
RC25681 (WAT1810-052) October 23, 2018
Computer Science

 Research Division
 Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

Papers From the 12th Advanced Summer School on Service-Oriented
Computing

(SummerSOC’18)

Johanna Barzen1, Rania Khalaf2, Frank Leymann1, Bernhard Mitschang1
Editors

1University of Stuttgart
Universitätsstraße 38

70569 Stuttgart, Germany

2IBM Research Division, Cambridge
75 Binney Street

Cambridge, MA 02142 USA

The 12th Advanced Summer School
on Service-Oriented Computing

June 24 - June 29

2018�
Hersonissos, Crete, Greece

The 12th Advanced Summer School on Service Oriented Computing
(SummerSOC’18) continued a successful series of summer schools that started in
2007, regularly attracting world-class experts in Service Oriented Computing to
present state-of-the-art research during a week-long program organized in several
thematic tracks: patterns and IoT, Quantum Computing, formal methods for SOC,
computing in the clouds, data science, e-Health and emerging topics. The
advanced summer school is regularly attended by top researchers from academia
and industry as well as by PhD and graduate students.

During the different sessions at SummerSOC renowned researchers gave invited
tutorials on subjects from the themes mentioned above. The afternoon sessions
were also dedicated to original research contributions in these areas: these
contributions have been submitted in advance as papers that had been peer-
reviewed. Accepted papers were presented during SummerSOC and during the
poster session. Furthermore, PhD students had been invited based on prior
submitted and reviewed extended abstracts to present the progress on their theses
and to discuss it during poster sessions. Some of these posters have been invited
to be extended as a full paper, which are included in this technical report.

Also, this year the “Christos Nikolaou Memorial Ph.D. Award” to honor Prof.
Christos Nikolaou’s career-long contributions in university education and
research was awarded for the third time. The winner of the Christos Nikolaou
Memorial Ph.D. Award is Jacopo Soldani, who presents the core ideas of his
awarded thesis in this technical report too. The award is not only an honor and
distinction but is associated with 2000€ for the awardee, sponsored by StartTech
Ventures.

Johanna Barzen, Rania Khalaf, Frank Leymann, Bernhard Mitschang
 - Editors -

The SmartOrchestra Platform: A Configurable Smart Service Platform
for IoT Systems... 14
A. Liebing, L. Ashauer, U. Breitenbücher, T. Günther, M. Hahn, K. Képes, O.
Kopp, F. Leymann, B. Mitschang, A. Franco da Silva and R. Steinke

Distributed Access Control for the Internet of Things 22
T. Straub and U. Schreier

Towards Deployable Research Object Archives Based on TOSCA 31
M. Zimmermann, U. Breitenbücher, J. Guth, S. Hermann, F. Leymann and K.
Saatkamp

Application Scenarios for Automated Problem Detection in TOSCA
Topologies by Formalized Patterns.. 43
K. Saatkamp, U. Breitenbücher, O. Kopp and F. Leymann

Intrusion Detection Attack Patterns in Cloud Computing: Trust and
Risk Assessment .. 54
A. Chrysikos

Supporting Application Deployment and Management in Fog
Computing .. 64
S. Forti

An Approach to Automatically Check the Compliance of Declarative
Deployment Models .. 76
C. Krieger, U. Breitenbücher, K. Képes and F. Leymann

Towards Pattern-based Rewrite and Refinement of Application
Architectures .. 90
J.	Guth and F. Leymann

1

Content

On modelling, analysing and reusing multi-component applications 3
J. Soldani

Poster Session: Papers

Winner of the Christos Nikolaou Memorial Ph.D. Award:

The SustainLife Project – Living Systems in Digital Humanities 101
C. Neuefeind, L. Harzenetter, P. Schildkamp, U. Breitenbücher, B. Mathiak, J.
Barzen and F. Leymann

	

Poster Session: Extended Abstract

Smart Interoperability for the Internet of Things 113
S. Kotstein and C. Decker

The Next Generations of Smart Data Centers ... 115
B. Setz

Hyperledger Fabric: Ideas for a Formal Analysis 117
M. Simon and R. Küsters

Efficient Data and Indexing Structure for Blockchains in Enterprise
Systems ... 120
C. Riegger, T. Vinçon and I. Petrov

Interoperability as Basis for Novel Interaction Concepts in the Sterile
Supply Process .. 123
V. Krauß and R. Reiners

	
	
	
	
	

2

On modelling, analysing and reusing

multi-component applications

Jacopo Soldani

Department of Computer Science, University of Pisa, Pisa, Italy
soldani@di.unipi.it

Abstract. How to deploy and flexibly manage complex composite appli-
cations across heterogeneous cloud platforms is one of the main concerns
in enterprise IT. There is a need for vendor-agnostic models allowing to
specify the structure and management of composite cloud applications,
and of techniques for verifying their design. Furthermore, the availability
of techniques for reusing cloud applications would free developers from
the need of designing/developing multiple times recurring application
components. This paper provides an overview of our research contribu-
tions on (i) modelling and analysing the structure and management of
composite cloud applications, and on (ii) fostering their reuse.

1 Introduction

Cloud computing has revolutionised IT, by o↵ering a model for enabling ubiqui-

tous, convenient, on-demand network access to a shared pool of configurable re-

sources [25]. Applications and resources have no more to be bought and managed

on premise, but they can be simply requested (and paid) when the corresponding

functionality is actually needed [18].

Reaping the benefits of cloud computing is however not easy. Cloud appli-

cations typically integrate various and heterogeneous components, whose de-

ployment, configuration, enactment, and termination must be properly coordi-

nated [21]. This must be done by carefully taking into account all the dependen-

cies occurring among the application components. As the number of components

grows, or the need to reconfigure them becomes more frequent, application man-

agement becomes more and more time-consuming and error-prone [2].

Furthermore, current cloud technologies su↵er from a lack of standardisation,

with similar resources o↵ered in a di↵erent manner by di↵erent providers [28].

As a result, application operators wishing to deploy and manage the same ap-

plication on di↵erent cloud platforms (by fulfilling its individual requirements)

might be required to re-design and re-configure most of the middleware and

infrastructure layers, even from scratch. This requires deep technical expertise,

and it results in error-prone development processes which significantly increase

the costs for operating and maintaining composite cloud applications [31].

How to deploy and flexibly manage complex composite applications over
heterogeneous cloud platforms is hence a serious challenge in today’s
enterprise IT [24].

3

As highlighted by Binz et al. [2] and by Di Cosmo et al. [20], the above chal-

lenge results in two major issues, namely (i1) how to automate the deployment

and management of composite cloud applications and (i2) how to support their

vendor-agnostic design. Focusing on such issues, this paper provides an overview

of our contributions trying to advance the state of the art on what follows:

– Modelling and analysing composite cloud applications. By relying on topology

graphs [3] for describing the structure of composite cloud applications, we

have proposed a compositional modelling that permits specifying the man-

agement behaviour of application components, by also taking into account

that faults eventually occur while managing complex applications [19]. We

have also proposed techniques for checking and planning the management of

a composite cloud application.

– Reusing composite cloud applications. We have defined techniques for match-

ing and adapting existing applications. Developers can describe the structure

and desired behaviour of the components they need (e.g., a web server, or a

DBMS), and our techniques can then be exploited to concretise their imple-

mentation.

The rest of this paper is organised as follows. Sect. 2 illustrates our contributions

on modelling and analysing composite cloud applications, while Sect. 3 recaps

our contributions on fostering their reuse. Finally, Sect. 4 draws some concluding

remarks and illustrates some directions for future work.

2 Modelling and analysing cloud applications

A convenient way to represent complex composite applications (such as those

deployed in cloud platforms) is a topology graph [3], whose nodes represent

the application components, and whose arcs represent the dependencies among

such components. More precisely, each topology node can be associated with the

requirements of a component, the operations to manage it, and the capabilities

it features. Inter-node dependencies associate the requirements of a node with

capabilities featured by other nodes.

The Topology and Orchestration Specification for Cloud Applications (TO-

SCA [26]) meets this intuition, by providing a standardised modelling language

for representing the topology of a cloud application. It also permits coordinat-

ing the application management, by defining (workflow) plans orchestrating the

management operations o↵ered by each component
1
.

Unfortunately, in its current version, TOSCA does not permit specifying the

behaviour of a cloud application’s management operations. More precisely, it

is not possible to describe the order in which the operations of a component

must be invoked, nor how those operations depend on the requirements or how

they a↵ect the capabilities of that component (and hence the requirements of

other components they are connected to). This implies that the verification of

1 A self-contained introduction to TOSCA can be found in [16].

4

whether a management plan is valid can only be performed manually, with a

time-consuming and error-prone process
2
.

In [6, 11], we propose an extension of TOSCA that permits specifying the be-

haviour of the management operations of the components forming an application.

We indeed show how their management behaviour can be modelled by manage-
ment protocols, specified as finite state machines whose states and transitions are

associated with conditions defining the consistency of the states of a component

and constraining the executability of its management operations. Such condi-

tions are defined on the requirements of a component, and each requirement of

a component has to be fulfilled by a capability of another component.

We also illustrate how to derive the management behaviour of a cloud ap-

plication by composing the protocols of its components, and how this permits

automating various analyses concerning the management of a cloud application,

like determining whether management are valid, which are their e↵ects, or which

plans permit reaching certain application configurations.

To deal with the potential occurrence of faults (which have to be considered

when managing complex cloud applications [19]), we have then further extended

management protocols. In [7, 9], we propose fault-aware management protocols,
which permit modelling how nodes behave when faults occur, and we illustrate

how to analyse and automate the management of composite cloud applications

in a fault-resilient manner.

Notice that, even if the components of an application are described by fault-

aware management protocols, the actual behaviour of such components may dif-

fer from their described behaviour (e.g., because of non-deterministic bugs [23]).

In [9], we also show how unexpected behaviour can be naturally modelled by

automatically completing fault-aware management protocols, and how this per-

mits analysing the (worst-possible) e↵ects of misbehaving components on the

rest of a cloud application. We also propose a way to recover composite cloud

applications that are stuck because a fault was not properly handled, or because

of a misbehaving component.

Discussion. Fault-aware management protocols can play a foundational role

for modelling and analysing the management of composite cloud applications.

Indeed, to the best of our knowledge, they constitute the first compositional

approach that permits modelling and analysing the stateful management be-

haviour of the components forming an application, by also taking into account

that faults possibly occur while managing complex composite applications over

heterogeneous clouds [30].

The feasibility of approaches based on fault-aware management protocols

have been illustrated in [9], where we present the Barrel, a web-based appli-

cation that permits editing and analysing fault-aware management protocols in

composite cloud applications. In [9], we also illustrate the usefulness of such ap-

proaches, by showing how fault-aware management protocols (and Barrel as

2 The same does not hold for the validation of the structure of TOSCA-based appli-
cations, for which approaches have been proposed in [12, 17].

5

well) were exploited in a concrete case study and in a controlled experiment.

Both the case study and the controlled experiment highlight that the modelling

and analysis techniques based on fault-aware management protocols can be fruit-

fully exploited not only at design time (to validate management plans, and to

determine their e↵ects), but also at run time (to automatically determine the

management plans that permit reaching a desired application configuration, or

which restore such configuration after the actual configuration has changed —

e.g., because of faults or misbehaving components).

