our partners in Philips Semiconductors (now NXP) suggested using a test suite written in Ruby.  
This test suite has undergone extensive development, including facilities to exercise the internal 
functions of the system under test, to execute only some of the tests in a given run, and to 
automatically compare and verify the results of each test.  Thus, to attain the goal of all tests 
being self-checking, it was necessary only to ensure that, as each test was written, the expected 
return values were specified within the test. This slightly increased the time to write the tests but 
avoided much of the work that would have been required if test verification code had been 
written separately or added later. 
 
The Common Criteria requires compliance with cryptographic algorithm and random number 
generation standards.  One problem with the compliance tests for these standards is that, on slow 
processors such as smart cards, they can take a long time to run. For example, the full NIST test 
suite for the DES algorithm, including all of the Monte-Carlo type tests, could take months to 
execute on a smart card.  In such cases, it would be appropriate for the developer and the 
evaluation agency to agree on a suitable subset of the tests to be run. 
 
The Common Criteria requires, at EAL7, that all code in the system be exercised by the tests. 
This requirement assures that there is no “dead” source code (code that can never be accessed).  
The vendor-provided development suite provided a facility to obtain details of all the machine 
instructions that were executed in a testing run, but did not provide any means of matching this 
information back to the program source.   We developed a tool to perform this matching, for both 
C and assembler. 
 
At EAL7, the Common Criteria requires that the design of the system be built in layers; function 
calls could be made only to the same or lower layers—upward calls were not allowed. This 
layering requirement was specified by Schell [29], based on the work of Parnas [26] and Dijkstra 
[15]. The toolset in use did not produce an adequate cross-reference of the system that could be 
used to verify that this requirement was met.  However, we used software that produced 
highlighted listings of C and Assembler code and also generated a full cross-reference of the 
function calls in the system. A Ruby utility then processed this cross-reference file to flag any 
illegal upward calls. 

                                                 
8IBM, Rational, ClearCase, and ClearQuest are trademarks or registered trademarks of International Business 
Machines Corporation in the United States, other countries, or both. 
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5.2.4 Formal Specification Tools 
The Caernarvon formal security policy model was developed by a team from the University of 
Augsberg and the DFKI [30] using the VSE II specification language and proof system[17].  
While not required at Common Criteria EAL7, the Caernarvon operating system assurance 
argument could certainly benefit from code-level proofs such as those demonstrated by the seL4 
project [21]. 

5.2.5 Static Analysis Tools  
At EAL7, the Common Criteria requires that the developer perform a systematic vulnerability 
analysis of the Target of Evaluation. In an attempt to automate some aspects of the vulnerability 
analysis, we chose to apply static analysis of the implementation to find bugs that were not 
discovered by the extensive testing described above. Our search for a static analysis tool led us to 
BEAM (short for “Bugs, Errors, And Mistakes”), developed by another group at IBM Research 
[10]. BEAM met our requirements: it analyzed C language source code; the BEAM source code 
was available to us, enabling the addition of features required by our platform; and it cost 
nothing for internal use within IBM.  This was important, because the C compiler for the Philips 
smart card chip included some non-standard features that had to be handled specially. 
 
As part of a related research project, we used BEAM to analyze the implementation of one 
component of our operating system, the file system, which was approximately 5,000 executable 
statements of C code. For this part of the project, we recruited other researchers to help us with 
the static analysis. They were experts with static analysis tools and understood operating system 
internals quite well, but were unfamiliar with the intricacies of smart cards. For this reason, we 
chose a relatively easy-to-understand, finite, well-defined body of code to start with. It was easy 
to analyze as a unit.  
 
BEAM (with human assistance in interpreting the results) found about a dozen bugs and reported 
numerous violations of best practices. One common type of bug found was uninitialized 
variables; for example, an execution path could bypass the place where a variable was first set. 
Many of the data structures use short (8-bit or 16-bit) fields to conserve space, and BEAM found 
certain errors when performing arithmetic on these limited length fields, particularly if the 
operation was between a shorter and a longer variable. Our experience here indicates that, in any 
high-security project, it would be advisable to analyze all of the code of the system under 
development. 
 

5.2.6 Test Generation 
Common Criteria requires the application of a careful and systematic test methodology.  
Due to the lack of test generation tools for the system, the tests for the Caernarvon system were 
written by hand.  Note that certain tests, in particular those for cryptographic algorithms, can be 
obtained from sources such as NIST websites.  However, these tests require a program to convert 
the tests into a form that can be executed by the test system.    
 
Manually generated tests have historically been found to be poor, and therefore test generation 
methodology has been an active research area. Testing approaches are traditionally categorized 
as  
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• Black box - generating tests without knowledge of the system’s implementation, or source 

code 
• White box - generating tests derived in some way by analysis of the source code 

 
A recurrent issue in testing is internal state: most systems contain low-level state that is not 
evident in higher level interfaces. Examples of this include partitioning of file data into blocks, 
and page tables. Maintaining this internal state often introduces bugs. Since this behavior is not 
visible to a black box test generator, such generators often fail to detect these bugs. Although 
white box test engines do have access to the code, and therefore can make use of the low-level 
state management code, in practice this task is difficult because the system behavior depends not 
only upon the input parameters, but upon the state established by all previous events. Inferring 
enough state properties to enable significant test improvement is extremely difficult for operating 
systems, as memory and storage subsystems contain much internal state. For example, although 
[12] has produced impressive results in essentially stateless systems, it fails to generate tests 
dependent on such things as the file system contents. 
 
There are a number of approaches that have been developed to deal with state. Model-based 
techniques use a system model that describes the system states, providing information that can be 
used to verify proper behavior. A survey of model-based tools can be found in [27]. 
 
In our project, we did attempt to create a model-based test generation system. The intent was to 
create a test set based on the specification (i.e., model) of Caernarvon. As these tests were 
executed, code coverage was monitored, and the resulting coverage information was used in the 
generation of new tests that would target the unexecuted lines of code. 
 
As part of this effort, we developed a new taxonomy of security flaws [34], in order to be able to 
sensibly describe which flaws were and weren’t subject to our approach. An important 
foundation question also had to be resolved: in order to test our system, we had to attempt to 
create certain states, but the APIs used to create those states were themselves under test. As 
described in our paper [25], we investigated this issue and found that in practice, this was not an 
issue.  
 
After designing, but before implementing our model-based test generation and feedback tool, we 
did an extensive experiment manually simulating its behavior using the Caernarvon file system 
as the target. In this experiment, we used the file system model to create tests.  We executed the 
tests and analyzed the results. Unfortunately, as described in [35], this produced disappointing 
results, due to the fact that the internal file system code involved deeply complex flash memory 
operations, all of which resulted in enormous amounts of state that were not modeled by the file 
system programming interface, nor directly related to any of the file system operations. We 
therefore reluctantly concluded that the current model-based testing technology was not able to 
handle systems of the scale and complexity of Caernarvon. 

6 Customers’ Demand for Security is Essential  
For a high-assurance product to succeed in the marketplace, there must be a qualified customer 
demand for a high level of security and/or privacy protection, as well as funding for the initial 
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upfront investment.  One large potential market for the high-assurance Caernarvon operating 
system is the government ID market.  Vendors, academics, and evaluators were attracted by 
initial requirements for electronic passports [7] and for government employee ID cards with 
better security and privacy properties [11]. In the case of federal employee ID cards, [11] 
specifically called for ID cards that were ‘‘secure and reliable’’ and “strongly resistant to identity 
fraud, tampering, counterfeiting, and terrorist exploitation.”  However, to date, actual 
procurements have only required Common Criteria evaluations at low and medium assurance 
levels (EAL4, EAL5). 
 
Lower security products will almost always be less expensive.  Unless higher assurance products 
are mandated, then the less secure and less expensive product will always win a competition.  
Until procuring agencies (both in the government and the private sector) demand strong security, 
the products will remain at lower assurance levels.  There is also a chicken-and-egg problem here.  
Government standards cannot mandate products that don’t even exist yet.  Vendors will not risk 
large upfront investments to develop products without sufficient demand.  An infusion of high 
assurance research and development funding (by governments or industry or both) could 
eliminate this impasse.  