On the other hand, a full-fledged approach for modelling and analysing com-

posite cloud applications requires to solve also other problems that we have not

tackled yet. Below we discuss three of them, namely faults due to the “true

concurrent” execution of management operations, applications whose topology

is dynamic, and including cost and QoS in the modelling of applications.

Faults due to “true concurrency”. The current version of fault-aware manage-

ment protocols (as per [7, 9]) focuses on ensuring the consistency of a composite

cloud application based on an interleaving semantics. This means that fault-

aware management protocols do not support the analysis of the true concurrent

execution of management operations.

Consider for instance the concurrent reconfiguration of two components, with

one component requiring a capability of the other to successfully complete its

reconfiguration. The latter may however stop providing the desired capability

during the execution of its reconfiguration operation, even if such capability is

provided right before and after executing such operation. While this may result

in one of the two reconfiguration operations failing, an interleaving semantics

(checking consistency only on states) would not be able to detect such failure.

In other words, faults can happen both after and during the concurrent exe-

cution of management operations [19]. It would be worthy investigating whether

the latter case might generate problems in real-world scenarios, and (if this is

the case) how to properly adapt fault-aware management protocols to cope with

the “true concurrent” management of the components forming an application.

Dynamic topologies. Fault-aware management protocols can be easily adapted to

cope with applications whose topology is dynamic. Indeed, to deal with applica-

tions whose components may dynamically (dis)appear, such components should

be added to the application topology, and the binding function relating require-

ments and capabilities should be updated accordingly. This would be useful, for

instance, to cope with the horizontal scaling of an application’s components, as

it would permit adding or removing replicas of a component to the application

topology whenever such component has to be scaled out or scaled in.

Adapting our modelling and analysis techniques to cope with dynamic topolo-

gies would also be beneficial for exploiting them to manage other kinds of applica-

tions, which are characterised by a high churn of nodes (e.g., microservices-based

applications, or fog applications).

Modelling cost and QoS. Fault-aware management protocols do not take into

account costs nor QoS, since our focus so far has been on automatically coordi-

6

nating the management of the components forming a composite cloud applica-

tion (by also taking into account that faults potentially occur while managing

complex applications). Cost and QoS are however important factors for cloud ap-

plications [1], and fault-aware management protocols should hence be extended

to take into account also such factors. For instance, we should permit modelling

how much does it cost (in terms of money or time) to reside in a certain state or

to perform a certain operation. This would permit devising analysis techniques to

determine the cost (in terms of money or time) to maintain/drive an application

in/to a given configuration, or to determine the cheapest or fastest management

plans that permit changing the actual configuration of an application.

3 Fostering the reuse of cloud applications

To ease the design of a cloud application (e.g., a web application), we may wish

to implement some of its parts by reusing already existing, validated solutions

(e.g., the server stack needed to run a web application). More generally, the

reuse of (fragments of) existing cloud applications can ease and speed-up the

development of new applications.

In [14, 15], we illustrate how to reuse existing, TOSCA-based cloud applica-

tions. We first formally define how to exact match an application with respect

to a desired application component, so as to reuse the whole application to im-

plement such component.

We then define three other types of matching (plug-in, renaming-based, and
white-box), each permitting to identify larger sets of applications that can be

adapted so as to exactly match a desired component. We also illustrate a method-

ology for adapting matched applications to exactly match the target component.

Notice that, by reusing a cloud application in its entirety, we might deploy

unnecessary software (i.e., software that is not needed to concretely implement

the desired application component).

To tackle this issue, in [31] we further extend our matchmaking and adapta-

tion approach by introducing and assessing ToscaMart (TOSCA-based Method
for Adapting and Reusing application Topologies). ToscaMart is a method that

permits reusing only the fragment of an application topology that is necessary

for implementing a desired application component.

Notice that all notions of matching mentioned above are purely syntactic and

do not take into account the behaviour of management operations (i.e., they do

not check whether the behaviour of the operations of an available application is

compatible with that of the operations of a desired application component).

We overcome this limitation in [4, 5] by exploiting the behaviour informa-

tion in management protocols. Namely, we define when a desired management

protocol can be simulated [29] by an available one, and we exploit such notion

of simulation to extend the conditions constraining exact and plug-in match-

ing. We then relax the notion of simulation into that of f -simulation (which

permits simulating a desired operation with a sequence of available operations),

and we exploit f -simulation to further relax plug-in matching. We also describe

7

a coinductive procedure to compute the function f determining an f -simulation

among two management protocols (if any), and how matched applications can

be adapted so as to be employed in place of desired components.

Discussion The matching techniques discussed above can constitute a fruitful

support to foster the reuse of composite cloud applications, and to speed-up

their design and development. Developers can indeed describe only the appli-

cation components that are specific to their solutions (e.g., those they imple-

mented), along with abstract descriptions of the management infrastructures

such components need to run. Such abstract descriptions could then be con-

cretely implemented by matching, adapting, and reusing (fragments of) already

existing solutions.

The feasibility and potential of our notions of matching have been tested

by running a proof-of-concept implementation of the syntactic matching over

a plastic repository of TOSCA applications (in [15, 31]). The e↵ectiveness has

also been discussed by formally proving termination and soundness of Tosca-
Mart (in [31]), and by assessing the behaviour-aware matching (by formally

proving termination, soundness, and completeness of the coinductive algorithm

determining a f -simulation between two protocols — in [5]).

It is worth noting that, in general, most existing approaches to the reuse

of cloud applications support a development from-scratch of applications, and

do not account for the possibility of adapting existing third-party applications.

As we discussed in [30], to the best of our knowledge, the syntactic matching

approaches presented in [14, 15, 31] advance the state-of-the-art as they are the

first approaches that permit reusing (fragments of) existing cloud applications,

by relying on TOSCA as the reference standard for cloud interoperability, and

to support an easy reuse of third-party services. The behaviour-aware matching

in [4, 5] is also advancing the state-of-the-art on the reuse of composite cloud

applications. Indeed, it constitutes the first approach for reusing composite ap-

plications that takes into account both functional and extra-functional features

of their components, and which relies on the widely accepted idea of exploiting

behaviour models to match operations and on behaviour simulation to abstract

from non-relevant operation mismatches.

On the other hand, in order to select (fragments of) composite cloud ap-

plications that can be e↵ectively reused to implement abstractly specified com-

ponents, some problems have still to be investigated and addressed. Below we

discuss three of them, namely the full integration of the proposed techniques,

the assessment of the substitutability assumption made by TOSCA, and the

inclusion of cost and QoS in our matching approaches.

Full integration. The behaviour-aware matching proposed in [4, 5] permits reusing

applications only in their entirety. To permit reusing only the fragments of

such applications that are actually necessary to implement a desired compo-

nent, the current implementation of ToscaMart should be integrated with the

behaviour-aware matching that we presented in [4, 5].

8

Furthermore, the behaviour-aware matching proposed in [4, 5] does not take

into account faults, since the notions of simulation are defined on “plain” man-

agement protocols (viz., those defined in [6]). The notions of simulation and of

behaviour-aware matching should be hence extended to permit comparing the

fault-aware management protocol of (a fragment of) an available application

with that of a desired component.

Substitutability assumption. Our notions of matching are based on the substi-

tutability assumption made by TOSCA, which states that a component can be

made concrete by substituting it with a composite application, provided that

the latter exposes the same features as the former on its boundaries [27]. The

truthfulness of such an assumption should be tested on repositories of real-word

TOSCA applications, which unfortunately are not available at the moment.

Cost-aware and QoS-aware matching. Our notions of matching do not take into

account costs nor QoS. This is because our focus so far has been on enacting the

reuse of composite cloud applications by matching their syntactic signature and

their management behaviour with respect to those of a desired component.

Cost and QoS are however important factors for cloud applications [1, 22].

Our notions of matching should hence be extended to take into account also

the cost or QoS of composite cloud applications, as this would permit selecting,

among the matched applications, those leading to lower costs or to better time

performances, for instance.

4 Conclusions

Management protocols can play a foundational role for modelling and analysing

the management of composite cloud applications. The feasibility of approaches

based on management protocols has been illustrated with Barrel, while their

potential has been shown by exploiting them to analyse and automate the de-

ployment and management of a concrete case study (and with a controlled ex-

periment — in [9]).

The matching and adaptation techniques we have proposed can also con-

tribute to support a vendor-agnostic design of composite cloud applications,

and to automate the deployment and management of composite applications.

The feasibility and potential of our notions of matching have been tested, and

their e↵ectiveness has been formally assessed (see Sect. 3).

At the same time, a full-fledged support for modelling, analysing, and reusing

composite cloud applications requires also solutions to problems that we have

not yet been tackled (as discussed in Sects. 2 and 3). Some of the corresponding

directions for future work are listed below.

Management protocols-based orchestration. An interesting direction for future

work is the development of an orchestrator for composite cloud applications

based upon management protocols. The orchestrator should input a compos-

ite application and its desired configuration, and it should ensure that such

application configuration is reached and maintained. The orchestrator should

9

exploit management protocols to determine the management plan leading the

application to the desired configuration (from the initial situation where no ap-

plication component is installed), and it should execute such management plan.

Then, whenever a fault occurs and changes the actual application configura-

tion (or whenever the desired configuration is changed), the orchestrator should

automatically determine a management plan to restore the desired application

configuration.

A first step towards the availability of such an orchestrator has been provided

in [13], where we present an engine (called TosKer) for orchestrating the man-

agement of composite applications based on TOSCA and Docker. TosKer ex-

ploits management protocols to permit customising the management behaviour

of the components forming an application, and to ensure that components are

actually managed accordingly to their specified behaviour. It however still lacks

a support for automatically reaching and maintaining the desired configuration

of an application (from determining the management plan leading to the desired

configuration, to reconfiguring it when its actual configuration is di↵erent from

the desired one). The extension of TosKer for providing such support is part

of our future work.

Faults due to “true concurrency”. As we observed in Sect. 2, there might be

cases where a requirement is assumed by a component, and another component

executes a management operation during which the capability satisfying such

requirement is not maintained (even if it is available before and after executing

it). We plan to investigate whether this might generate problems in real-world

scenarios, and how to properly adapt the composition rules defining the fault-

aware management behaviour of a composite application. Preliminary results in

this direction are illustrated in [10].

Dynamic topologies. To deal with applications whose components may dynami-

cally (dis)appear, it should be enough to add such components to the application

topology, and to update the binding function relating requirements and capabil-

ities. Some results in this direction are contained in [8], where we show how to

deal with topologies where the dependencies among a fixed set of components

can dynamically change. Still, there is work to do on how to deal with topologies

whose set of components can dynamically change. This is in the scope of our

immediate future work.

Modelling cost and QoS. The modelling and analyses techniques based upon

fault-aware management protocols do not take into account costs and QoS. The

extension of such techniques to include cost and QoS properties is in the scope

of our future work.

Full integration of the proposed matching techniques.Our behaviour-aware match-

ing approach does not take into account faults, and it permits reusing applica-

tions only in their entirety (see Sect. 3). We plan to extend our behaviour-

aware matching approach to permit comparing fault-aware management proto-

cols (hence including faults in the comparison), and to integrate it with To-

10

scaMart (to permit reusing only the fragments of application that are actually

necessary for implementing a desired component).