7 Cryptographic Library Experience 
As discussed above in Section  4, the Caernarvon team developed an EAL5+ cryptographic 
library that Philips Semiconductors could offer to their other customers, prior to availability of 
the EAL7 operating system.  While this introduced delay into the operating system development 
schedule, the cryptographic library was also needed for the operating system itself, and 
performing the EAL5+ evaluation gave the development team very valuable experience in how 
to meet Common Criteria evaluation requirements.  The development team’s prior experience 
had been with Orange Book [5] and FIPS 140 [9] evaluations, but the requirements for the 
Common Criteria, while similar in form, were very different in fine details.   

7.1 Difficulty of Implementing DSA 
One part of the cryptographic library was an implementation of the US Digital Signature 
Algorithm (DSA) [6].  During the code review of that module of the library, we discovered that 
practical software implementation of  DSA was very difficult, because of subtleties in the 
algorithm’s requirement to generate a random nonce value k that must be less than another 
parameter q.  (The precise details of DSA are not important to this discussion.)  As described in 
[16] and [24], if as little as one bit of k is known to an attacker, then there are practical attacks that 
can retrieve the secret signing key.  In a later result, Bleichenbacher [4] has shown that even just 
a statistical bias in the randomness of k can be exploited with very large numbers of digital 
signatures.  He pointed out that the FIPS 186-2 recommended method for choosing k was vul-
nerable, but this vulnerability was addresses in FIPS 186-2, Change Notice 1 [6]. 
 
When the random bits for k are generated, there is possibly an incorrect performance 
optimization, because the specification of DSA calls for the random bits to be less than q.  
Generating a random number that is less than an input parameter can be time consuming, 
because if the most significant bit of the random number is a one, the number could easily wind 
up bigger than q, requiring a time consuming generation of another random number.  The 
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temptation is to force the most significant bit of k to always be zero, ensuring that the number 
will always be less than q.  Unfortunately, this tempting optimization results in an exploitable 
vulnerability that was identified in the first code review of the Caernarvon crypto library.  The 
details of the fix are beyond the scope of this paper.  The important lesson learned was that 
implementing the DSA requires a highly sophisticated understanding of potential attacks on the 
generation of random nonces, and that simple obvious optimizations can lead to deadly 
vulnerabilities. 

8 Smart Cards are More Complex 
One lesson we quickly learned is that while smart cards are much smaller and simpler than 
conventional computers, that smallness can be deceiving.  Making software work in such a 
constrained environment can be quite complex, and the security threat environment can be much 
more dangerous, precisely because the legitimate smart card holder may also be the attacker.  
Since smart cards are so portable, the attacker may be easily able to carry the card into a 
laboratory and use quite sophisticated technology against the card. 
 
The impact of the tiny smart card environment has been discussed in detail in [19], and the 
potential for physical and side-channel attacks on smart cards is covered well by Kocher [22] and 
Chari, et. al. [13].  Finally, the specific Caernarvon experience with side channel attacks on 
hardware random number generators is discussed in [14]. 

9 Conclusion  
Louis D. Brandeis, a former American Supreme Court Justice, once said, “There are no shortcuts 
to evolution.”9  We would claim that there are no shortcuts to evaluation, specifically a high 
assurance Common Criteria evaluation.  Without a doubt, the work on the Caernarvon project 
was difficult and time-consuming.  It required a closely linked team of collaborators - experts 
from multiple disciplines, multiple organizations, and, in our case, multiple countries.  The team 
created not just the product itself, but they also created tools to automate testing, test generation, 
documentation generation, and vulnerability analysis.  The work has been incorporated in an 
international standard, in large commercial server system components, and in smart card 
products.  It earned the world’s first EAL5+ Common Criteria certificate for a cryptographic 
library.  Numerous technical papers have been published, which document the findings of the 
project.     

The Common Criteria specification is not perfect, and, without a doubt, validating products is 
expensive for vendors.  Despite its critics, it is the best metric we have in the area of high 
assurance.  At high assurance levels, the Common Criteria simply mandates a discipline of good, 
solid, time-tested software engineering practices.  Our work on the Caernarvon project has 
convinced us that the technical goal of an EAL7 operating system (albeit a small OS) is feasible.  
Its application is timely, not only in smart cards, but also in the growing area of sensors and 
actuators.  We have demonstrated a successful model for garnering long-term executive support 
and project funding, which delivers interim products while maintaining a long term commitment 
to developing a high assurance product.  

                                                 
9 http://thinkexist.com/quotation/there_are_no_shortcuts_in_evolution/213339.html 
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