Substitutability assumption. The truthfulness of the substitutability assumption

made by TOSCA (which states that a component can be made concrete by sub-

stituting it with a composite application, provided that the latter exposes the

same features as the former on its boundaries [27]) should be tested on reposito-

ries of real-word TOSCA applications, which unfortunately are not available at

the moment. The assessment of such assumption is hence left for future work.

Cost-aware and QoS-aware matching. Our notions of matching do not take into

account costs or QoS. The extension of such notions to include QoS and costs in

the selection of to-be-reused components are in the scope of our future work.

Acknowledgments. Special thanks to Antonio Brogi, who made me discover the
world of scientific research. He taught me what scientific research is, how to carry
it out, and especially how to always enjoy doing research. Without his guidance and
persistent help my Ph.D. thesis would not have been possible.

Thanks are also due to Andrea Canciani, Antonio Cisternino, Claus Pahl, Filippo
Bonchi, Frank Leymann, Marco Danelutto and Pengwei Wang. Andrea, Filippo, and
Pengwei actively cooperated with me, and their help was precious to reach some of the
results in my Ph.D. thesis. Antonio and Marco were instead exposed several times to
the progresses of my research work, and they were always giving me valuable feedback,
especially concerning the research path to follow. Frank and Claus kindly hosted me
as a visiting researcher, helping me in growing as a researcher.

Finally, thanks are due the members of the committee of SummerSoC, who granted

me the honour of receiving the Christos Nikolau Memorial Ph.D. Award (and who have

given me the possibility of writing this paper disseminating the results of the research

I have been doing so far).

References

1. Armbrust, M., Fox, A., Gri�th, R., Joseph, A.D., Katz, R., Konwinski,
A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view
of cloud computing. Communications of the ACM 53(4), 50–58 (2010).
https://doi.org/10.1145/1721654.1721672

2. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated
Deployment and Management of Cloud Applications, pp. 527–549. Springer, New
York, NY (2014). https://doi.org/10.1007/978-1-4614-7535-4 22

3. Binz, T., Fehling, C., Leymann, F., Nowak, A., Schumm, D.: Formalizing the Cloud
through Enterprise Topology Graphs. In: Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on. pp. 742–749. IEEE Computer Society (2012).
https://doi.org/10.1109/CLOUD.2012.143

4. Bonchi, F., Brogi, A., Canciani, A., Soldani, J.: Behaviour-aware matching of
cloud applications. In: Proceedings of the 10th International Symposium on The-
oretical Aspects of Software Engineering, TASE 2016. pp. 117–124. IEEE (2016).
https://doi.org/10.1109/TASE.2016.32

11

5. Bonchi, F., Brogi, A., Canciani, A., Soldani, J.: Simulation-based matching of
cloud applications. Science of Computer Programming 162, 110 – 131 (2018).
https://doi.org/10.1016/j.scico.2017.06.001, special Issue on TASE 2016

6. Brogi, A., Canciani, A., Soldani, J.: Modelling and analysing cloud applica-
tion management. In: Dustdar, S., Leymann, F., Villari, M. (eds.) Service-
Oriented and Cloud Computing: 4th European Conference, ESOCC 2015,
Taormina, Italy, September 15-17, 2015, Proceedings. pp. 19–33. Springer (2015).
https://doi.org/10.1007/978-3-319-24072-5 2

7. Brogi, A., Canciani, A., Soldani, J.: Fault-aware application management protocols.
In: Aiello, M., Johnsen, B.E., Dustdar, S., Georgievski, I. (eds.) Service-Oriented
and Cloud Computing: 5th IFIP WG 2.14 European Conference, ESOCC 2016,
Vienna, Austria, September 5-7, 2016, Proceedings. pp. 219–234. Springer (2016).
https://doi.org/10.1007/978-3-319-44482-6 14

8. Brogi, A., Canciani, A., Soldani, J.: Modelling the dynamic reconfiguration of appli-
cation topologies, faults included. In: Jacquet, J.M., Massink, M. (eds.) Coordina-
tion Models and Languages. LNCS, vol. 10319, pp. 178–196. Springer International
Publishing (2017)

9. Brogi, A., Canciani, A., Soldani, J.: Fault-aware management protocols for multi-
component applications. Journal of Systems and Software 139, 189 – 210 (2018).
https://doi.org/10.1016/j.jss.2018.02.005

10. Brogi, A., Canciani, A., Soldani, J.: True concurrent management of multi-
component applications. In: Kritikos, K., Plebani, P., De Paoli, F. (eds.) Service-
Oriented and Cloud Computing, ESOCC 2018, Proceedings. Springer (2018)

11. Brogi, A., Canciani, A., Soldani, J., Wang, P.: A Petri net-based approach to
model and analyze the management of cloud applications. In: Koutny, M., Desel,
J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency
XI. pp. 28–48. LNCS Transactions on Petri Nets and Other Models of Concurrency,
Springer Berlin Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4 2

12. Brogi, A., Di Tommaso, A., Soldani, J.: Sommelier: A tool for validating tosca ap-
plication topologies. In: Pires, L.F., Hammoudi, S., Selic, B. (eds.) Model-Driven
Engineering and Software Development. pp. 1–22. Springer International Publish-
ing (2018)

13. Brogi, A., Rinaldi, L., Soldani, J.: Tosker: A synergy between tosca and docker for
orchestrating multi-component applications. Software: Practice and Experience .
https://doi.org/10.1002/spe.2625, [In press]

14. Brogi, A., Soldani, J.: Matching cloud services with TOSCA. In: Canal, C., Villari,
M. (eds.) Advances in Service-Oriented and Cloud Computing: Workshops of ES-
OCC 2013, Málaga, Spain, September 11-13, 2013, Revised Selected Papers. pp.
218–232. Springer (2013). https://doi.org/10.1007/978-3-642-45364-9 18

15. Brogi, A., Soldani, J.: Finding available services in TOSCA-compliant
clouds. Science of Computer Programming 115–116, 177–198 (2016).
https://doi.org/10.1016/j.scico.2015.09.004

16. Brogi, A., Soldani, J., Wang, P.: TOSCA in a nutshell: Promises and perspectives.
In: Villari, M., Zimmermann, W., Lau, K.K. (eds.) Service-Oriented and Cloud
Computing: 3rd European Conference, ESOCC 2014, Manchester, UK, September
2-4, 2014. Proceedings. pp. 171–186. Springer (2014). https://doi.org/10.1007/978-
3-662-44879-3 13

17. Brogi, A., Tommaso, A.D., Soldani, J.: Validating tosca application topologies.
In: Proceedings of the 5th International Conference on Model-Driven Engineering
and Software Development - Volume 1: MODELSWARD,. pp. 667–678. SciTePress
(2017). https://doi.org/10.5220/0006244006670678

12

18. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6), 599 – 616 (2009).
https://doi.org/10.1016/j.future.2008.12.001

19. Cook, R.I.: How complex systems fail. Cognitive Technologies Laboratory, Uni-
versity of Chicago (1998), url: http://web.mit.edu/2.75/resources/random/How
Complex Systems Fail.pdf

20. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: A component
model for the cloud. Information and Computation 239(0), 100 – 121 (2014).
https://doi.org/10.1016/j.ic.2014.11.002

21. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Comput-
ing Patterns: Fundamentals to Design, Build, and Manage Cloud Applications.
Springer (2014). https://doi.org/10.1007/978-3-7091-1568-8

22. Gartner: Gartner identifies the top 10 strategic technologies for 2011. analysts
examine latest industry trends during gartner symposium/itxpo, October 17-21,
in Orlando. Press Release (2010)

23. Gray, J.: Why do computers stop and what can be done about it? In: Proceedings of
the 5th symposium on Reliability in Distributed Software and Database Systems.
pp. 3–12. Los Angeles, CA, USA (1986)

24. Leymann, F.: Cloud computing. it — Information Technology, Methoden und in-
novative Anwendungen der Informatik und Informationstechnik 53(4), 163–164
(2011). https://doi.org/10.1524/itit.2011.9070

25. Mell, P.M., Grance, T.: SP 800-145. The NIST Definition of Cloud Computing.
Tech. rep., Gaithersburg, MD, United States (2011)

26. OASIS: Topology and Orchestration Specification for Cloud Applications. url:
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf (2013)

27. OASIS: Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) Primer. url: http://docs.oasis-open.org/tosca/tosca-
primer/v1.0/tosca-primer-v1.0.pdf (2013)

28. Petcu, D., Macariu, G., Panica, S., Crciun, C.: Portable cloud applications - from
theory to practice. Future Generation Computer Systems 29(6), 1417 – 1430
(2013). https://doi.org/10.1016/j.future.2012.01.009

29. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, New York, NY, USA (2011)

30. Soldani, J.: Modelling, analysing and reusing composite cloud applications. Ph.D.
thesis, University of Pisa (2017), https://etd.adm.unipi.it/theses/available/etd-
03242017-175216/unrestricted/thesis.pdf

31. Soldani, J., Binz, T., Breitenbcher, U., Leymann, F., Brogi, A.: ToscaMart: A
method for adapting and reusing cloud applications. Journal of Systems and Soft-
ware 113, 395–406 (2016). https://doi.org/10.1016/j.jss.2015.12.025

13

The SmartOrchestra Platform:
A Configurable Smart Service Platform for IoT Systems

Andreas Liebing1, Lutz Ashauer1, Uwe Breitenbücher2, Thomas Günther3,
Michael Hahn2, Kálmán Képes2, Oliver Kopp2, Frank Leymann2,

Bernhard Mitschang2, Ana C. Franco da Silva2, and Ronald Steinke3

1 StoneOne AG, Berlin, Germany
andreas.liebing@stoneone.de

2 University of Stuttgart, Stuttgart, Germany
[firstname.lastname]@informatik.uni-stuttgart.de

3 Fraunhofer FOKUS, Berlin, Germany
[firstname.lastname]@fokus.fraunhofer.de

Abstract. The Internet of Things is growing rapidly while still missing a univer-
sal operating and management platform for multiple diverse use cases. Such a
platform should provide all necessary functionalities and the underlying infra-
structure for the setup, execution and composition of Smart Services. The concept
of Smart Services enables the connection and integration of cyber-physical sys-
tems (CPS) and technologies (i.e., sensors and actuators) with business-related
applications and services. Therefore, the SmartOrchestra Platform provides an
open and standards-based service platform for the utilization of public adminis-
trative and business-related Smart Services. It combines the features of an oper-
ating platform, a marketplace, a broker, and a notary for a cloud-based operation
of Smart Services. Thus, users of cyber-physical systems are free to choose their
control applications, no matter what device they are using (e.g., smartphone, tab-
let or personal computer) and they also become independent of the manufactur-
ers’ software. This will enable new business opportunities for different stake-
holders in the market and allows flexibly composing Smart Services.

Keywords: SmartOrchestra Platform, Smart Services, Cyber-Physical Systems,
Internet of Things

1 Introduction

The Internet of Things (IoT) paradigm has received great attention in the last years
leading to a vast amount of heterogeneous IoT middleware, protocols and devices (e.g.,
sensors, actuators or gateways). Related IoT applications, for example, implementing
the processing of sensor data in order to control an actuator, therefore need to be bound
to certain concrete technologies, hardware devices, and protocols. This makes it a chal-
lenge to enable the interoperability and composition of different IoT applications, for
example, to compose them to solve problems on another scale (e.g., from automating

14

houses over streets to cities). Another challenge is the distributed nature of IoT envi-
ronments and the large number of devices, which makes it infeasible to deploy and
manage IoT applications together with their required software and middleware compo-
nents manually. Therefore, a universal operating and management platform for multiple
diverse IoT use cases is needed which enables interoperability and automated deploy-
ment for IoT applications through Smart Services. The concept of Smart Services ena-
bles the connection and integration of cyber-physical systems (CPS) and technologies
(i.e., sensors and actuators) with business-related applications and services. Such a plat-
form should provide all necessary functionalities and the underlying infrastructure for
the setup, execution and composition of Smart Services. Within this work, we introduce
the SmartOrchestra Platform, which provides an open and standards-based service
platform for the utilization of public administrative and business-related Smart Ser-
vices. Therefore, it combines the features of an operating platform, a marketplace, a
broker, and a notary for a cloud-based operation of Smart Services. Thus, users of
cyber-physical systems are free to choose their control applications, no matter what
device they are using (e.g., smartphone, tablet, or personal computer) and they also
become independent of the manufacturers’ software. This will enable and provide new
business opportunities for different stakeholders in the market and allows flexibly uti-
lizing and composing Smart Services.

The remainder of the paper starts with an introduction of the SmartOrchestra Plat-
form and its major building blocks in Sect. 2. This is followed by a description how the
introduced components of the platform work together to provide a universal operating
and management platform for multiple diverse IoT use cases in Sect. 3. Finally, a sum-
mary of the paper is given in Sect. 4.

2 The SmartOrchestra Platform

The SmartOrchestra Platform enables a uniform service description as well as a secure
and safe internet-based composition and integration of heterogeneous cyber-physical
systems and services based on standardized cloud and orchestration technologies. The
platform serves both, a transparent catalog to evaluate suitable services from a wide-
spread ecosystem as well as an operational platform and interface between control de-
vices and sensor units with their respective applications. In this way, the platform will
be an open, secure, and standardized Smart Service Platform.

The conceptual design of the SmartOrchestra Platform and its major building blocks
in combination with provisioning workflows and IoT devices is depicted in Fig. 1. The
main entry point to the platform is the Marketplace, which allows users to evaluate, run
and compose existing services from the Service Catalog as well as provide and market
new services. To deploy and configure Smart Services OpenTOSCA [2] is used as Pro-
visioning Engine. The Provisioning Engine is responsible for the automated deploy-
ment of a Smart Service and the configuration of its underlying infrastructure. For ex-
ample, this can comprise the installation of related software services in the Cloud

15

providing the business logic of a Smart Service (e.g., data filtering, processing, or ag-
gregation [13]), the configuration of IoT devices and gateways, and installing required
software on them.

Fig. 1. SmartOrchstra Platform Architecture

For the integration of IoT devices into Smart Services, the SmartOrchestra Platform
uses OpenMTC [6, 15] as IoT Integration Middleware [16, 17]. OpenMTC provides
required protocols and adapters to integrate and mediate between the heterogeneous
devices, sensors, and actuators within the SmartOrchestra Platform. Therefore, it comes
with an embedded service layer that enables communication between devices through
a Publish/Subscribe model. Furthermore, the platform provides the FIWARE Orion
Context Broker [9] as Context Broker. While OpenMTC is responsible for enabling the
communication between devices, sensors and actuators through corresponding generic
interfaces, the FIWARE Orion Context Broker in combination with the FIWARE Short
Time Historic [10] is used as a midterm data repository to enable later analysis of data
provided by IoT devices. Therefore, OpenMTC synchronizes all published data to re-
spective entities at the FIWARE broker as depicted by the synch arrows in Fig. 1.

In the following, each of the building blocks of the platform is described in more
detail. Furthermore, the interplay of the components is outlined in order to give an idea
how the overall SmartOrchestra Platform operates.

2.1 Marketplace and IoT Operating Platform

The open and secure SmartOrchestra marketplace brings together and combines intel-
ligent private, industrial, and municipal Smart Services. This results in new innovative

16

services that make data available for use. The marketplace allows for browsing, choos-
ing, and configuring of Smart Services. Data of each running service can also be accu-
mulated and visualized in the marketplace via customer specific dashboards including
widgets and configurable taxonomies for structured presentation. Smart Services and/or
data channels can be combined and orchestrated by rules and actions. The parameters
of devices or services can be changed during runtime of the service. This turns the
marketplace into an IoT Operating Platform.

2.2 Provisioning Engine: OpenTOSCA

The SmartOrchestra Platform enables the deployment of Smart Services by employing
OpenTOSCA [2, 12] as Provisioning Engine. OpenTOSCA is an open-source ecosys-
tem for the modeling, provisioning, and management of cloud applications based on
the OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA)
standard [1, 3, 21] and supporting concepts for CPS and IoT [19, 22–24]. In TOSCA,
the structure of an application, e.g., a Smart Service, is described using topology mod-
els. These models are represented as graphs containing typed nodes and directed typed
edges. Nodes, called node templates, represent the software components of a Smart
Service, while edges, called relationship templates, describe the relationships among
the components, e.g., dependencies and connections.

TOSCA offers two approaches to application provisioning: (i) a declarative ap-
proach and (ii) an imperative approach [4, 5]. In the declarative approach, only the
topology model has to be provided to a provisioning engine, which implicitly knows
how to set up the application components. More precisely, it is sufficient to describe
what needs to be provisioned, and not how this needs to be done. In contrast, the im-
perative approach relies on explicitly describing how an application has to be hosted.
To realize this, a so called Build Plan has to be provided that describes, which steps
have to be executed to set up the components of the topology.

The OpenTOSCA ecosystem is composed of following: (i) the graphical TOSCA
modeling tool Eclipse Winery [20] and (ii) the TOSCA runtime environment Open-
TOSCA container. Once the topology of a Smart Service is modeled using Eclipse
Winery, it can be optionally checked against a collection of compliance rules [7] and
exported as a Cloud Service Archive (CSAR), which can be deployed into the Open-
TOSCA container to provision and instantiate the Smart Service. The provisioning of
Smart Services can be secured by the specification of non-functional requirements
through policies [18].

OpenTOSCA allows for an easy integration with other systems through its provided
APIs, which offer the main functionalities to automatically provision applications using
the OpenTOSCA container, and afterwards, retrieve information about the instantiated
applications. The Marketplace, which is the user’s entry point to the SmartOrchestra
Platform, is integrated with OpenTOSCA through the provided OpenTOSCA API. In
this way, the Marketplace can, for example, configure and automatically provision
Smart Services, and retrieve information about all available Smart Services.

17

2.3 IoT Integration Middleware: OpenMTC

The OpenMTC platform [6, 15] is an open-source implementation of the oneM2M
standard1, which intends to support machine-to-machine (M2M) communication for
applications in a simplified way. Furthermore, OpenMTC is as well available as a Ge-
neric Enabler in the FIWARE Catalogue [14].

OpenMTC consists of a gateway and backend component that provides a REST API
and uses the CRUD principle for managing resources. Through protocol adapters,
OpenMTC is able to interact with various devices of different technologies. Thus, in-
formation from heterogeneous data sources will be unified in a harmonized data model,
so that applications can easily access the data without the need to know the device spe-
cific technologies. Furthermore, data can be already preprocessed close to the source
before they are send to other endpoints.

OpenMTC has a generic request/response model that can be mapped on different
transport protocols, e.g., HTTP or MQTT. The provided functionality includes regis-
tration of applications, discovery of resources, subscription to new data, simplified ad-
dressing of resources, scheduled communication, and more [11].

2.4 Context Broker: FIWARE Orion Context Broker

The Orion Context Broker [9] is the main component of the FIWARE platform [8].
Through its REST API, the Broker allows the registration of context elements, which
can be updated by context producers. Furthermore, context consumers can either query
these context elements or subscribe to them to get notifications when the context ele-
ments are updated [11]. The Orion Context Broker can be configured through the mar-
ketplace to automatically work together with another FIWARE Generic Enabler, the
FIWARE Short Time Historic [10], which is used for midterm storage of data.

3 Interplay of the SmartOrchestra Platform Components

In this section, we describe the interaction with the platform and the interplay of the
platform components. Consequently, the interplay is described based on the different
roles that interact with the SmartOrchestra Platform (cf. Fig. 1): Smart Service Instan-
tiators and Smart Service Consumers.

The role of a Smart Service Instantiator is to provision different Smart Services from
within the Service Catalog using the provided interfaces given by the IoT Operating
Platform. These services can then be used by the Smart Service Consumers for their
own applications. The Smart Service Instantiator is responsible for providing relevant
data, such as credentials and endpoints, to enable access to the IoT Devices for the Pro-
visioning Engine and therefore to enable the installation of different software compo-
nents. To realize the integration of the IoT Devices into the platform, these software
components, such as adapters and gateways, are responsible for binding the used hard-
ware to the IoT Integration Middleware by sending the relevant data from the sensors

1 http://www.onem2m.org/

18

and enabling the invocation of operations on actuators. As stated in the previous sec-
tion, the IoT Integration Middleware is used as the first layer to integrate heterogeneous
IoT hardware, while the Context Broker component is used as a second layer to store
data from the sensors for midterm data analysis within the SmartOrchestra Platform.

The synchronization of the data across the IoT Integration Middleware and the Con-
text Broker is based on a bi-directional exchange between respective entities managed
by each of the components. These entities are automatically created when the provi-
sioning of the software components is finished and therefore require no additional effort
from the Smart Service Instantiator. After the provisioning and as soon as OpenMTC
and the FIWARE broker receive data from sensors and actuators, a Smart Service Con-
sumer is able to subscribe on the available data or issue commands through correspond-
ing topics provided by the Topic Registry of the platform. Based on that, Smart Service
Consumers are able to integrate Smart Services operated and managed through the
SmartOrchestra Platform into their business applications.

4 Summary

This work presented the SmartOrchestra Platform as an enabler for interoperability,
automated deployment and composition of IoT applications through Smart Services.
Thereby, the different components of the platform build on well-established standards
such as TOSCA for application provisioning and management or oneM2M for ma-
chine-to-machine communication and IoT. The result is an open and standards-based
platform for the utilization of public administrative and business-related Smart Services
by combining the features of an operating platform, a marketplace, a broker, and a no-
tary for a cloud-based operation of Smart Services.

Acknowledgments This work is funded by the BMWi project SmartOrchestra
(01MD16001F).

References

1. Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A., Solberg, A., Wimmer, M.,
et al.: A Systematic Review of Cloud Modeling Languages. ACM Computing Sur-
veys. 51, 1, (2018).

2. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., et al.:
OpenTOSCA – A Runtime for TOSCA-based Cloud Applications. In: ICSOC.
(2013).

3. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable Cloud Services Using
TOSCA. IEEE Internet Computing. 16, 03, (2012).

4. Breitenbücher, U., Binz, T., Képes, K., Kopp, O., Leymann, F., Wettinger, J.:
Combining Declarative and Imperative Cloud Application Provisioning based on
TOSCA. In: IC2E. IEEE (2014).

19

5. Breitenbücher, U., Képes, K., Leymann, F., Wurster, M.: Declarative vs. Impera-
tive: How to Model the Automated Deployment of IoT Applications? In: Summer-
SOC. IBM Research Report (2017).

6. Corici, M., Coskun, H., Elmangoush, A., Kurniawan, A., Mao, T., Magedanz, T.,
et al.: OpenMTC: Prototyping Machine Type communication in carrier grade op-
erator networks. In: IEEE Globecom Workshops. (2012).

7. Fischer, M.P., Breitenbücher, U., Képes, K., Leymann, F.: Towards an Approach
for Automatically Checking Compliance Rules in Deployment Models. In:
SECURWARE. Xpert Publishing Services (2017).

8. FIWARE: FIWARE Catalogue, https://www.fiware.org/developers/catalogue/.
9. FIWARE: Orion Context Broker, https://www.github.com/telefonicaid/fiware-

orion.
10. FIWARE: Short Time Historic (STH) – Comet, https://github.com/telefonicaid/fi-

ware-sth-comet.
11. Franco da Silva, A.C., Breitenbücher, U., Hirmer, P., Képes, K., Kopp, O., Frank

Leymann, et al.: Internet of Things Out of the Box: Using TOSCA for Automating
the Deployment of IoT Environments. In: CLOSER. (2017).

12. Franco da Silva, A.C., Breitenbücher, U., Képes, K., Kopp, O., Leymann, F.:
OpenTOSCA for IoT: Automating the Deployment of IoT Applications based on
the Mosquitto Message Broker. In: IoT. ACM (2016).

13. Franco da Silva, A.C., Hirmer, P., Breitenbücher, U., Kopp, O., Mitschang, B.:
Customization and provisioning of complex event processing using TOSCA.
Computer Science - Research and Development. (2017).

14. Fraunhofer FOKUS: OpenMTC Generic Enabler, https://catalogue.fiware.org/en-
ablers/openmtc.

15. Fraunhofer FOKUS: OpenMTC Platform Architecture, http://www.open-
mtc.org/index.html#MainFeatures.

16. Guth, J., Breitenbücher, U., Falkenthal, M., Fremantle, P., Kopp, O., Leymann, F.,
et al.: A Detailed Analysis of IoT Platform Architectures: Concepts, Similarities,
and Differences. Presented at the (2018).

17. Guth, J., Breitenbücher, U., Falkenthal, M., Leymann, F., Reinfurt, L.: Compari-
son of IoT Platform Architectures: A Field Study based on a Reference Architec-
ture. In: CIoT. IEEE (2016).

18. Képes, K., Breitenbücher, U., Fischer, M.P., Leymann, F., Zimmermann, M.: Pol-
icy-Aware Provisioning Plan Generation for TOSCA-based Applications. In:
SECURWARE. Xpert Publishing Services (2017).

19. Képes, K., Breitenbücher, U., Leymann, F.: Integrating IoT Devices Based on Au-
tomatically Generated Scale-Out Plans. In: SOCA. IEEE (2018).

20. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – A Modeling Tool
for TOSCA-based Cloud Applications. In: ICSOC. (2013).

21. OASIS: Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0. (2013).

22. Saatkamp, K., Breitenbücher, U., Leymann, F., Wurster, M.: Generic Driver In-
jection for Automated IoT Application Deployments. In: iiWAS. ACM (2017).

20

23. Franco da Silva, A.C., Hirmer, P., Breitenbücher, U., Kopp, O., Mitschang, B.:
TDLIoT: A Topic Description Language for the Internet of Things. In: ICWE.
Springer Berlin Heidelberg (2018).

24. Zimmermann, M., Breitenbücher, U., Leymann, F.: A TOSCA-based Program-
ming Model for Interacting Components of Automatically Deployed Cloud and
IoT Applications. In: ICEIS. SciTePress (2017).

All links were last followed on July 18, 2018.

21

Distributed Access Control for the Internet of
Things?

Tobias Straub1,2 and Ulf Schreier1

1 Furtwangen University {tobias.straub,ulf.schreier}@hs-furtwangen.de
2 University of Stuttgart tobias.straub@ipvs.uni-stuttgart.de

Abstract. The progressive miniaturization of computer-based devices
and the ability to monitor an environment or perform demanding au-
tonomous tasks revolutionize the way we live, learn and work today and
in the future. Cyber-physical systems with the ability to communicate in
various types form the Internet of Things (IoT). IoT is a paradigm which
is already today used as a backbone technology in different application
domains, for example, in Industry 4.0 or Smart Home. In order to pre-
vent unauthorized access to resources on devices, the permissions of the
requesting agent have to be checked. Centralized access control is one
strategy for this task, but it prevents direct communication from device
to device as desired in IoT. This paper describes the today’s IoT envi-
ronments by example, shows up the problems establishing access control
in such environments and outlines a solution. It introduces a distributed
access control approach that works close to IoT devices with often un-
used computational power and that enables direct communication from
device to device as desired in IoT.

Keywords: Access control · Internet of Things · Security.

1 Introduction

Monitoring an environment and performing tasks in such an environment needs
close interaction between actors [14]. Interaction, in turn, has various types of
actors and often requires different forms of communication. For example, device
to device, device to and from an application or device to and from distributed
storage. Furthermore, communication is often not restricted to local networks. It
can also happen via heterogeneous networks [1,2]. Nevertheless, most computer-
based devices today cannot communicate with each other or only in an inade-
quate way. The insufficient fashion to communicate is why the idea of the In-
ternet of Things (IoT) gains more and more interest over the last years. IoT
can be considered as a radical evolution of the Internet. From providing human
interconnections into a network of interconnected devices [6,2].

? This research was partially funded by the Ministry of Science of Baden-
Württemberg, Germany, for the Doctoral Program “Services Computing” (http:
//www.services-computing.de/?lang=en).

22

http://www.services-computing.de/?lang=en
http://www.services-computing.de/?lang=en

There are two general options available to implement access control in IoT
environments which are described in the problem statement of this paper. Both
of these centralize the access control system. This centralization means all access
requests must go through a centralized access control instance. Direct commu-
nication from device to device as desired in IoT is not possible. This paper de-
scribes the drawbacks of centralizing access control to secure IoT environments
and outlines a solution.

2 Fundamentals

The Internet of Things has several fundamental aspects [7,14]: Sensing through
sensors in the embedded device, heterogeneous access to connect with different
networks and devices, application and services such as security and privacy.

2.1 Internet of Things by example

For 2025, the installed base of IoT devices is forecast to grow to more than 75
billion worldwide [13]. However, already today exists several application domains
which use the IoT as a backbone technology. For example, Industry 4.0, Smart
City, Smart Home or the Ambient Assisted Living which is supported by Smart
Home.

With 21%, a significant amount of IoT-solution vendors focus on the applica-
tion domain of Smart Home to enhance the lifestyle of individuals by providing
new values in fashions, which have not possible before [16]. IoT as backbone tech-
nology reimagines how to engage with homeowners, guests, and services which
are provided by or through Things.

In many cases, Smart Home environments perform simple tasks, like lowering
or upping shutters. However, far more complicated scenarios are possible which
need a tight integration of a variety of devices. For example, the sensors of
a smart power socket in a smart home environment might detect there is no
voltage applied to the socket. The power socket then might communicate with
other power sockets in the surrounding environment and figure out, that there
is no voltage applied to the sockets in the kitchen. The Smart Home can now
connect with the digital appointment system of an electrician to set up a next day
service. It might connect to the calendar of the homeowners and perceive, that
all homeowners are at work at the time an appointment with the electrician is
available. Due to the urgency, the appointment will still be booked. Concurrently,
the smart home issues a one-time front door access token to make it possible
for the electrician to open the front door and deactivate the security system
with his cell phone within the appointed time by Near-field communication.
Simultaneously, the smart home informs the homeowners to go out for dinner
today evening because the stove is not available, due to the lack of electricity. It
might also appoint a breakfast for the next day in the favorite restaurant of the
homeowners and set up the alarm clock to ring 30 minutes earlier than usual.
Furthermore, the smart home sends the address of the restaurant to the cars

23

navigation system. On the way, the homeowners can monitor the progress of the
electrician through the security camera in the kitchen.

2.2 Access Control

Today, there exists a wide range of channels by which a user wants to access IT
landscapes. For example, by single sign-on with a social network account, or by
an application on mobile devices or in a cloud. An access control system must
discover and check all kind of access requests. Further, security requirements for
IT landscapes specified by companies and private households must be observed,
too. Access control systems must grant or deny access to a requested resource
by evaluating the defined authorization and access rules. A resource is thereby
an entity that contains the information the user wants to access, for example,
a file, a database or a program. Access control as concept and systems as the
implementation of the concept seeks thereby to prevent activity that could lead
to a breach of security.

Several variations of access control are available [4,3,5]. One frequently used
variation is Role-based Access Control (RBAC). This variation reduces the com-
plexity of security administration by generalizing subjects under a role property.
In access control, a subject is a user or a program which is executing on behalf
of the user accessing resources through specific actions. In RBAC a subject is
replaced by one or more roles. Each user is assigned to one or more roles. Each
role, in turn, is assigned with privileges that are permitted to all users in that
role. Every user in a particular role can then perform the same set of rights on
the system [5].

Access control will be problematic if security administrators have a demand
for fine-grained rules. With RBAC this quickly leads to a role explosion if roles
are created to fit each use case. Attribute-based Access Control (ABAC) [11]
offers a more flexible and multi-dimensional approach to access control. This
approach is realized by enforcing security decisions based on attributes accessible
within the application. An attribute could be user data, information about the
action the user is performing, properties of the resource the user is manipulating
or retrieving or it could be an environment variable.

3 Problem Statement

In IoT environments, there are two general options to implement access control.
The first option is to implement it on the same network of the IoT environment.
Access control is centralized and all the access requests go through the centralized
access control instance before the request reaches the requested resource. Direct
communication from device to device as desired in IoT is not possible in this
case. The centralized authorization component always acts as a middleman for
every request. Fig. 1 shows this approach. On the left side of the figure, a user
or a program which is executing on behalf of the user wants to access one of the
devices on the right side of the figure. In this example, there is a smart door

24

lock, a door light, and a door security camera are pictured. Access control is
implemented as a central component of the requesting subject and the devices.

Fig. 1. The centralized access control instance acts as a middleman for every access
request to IoT devices and prevents a direct communication from device to device as
desired in IoT.

The second practice is to implement access control on a network on top of the
actual IoT system. For example, the IoT system is managed by a cloud appli-
cation administrated by the provider of the smart home environment. However,
even with this practice, there is a centralized authorization instance that all
requests must pass (Fig. 1), and that has many disadvantages.

First of all, in a centralized access control system, the complete information
needed for the evaluation of access rules must be stored centrally. While this
was still manageable with traditional access control variations, it is a problem
when working with ABAC as an access control mechanism, because the number
of attributes used in a condition is not limited. The amount of always available
information in the centralized instance is thus dependent on local attributes used
for the evaluation.

Another disadvantage is that the process of approving or denying the request
must be done on the central authorization instance. This causes two problems.
First, it is a single point of failure. If the centralized access control instance fails,
resource access is not possible and hence all resources are effectively unavail-
able. The second problem is performance. The central instance might become a
bottleneck when vast amounts of users, devices, and overall attributes must be
supported.

One more disadvantage, especially in larger organizations, is the need for a
particular trusted user like an administrator to modify access privileges for a

25

resource. In most cases, especially in application domains like smart homes, it
makes more sense to let the owner of the resource decide about access privileges.

All the mentioned drawbacks of the centralized access control are a problem
for scalability. But scalability is a crucial factor for IoT.

4 Solution Approach

The mentioned drawbacks of centralized authorization in IoT environments make
it necessary to look for alternative solutions. In most of today’s Internet of
Things, environments consist of a massive amount of devices with high compu-
tation power available. The idea is to use this often unused and therefore avail-
able computational power for a distributed access control instead of centralized
access control.

Fig. 2. An exemplary representation of a distributed access control in the application
domain of a smart home that allows direct communication from device to device as
desired in IoT.

Fig. 2 shows an example of distributed access control in the application do-
main of a smart home. The devices in the figure are arranged hierarchically
and access control logic and execution are located at the device, pictured by
green frames with the inscription "AC" around the devices. In addition to the
smart home environment, the figure also shows the connectivity to an organiza-
tion connected by the cloud. The figure shows the enabling of device to device
communication through embedded access control.

Instead of a central access control instance, access control is distributed to
IoT devices. The responsibility of access control is placed as close as possible to
the devices. The closeness of the access control to the device enables high com-

26

putational IoT devices that can self-evaluate the access rules that are specified
for the device.

Relocating of access control closer to the devices enables the possibility of
direct communication between devices and prevents a single point of failure. It
also reduces the transfer of information which is needed to evaluate access rules
because the information is usually presented directly on the side of the resource
at the time of access control. Thus, this approach is not only reducing the data
transfer but also improves the performance. Not only because the information
itself is close to the resource, but also due to the distribution only those requests
are checked by an access control component which are required to reach the
corresponding resource.

The hierarchical structure as shown in Fig. 2 also allows inheriting policies
which are determined for devices which are higher in the hierarchy to devices
which are lower in the hierarchy. For example, by setting up a rule to prevent
access to a particular device for a specific person within a smart home environ-
ment. The rule can, in this case, be inherited according to the device below in
the hierarchy. Another example for inheritance is a compound of different de-
vices, for example, a door locking system with three components: the smart door
lock, the door light, and a door security camera. In most cases, it will be useful,
that access rules are applied to all of the components instead of only a single
component. Thus, a user who has general access to the door locking system can
also access the door light and the door security camera. Such an access control
hierarchy is therefore not restricted to the local IoT environment. It is also pos-
sible to inherit access control rules from organizations through the cloud. For
example, if a maintenance worker of the door locking system wants to carry out
maintenance. In this case, a global rule can be set on the side of the maintenance
organization that is inherited through the cloud to the appropriate devices.

If the self-evaluation of access rules is not possible, because a device has
not enough computational power, outsourcing the self-evaluation to devices on
a higher level within the hierarchy is possible. This has the advantage that the
evaluation is still close to the device instead of a centralized instance within the
IoT environment or on a centralized instance on the cloud with worse runtime
performance.

According to the problem statement and solution, there are various research
objectives to work on in the future.

Research question 1: One objective is the effective distribution of access
control components to the devices. Such access control components can be for
example access control rules, the access control engine or just parts of the ac-
cess control engine. In Internet of Things, there are many devices with different
requirements. Taking account of these heterogeneous requirements is essential.
It will not be possible for all devices to self-evaluate complex access decisions.
However, other devices, in turn, have enough computing power to evaluate such
complex policies. The efficient distribution of policies across network boundaries
plays a significant role. For example, the definition of policies at an external ac-
cess control provider in the cloud and the use of these global defined policies on

27

devices within the smart home environment. Just as necessary as the distribution
of rules is the retrieval of the required rules to evaluate the right policies for the
right user at the right time. So a discovery mechanism to find the decentralized
policies is required. Distribution and corresponding mechanisms also cause new
problems and questions. For example, to keep track of the distribution of rules
to ensure their management.

Research question 2: Another research objective is the consideration of
existing mechanisms for identity and authorization. In the centralized world,
there are massive amounts of such mechanisms available. For example, OAuth
[9], User-Managed Access [8] or Attribute-based access control. In this context,
it should be considered which mechanisms are relevant and how they need to
be extended. Particular focus should be put on attribute-based access control
and RestACL. RestACL [12] is an efficient access control language for RESTful
services. The language follows the ideas of attribute-based access control and
utilizes the concepts of REST to enable quick identification of policies that have
to be evaluated to find an access decision.

Research question 3: Additionally to the mentioned research objectives,
another research objective is the identification of criteria for satisfactory perfor-
mance for distribution and discovery of policies. In the context of RestACL is
the set of possible evaluable rules limited by the size of device RAM. To per-
sist evaluable rules that exceed the size of device RAM it is required to use
a database. Especially in this case is a satisfactory performance necessary to
enable efficient access to persisted access rules.

5 Related Work

Recently, there have been various approaches to access control with different
objectives to address the problems of centralization and decentralization.

The work described in "Outsourcing Access Control for a Dynamic Access
Configuration of IoT Services" [15] explains an approach to authorizing resources
within distributed systems. Furthermore, it describes how current solutions, de-
veloped for conventional devices like OAuth can be simplified and applied to the
individual requirements for IoT devices.

Another objective to address problems of centralization in an IoT environ-
ment explained in "Distributed Capability-based Access Control for the Internet
of Things" [10]. The work describes a distributed scenario with end-to-end ac-
cess control validation. The presented solution allows the deployment of such
scenarios like the mentioned without the intervention of any intermediate entity.

IoT using Internet protocols and paradigms, for example REST, to enable
collective monitoring and executing tasks in an environment to interact with
the physical world [6,2]. The work "RestACL: An Access Control Language for
RESTful Services" [12] is, therefore, a promising approach. The paper describes
with RestACL an access control language for RESTful services based on ABAC
that enables quick identification of policies that have to be evaluated to find an
access decision.

28

6 Conclusion

In this paper, we presented the disadvantages of traditional centralized access
control in the context of IoT and proposed a solution for a distributed access
control. The solution outlines the enabling of the direct device to device commu-
nication as in IoT desired by using unused computational power on IoT devices.
The exemplary scenario in this work demonstrates how we will live, learn and
work in future underuse of IoT as a backbone technology. The answering of the
research questions, defined in this paper to evaluate the outlined approach, will
be the central part in the doctoral thesis of Tobias Straub.

References

1. Bello, O., Zeadally, S.: Communication Issues in the Internet of Things (IoT).
In: Next-Generation Wireless Technologies, pp. 189–219. Springer, London (2013),
http://link.springer.com/10.1007/978-1-4471-5164-7_10

2. Bello, O., Zeadally, S.: Intelligent Device-to-Device Communication in the Internet
of Things. IEEE Systems Journal 10(3), 1172–1182 (2016), http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=6725683

3. Benantar, M.: Discretionary-Access Control and the Access-Matrix Model. In: Ac-
cess Control Systems, pp. 147–167. Kluwer Academic Publishers, Boston (2006),
http://link.springer.com/10.1007/0-387-27716-1_5

4. Benantar, M.: Mandatory-Access-Control Model. In: Access Control Systems, pp.
129–146. Kluwer Academic Publishers, Boston (2006), http://link.springer.com/
10.1007/0-387-27716-1_4

5. Benantar, M.: Role-Based Access Control. In: Access Control Systems, pp. 190–251.
Kluwer Academic Publishers, Boston (2006), http://link.springer.com/10.1007/
0-387-27716-1_8

6. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): A
vision, architectural elements, and future directions. Future Generation Computer
Systems 29(7), 1645–1660 (2013), https://www.sciencedirect.com/science/article/
pii/S0167739X13000241

7. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): A
vision, architectural elements, and future directions. Future Generation Computer
Systems 29(7), 1645–1660 (2013), https://www.sciencedirect.com/science/article/
pii/S0167739X13000241

8. Hardjono, T., Maler, E., Machulak, M., Catalano, D.: User-Managed Access
(UMA) Profile of OAuth 2.0 (2015), https://docs.kantarainitiative.org/uma/
rec-uma-core.html

9. Hardt, D.: The OAuth 2.0 Authorization Framework (2012), https://tools.ietf.org/
html/rfc6749

10. Hernández-Ramos, J.L., Jara, A.J., Marín, L., Skarmeta, A.F.: Distributed
Capability-based Access Control for the Internet of Things. In: 5th International
Workshop on Managing Insider Security Threats (MIST 2013) (2013), https:
//pdfs.semanticscholar.org/972f/d21ba4a8049d43e370305ae0e2fc3b378e55.pdf

11. Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Attribute-Based Access Control. Computer
48(2), 85–88 (2015), http://ieeexplore.ieee.org/document/7042715/

29

http://link.springer.com/10.1007/978-1-4471-5164-7_10
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6725683
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6725683
http://link.springer.com/10.1007/0-387-27716-1_5
http://link.springer.com/10.1007/0-387-27716-1_4
http://link.springer.com/10.1007/0-387-27716-1_4
http://link.springer.com/10.1007/0-387-27716-1_8
http://link.springer.com/10.1007/0-387-27716-1_8
https://www.sciencedirect.com/science/article/pii/S0167739X13000241
https://www.sciencedirect.com/science/article/pii/S0167739X13000241
https://www.sciencedirect.com/science/article/pii/S0167739X13000241
https://www.sciencedirect.com/science/article/pii/S0167739X13000241
https://docs.kantarainitiative.org/uma/rec-uma-core.html
https://docs.kantarainitiative.org/uma/rec-uma-core.html
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://pdfs.semanticscholar.org/972f/d21ba4a8049d43e370305ae0e2fc3b378e55.pdf
https://pdfs.semanticscholar.org/972f/d21ba4a8049d43e370305ae0e2fc3b378e55.pdf
http://ieeexplore.ieee.org/document/7042715/

12. Hüffmeyer, M., Schreier, U.: RestACL: An Access Control Language for RESTful
Services. In: Proceedings of the 2016 ACM International Workshop on Attribute
Based Access Control - ABAC ’16. pp. 58–67. ACM Press, New York, New York,
USA (2016), http://dl.acm.org/citation.cfm?doid=2875491.2875494

13. IHS: Internet of Things (IoT) connected devices installed base worldwide from
2015 to 2025 (in billions). Tech. rep. (2016), https://www.statista.com/statistics/
471264/iot-number-of-connected-devices-worldwide/

14. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: Vision,
applications and research challenges. Ad Hoc Networks 10(7), 1497–1516 (2012),
https://www.sciencedirect.com/science/article/pii/S1570870512000674

15. Montesano, P., Hueffmeyer, M., Schreier, U.: Outsourcing Access Control for
a Dynamic Access Configuration of IoT Services. In: Proceedings of the 2nd
International Conference on Internet of Things, Big Data and Security - Vol-
ume 1: IoTBDS. pp. 59–69 (2018), http://www.scitepress.org/DigitalLibrary/
PublicationsDetail.aspx?ID=tLpMh45IM8Y=&t=1

16. Williams, Z.D.: IoT Platform Company List 2017 (2017), https://iot-analytics.
com/iot-platforms-company-list-2017-update/

30

http://dl.acm.org/citation.cfm?doid=2875491.2875494
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.sciencedirect.com/science/article/pii/S1570870512000674
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=tLpMh45IM8Y=&t=1
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=tLpMh45IM8Y=&t=1
https://iot-analytics.com/iot-platforms-company-list-2017-update/
https://iot-analytics.com/iot-platforms-company-list-2017-update/

Towards Deployable Research Object Archives
Based on TOSCA

Michael Zimmermann1, Uwe Breitenbücher1, Jasmin Guth1, Sibylle Hermann2,
Frank Leymann1, and Karoline Saatkamp1

1 Institute of Architecture of Application Systems, University of Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de
2 University Library of Stuttgart

Holzgartenstraße 16, 70174 Stuttgart, Germany
sibylle.hermann@ub.uni-stuttgart.de

Abstract. In science, reproducibility means that a scientific experiment
can be repeated by another scientist with the same result. This is of
particular importance to verify the results as well as to show the usefulness
and reusability for further research. However, the exclusive publication
of the research results in a scientific journal is usually not sufficient.
In addition to research results, also research data as well as research
software need to be published and made public available in order to enable
researcher to gain new insights and thus advance research. However, the
reproducibility and reusability of research data and research software
typically is hindered by several barriers. Therefore, this work intends
to first provide an overview of the current situation and issues in this
particular topic and furthermore sketch our vision of standards-based
Research Object Archives containing scientific publications, software,
data, metadata and licenses in order to tackle the existing problems.

Keywords: Research Object, Reusability, Reproducibility, Deployment Model,
TOSCA.

1 Introduction and Background

New findings in all research areas are based on the fact that existing knowledge and
results of scientific studies and experiments can be shared, verified, and reused. This is
of particular importance to verify the results, and thus verify the statements of the ex-
periment as well as to show the usefulness and reusability for further research.
Typically, only the scientific findings are published in scientific journals. The rapidly
growing collective knowledge is dependent on software processing the raw data, which
is an essential part of all scientific work today. Therefore, in order to understand and
reproduce research results, not only the publication of the results and the research data,
but also the associated research software must be made publicly available [2,28].
However, research software does not only have to be published, but must also be

31

easily executable in order to enable researcher to reuse the software or reproduce
the research results. But the heterogeneity in used infrastructures and technologies
as well as other different technical requirements for the provisioning and operation
of scientific applications requires expert IT knowledge about, for example, deployment
technologies in order to be able to use the developed research software. Thus, some
standards-based approach to automate the provisioning, the management, as well as
the execution of research software and scientific experiments is required.

Regarding only the pure management of research software and research data, there

is already some work available. That not only the research results and publications, but
also related research software and research data is required in order to make
research software usable and research results comprehensible has already been recog-
nized and discussed by different authors [2,4,12,28]. Moreover, in various research
domains, there are already some first isolated solutions, which are mainly concerned
with the provisioning of research software and the connection with the generated data,
for example, in the area of high-performance computing [26] or neuroscience [20].
There are also first approaches to model and store research results together with
algorithms, data, methods, workflows and metadata [3–5,15]. Hunter [15] proposes
so-called Scientific Publication Packages, which focus on the description of artifacts
and the relationships between them. Bechhofer et al. [3,4] and Belhajjame et al. [5]
define so-called Research Objects. Both approaches focus primarily on linking data
with associated artifacts, such as algorithms or used methods, as well as the represen-
tation of the experiment workflow. Research Objects also have a defined life-cycle and
are versionable. This way, different states, such as the progress of a study, can be
directly mapped within the research object and changes to the object can be traced.
However, both approaches do not address the self-contained packaging and automated
provision of research software locally or in a cloud environment, the citability of
research software and data, or the integration of license checks of the source code. With
the constantly increasing importance, not only of research data and research software,
but also the linking with the publications, new challenges for researcher arise: There is
uncertainty regarding the licensing of software, there are no clear guidelines on
how research software can be described and thus, made discoverable by metadata,
and there are no procedures for the automated installation of research software to make
it usable [1]. In addition, mechanisms are needed to ensure the sustainable storage
and retrievability, the identifiability and thus the citability of different versions of
research data, software or required components. Even though, the concepts of Scientific
Publication Packages and Research Objects show the first approaches for dealing
with research results, research data, and research software, a comprehensive and
standards-based solution not only for storage, but also for finding, licensing, citation
and provisioning of any research software has not yet been developed. Moreover,
the aspects of automatically provisioning as well as managing applications is missing
in these concepts. Thus, we want to use the findings from these concepts and further
develop a standards-based packaging format enabling the automated provisioning
and management of applications for the requirements of research software.

32

Regarding the automated deployment of cloud applications, in recent years, several
technologies and standards were developed. This includes configuration management
technologies such as Chef1, Ansible2, or Puppet3, as well as container technologies such
as Docker4. However, configuration management technologies and container technolo-
gies are based on specific artifacts, for example, installation scripts required to deploy
the application. Furthermore, these artifacts and their formats differ greatly dependent
of the used technologies [11]. Therefore, when multiple technologies need to be
combined to deploy non-trivial applications, broad technical knowledge of the technol-
ogies and an integration process are required. But, as mentioned before, since
information technology is being used in more and more scientific areas and not
only in computer science, this technical knowledge cannot be assumed in order to run
research software. Besides these technologies, there are also standards such as the
Topology and Orchestration Specification for Cloud Applications (TOSCA) [8,22,23].
TOSCA is an OASIS standard that enables the definition of application deployments
by topology models and management plans, which can be executed automatically
by a TOSCA runtime, like e.g., the OpenTOSCA container [7]. A topology model
describes the application components and their relations to each other. This includes
application-specific components, such as PHP applications or databases, middleware,
and infrastructure components, such as web servers or virtual machines. Thereby,
application deployments can be described in a vendor-independent and portable
manner. Thus, we want to use the TOSCA concepts in order to realize the provisioning
and managing aspect of our Research Object Archives approach.

To sum up, there is no comprehensive approach available yet enabling the
packaging of all required research artifacts as well as the corresponding publication,
that is also supporting the automated provisioning and managing of the research
software. Therefore, in this paper, we want to introduce our vision of a standards-based
approach for packaging all scientific artifacts, such as research results, research
data, research software as well as scientific publications together into one executable
archive, thus, enabling the automated provisioning and management of scientific
applications. To achieve that, we try to combine the packaging concepts of
Research Objects with the deployment and managing concepts of the TOSCA standard
in order to create automatically deployable Research Object Archives.

The remainder of this paper is structured as follows: We discuss and present
the fundamentals, such as Research Objects and the OASIS standard Topology
Orchestration and Specification for Cloud Applications (TOSCA) in detail in
Section 2. We sketch our idea of Research Object Archives in Sect. 3 and discuss
how it addresses the identified issues and how it enables the portability by an
approach enabling the automated deployment and managing. In Sect. 4, works
related to our approach are discussed. Finally, Sect. 5 concludes this paper.

1 https://www.chef.io/chef
2 https://www.ansible.com
3 https://puppet.com
4 https://www.docker.com

33

2 Basic Concepts

The idea behind Research Object Archives (ROARs) is to give the possibility to
publish automatically deployable research software. For this purpose, the concept
of Research Objects (ROs) will be implemented with the Topology Orchestration
and Specification for Cloud Applications (TOSCA) standard. This section will
introduce the basic concepts of ROs and TOSCA.

2.1 Research Objects

In general, reuse of a specific set of research results requires additional information. To
meet this requirement, Bechhhofer et al. developed the concept of Research
Objects. [3,4] They define the following set of principles to publish research
results together with algorithms, data, methods, workflows, and metadata:
Reusable: ROs should be usable as a whole or in parts.
Repurposeable: The relationship of the contained parts should be described.
Repeatable: There should be enough information to repeat the research. Also
 important are sufficient privileges to access the data.
Reproducible: There should be enough information to validate the result.
Replayable: There should be enough information to understand what happens
 in a specific process.
Referenceable: A RO need a unique Identifier to get credit over citations for
 the research output.
To implement these principles, Bechhofer et al. propose the following features for ROs.
References and resources are Aggregated in an RO. Such aggregation has to organize
the content to resolve the resources dynamically. The ROs as object and the content of
the RO have a separate Identity. Thus, the entire research object or parts of it can be
unambiguously referenced. Metadata has two functions: To discover the RO and
to describe the research for reuse. The RO as a research result must be described
by machine-readable metadata to be found. Additionally, the content requires
information about licensing, attribution, copyright or descriptions of provenance and
the derivation of results. As research is a process with a Lifecycle that should be
described. Different events will happen in a particular sequence and different actions
can be performed at various stages. These changes over time, particularly adjustments
like deleting or adding content to a RO, must be recorded with Versioning. The
Management of ROs needs the possibility to operations like Creation, Retrieval,
Update, and Deletion (CRUD). Security issues like access, authentication, ownership,
and trust need to be addressed. The last feature Bechhofer et al. propose is the Graceful
Degradation of Understanding to give the opportunity to use the Research object
without understanding the whole research process.

The approach of Research Objects do not address a specific implementation of ROs.
Neither the self-descriptive packaging and automated provision of research software
locally or in a cloud nor the question of how to cite the research software and data or
the integration of license checks of the source code is addressed by Research Objects.

34

2.2 Topology Orchestration and Specification for Cloud Applications

Since our approach is based on the TOSCA standard, we introduce the OASIS
standard Topology Orchestration and Specification for Cloud Applications (TOSCA)
in this subsection, in order to provide a comprehensive background. TOSCA enables to
describe the automated deployment and management of applications in an
interoperable and portable manner. We only give an overview of the fundamental
TOSCA concepts, detailed information can be found in the TOSCA Specifications
[23,24], the TOSCA Primer [24] and in Binz et al. [8]. A comparison of TOSCA with
other Cloud Modeling languages can be found in Bergmayr et al. [6].

Fig. 1. Exemplary TOSCA Topology Template.

The TOSCA standards enables to describe required infrastructure resources,
software components, as well as the structure of cloud or IoT applications.
Furthermore, TOSCA enables to define the required operations for managing such
applications. Thus, TOSCA enables the automated deployment and management
of cloud and IoT applications. The structure of cloud applications are defined by
so-called TOSCA Topology Templates. An exemplary TOSCA Topology Template,
following the visual notation Vino4TOSCA [10] is illustrated in Fig. 1. Technically, a
Topology Template is a graph consisting of nodes and directed edges. The nodes
represent components of the application, for instance, a virtual machine
or a database and are called Node Templates. The edges connecting the nodes
specify the relations between Node Templates, for example, “hostedOn” or
“connectsTo” and are called Relationship Templates. For reusability purposes,
the TOSCA standard enables the specification of Node Types and Relationship
Types defining the semantics of the Node Templates and Relationship Templates. Node

DA: Application.zip

[…]

[…]

[…][…]

DBUser: admin
DBPassword: jN8z9Ch3a

RootPassword: k0aL5h1tPort:80

(PHPApplication)

(ApachePHPServer)

(Ubuntu14.04)

(OpenStack)
(hostedOn)

(MySQLDB)

(MySQLDBMS)

(Ubuntu14.04)

(connectsTo)CSAR

runScript

transferFile

install

35

Types, for example, enable to define Properties as well as Management
Operations. Properties are for example passwords, usernames, or the port of a web
server and thus, enable the customization of the TOSCA Topology Templates.
Management operations enable the management of the modeled components. For
example, typically a software component node provides an “install” operation in
order to install the component or a hypervisor node provides a “createVM” and
“terminateVM” operation in order to create and terminate virtual machines.

Management operations are implemented by so-called Implementation Artifacts
(IAs). IAs can be implemented using any various technologies, e.g., as a WAR-file
providing a WSDL-based SOAP Web Service, a configuration management
technology, such as Ansible, Puppet, Chef, or just as a simple shell script. Besides IAs,
TOSCA also defines so-called Deployment Artifacts (DAs) representing the artifacts
implementing the business logic of the components of an application. For example, the
DA of a Java application can be a WAR-file. In case of a PHP application, a DA would
be a ZIP file containing all PHP files, images, and other required files. The creation and
termination of instances of a modeled application can either be done declaratively, by
deriving the actions that need to be executed directly from the Topology Template or
imperatively with help of Management Plans [14]. A Management Plan is an
executable workflow model specifying all tasks as well as the order in which these tasks
need to be executed to achieve a certain management functionality, e.g., the
provisioning of a new application instance or to scale out a component of a
running application instance. TOSCA does not specify how such plans should be
implemented, however, recommends using a workflow language such as the Business
Process Execution Language (BPEL) [21] or the Business Process Model and
Notation (BPMN) [25]. Furthermore, there is a BPMN extension called BPMN4TOSCA
that is explicitly tailored for describing TOSCA-based management plans [17,19].

Additionally, the TOSCA standard also specifies a portable and self-contained
packaging format, so-called Cloud Service Archive (CSAR). CSARs enable to
package Topology Templates, type definitions, Management Plans, IAs, DAs, and
all other required files for automating the provisioning as well as the management
of applications into one archive. Through the standardized meta-model and
packaging format, these CSARs can be automatically processed and executed by
standard-compliant TOSCA Runtime Environments, such as the OpenTOSCA
Ecosystem5. Therefore, portability as well as interoperability can be ensured.

Overall, the OASIS standard TOSCA enables to automate the provisioning
and management of complex applications as well as to specify and package all
descriptions and required files in a portable format. Therefore, the standard
provides a suitable basis for packaging and managing research software together
with associated artifacts for an automated provisioning. Up to now, the identification
via metadata as well as the linking with licenses, external data sources,
and publication repositories is not considered in the standard. However, due to
the extensibility of the specification, this standard can be extended accordingly.

5 https://github.com/OpenTOSCA

36

3 Towards an Approach for the Automated Deployment of
Research Objects

In this section, we introduce our approach of portable Research Object Archives
(ROARs). Therefore, we first present the main concepts of ROARs and subsequently
illustrate how they are supposed to be created and used. We further show, how
they enable the automated deployment of the modeled application and how the
proposed features presented in Sect. 2.1 are realized by ROARs.

3.1 Research Object Archive

In order to enable developing, packaging, publishing, and deploying research
software efficiently, a self-contained and portable packaging format for research
software is inevitable. Thus, the main goal objectives are to develop a packaging
format that enables bundling all important information of research software,
especially its technical dependencies, associated research data, descriptive metadata,
used licenses, and a reference to the corresponding publication, as well as
to enable the automated provisioning. The conceptual structure of a ROAR is
depicted in Fig. 2. The ROAR format is based on Research Objects (ROs)
(cf. Sect. 2.1) and the provisioning and management concepts of the TOSCA standard
(cf. Sect. 2.2), which is explained in more detail in the following.

Fig. 2. Structure of a Research Object Archive (ROAR).

For ensuring the linking to the corresponding publication, a ROAR, for

example in the case of an open access publication, should refer directly to the
publication – typically a PDF file – and in case of house publications to the
landing page of the article at the respective publisher. Furthermore, a ROAR
should contain the used source code, descriptive metadata, license information,
and the used database, which can also be located in an external repository.
By supporting metadata, the ROAR can be found easily and thus, supporting
the proposed feature Metadata in Sect. 2.1. Since database can be located in
external repositories, ROARs need to support referencing external data sources
 and resolving them dynamically (cf. Aggregation in Sect. 2.1). Moreover, because data

Research Object Archive (ROAR)
Code Data

.pdf

refers to

Metadata External
Data sourcerefers to

(optional)

Publication

ROAR

License

Topology

37

or software can change, ROARs need to support versioning (cf. Versioning
in Sect. 2.1). Based on the metadata, a unique ID can be assigned to the ROAR,
thus enabling citation (cf. Identity in Sect. 2.1). Of course, ROARs should be
created, updated, and retrieved by researcher as well as stored in repositories
or archives, thus supporting the proposed feature Management in Sect. 2.1.
Furthermore, by not only adding the research software, dependencies, as well as
required data, but also a TOSCA-based description how the application can be
provisioned, a ROAR should enable the automated provisioning of the modeled
and archived application and thus, simplify the repeatability of the research
results (cf. Graceful Degradation of Understanding in Sect. 2.1). However, since
not all necessary functionalities, such as referencing publications in a CSAR, are
currently supported by the TOSCA standard, extensions of TOSCA and the
CSAR packaging format must be developed and combined with the RO concept.

3.2 Research Object Portability and Deployment Approach

The reusability as well as the reproducibility are vital factors in science. Thus, ROARs
need to be designed in a way supporting (i) the researcher creating such
a ROAR as well as (ii) the researcher that wants to reuse a modeled application.
In this section, we illustrate how ROARs are created and how they can be reused.

Fig. 3. Overview: Usage of Deployable Research Object Archives.

Fig. 3 shows the conceptual approach, the roles involved, and the general procedure

for storing, testing, finding, and reusing research software as well as the
associated data. When scientists want to publish their developed research software with
associated data (see step 1), they first have to model the application’s topology with all
its dependencies as well as required data (see step 2) using the TOSCA modeling con-
cepts (cf. Sect. 2.2). In our approach, it should also be possible to insert the data directly
to the final ROAR as well as to only insert a reference to an external location where

Develop research
software & data

1
Model application

2

Package application,
metadata & license

3

Deploy & reuse
application

4

Application
code

Data

OS

Hyper-
visor

DBApp

Research Object
Archive (ROAR)

Metadata

License

Publication

App DB

OS

Deployment
System

38

the data is stored. Thus, the topology model has to support both variants to define
required data. Since, our concept is based on the TOSCA standard, of course available
modeling tools supporting the TOSCA standard can be used for modeling the
application, for example, the open-source tool Winery6 [18]. After the modeling,
the research software can be packaged with associated data, licenses,
descriptive metadata, as well as associated publications, published, and persistently
stored as a ROAR (see step 3). The selection of a suitable license for the research soft-
ware can be supported by using license verification tools, such as Fossology7 or Black
Duck8, which can automatically detect possible license violations regarding used librar-
ies. The metadata added to the ROAR is used to describe and identify the research
software and any data and publications it contains. Using this metadata, the ROAR can
be found by other scientist in order to reuse the contained software or data (see step 4).
Furthermore, a unique ID can be assigned to a ROAR for enabling the citation of it.
Since a ROAR is a standards-based packaging format containing all the necessary com-
ponents for enabling the automated provisioning (cf. Sect. 2.2), the modeled
application can be automatically deployed using a standard-compliant deployment
engine, such as the open-source runtime environment OpenTOSCA Container9 [7].
Therefore, scientists do not require any expert IT knowledge at all and are able
to use and recreate the research results as often as they want to.

4 Related Work

Packaging software, data, and publications together into one archive as well as
enabling the provisioning of software have been in the focus of different research areas.
Therefore, in this section, we complete our discussion about related work, which we
already discussed partially in Sect. 1.

Weigel et al. [29] give a recommendation for actionable collections and a technical
interface specification to enable client-server interaction. Their focus lies on the
management of research collections. To enable and automate the provisioning of soft-
ware in different environments, concepts of [16] and [30] have already been
developed. Képes et al. [16] presents a template-based concept for provisioning
software using a template that is suitable for a specific infrastructure. Zimmermann et
al. [30] uses the infrastructure or database components available in an environment to
connect the software and generate an overall model for provisioning. These concepts
can be used to provision research software in the available environment and to
connect it to existing data sources but did not cover the integrated publishing and
description of software, data, workflow and licensing of the research results. Stodden
et al. [27] provides a platform to store source code and data and run them directly in a
cloud environment but did not provide licence checks and an integrated publishing
format. For general storage and easy software execution, Boettiger [9] proposes Docker

6 https://projects.eclipse.org/projects/soa.winery
7 https://www.fossology.org/
8 https://www.blackducksoftware.com/
9 https://github.com/OpenTOSCA/container

39

containers to virtualize the exact system environment in which the original results were
produced. The Software Heritage Archive [13] aims to collect all source code that is
publicly available. The development history will be archived with an index in order to
make the code referenceable and accessible. This approach is an important archive for
software source code, however, is not intended to package all artifacts together in order
to enable the execution of the software for reuse.

5 Conclusion

In this paper, we illustrated our approach of a comprehensive solution for packaging
research software together with data, metadata, license information, and
publications in a portable way, which enables reusability as well as reproducibility in
science. Therefore, in this work we first presented an overview of the current issues and
problems in this area. Furthermore, we presented the concepts of Research
Objects and the TOSCA standard and sketched how both concepts can be
combined in order to create our approach of Research Object Archives. Moreover,
we depicted the composition and the ingredients of a ROAR and characterized
the features it provides. We also illustrated how the portability of a ROAR is
achieved and how the automated deployment is realized. In future work, we focus
on the implementation and integration of the proposed concepts into the TOSCA
modeling tool Winery and OpenTOSCA Container.

Acknowledgments This work was partially funded by the projects SePiA.Pro
(01MD16013F) and IC4F (01MA17008G).

References

1. Almeida, D.A., Murphy, G.C., Wilson, G., Hoye, M.: Do Software Developers
Understand Open Source Licenses? In: ICPC. pp. 1–11. IEEE (2017)

2. Barnes, N.: Publish your computer code: it is good enough. Nature News 467(7317),
753–753 (2010)

3. Bechhofer, S., Buchan, I., De Roure, D., Missier, P., Ainsworth, J., Bhagat, J., Couch, P.,
Cruickshank, D., Delderfield, M., Dunlop, I., Gamble, M., Michaelides, D., Owen, S., New-
man, D., Sufi, S., Goble, C.: Why linked data is not enough for scientists. Future Generation
Computer Systems 29(2), 599–611 (2013)

4. Bechhofer, S., De Roure, D., Gamble, M., Goble, C., Buchan, I.: Research Objects:
Towards Exchange and Reuse of Digital Knowledge. In: FWCS. Nature Precedings (2010)

5. Belhajjame, K., Zhao, J., Garijo, D., Gamble, M., Hettne, K., Palma, R., Mina, E., Corcho,
O., Gómez-Pérez, J.M., Bechhofer, S., Klyne, G., Goble, C.: Using a suite of ontologies for
preserving workflow-centric research objects. Web Semantics: Science, Services and
Agents on the World Wide Web 32, 16–42 (2015)

6. Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A., Solberg, A., Wimmer, M.,
Kappel, G., Leymann, F.: A Systematic Review of Cloud Modeling Languages.
ACM Computing Surveys (CSUR) 51(1), 22:1–22:38 (2018)

40

7. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wagner, S.:
OpenTOSCA - A Runtime for TOSCA-based Cloud Applications. In: ICSOC. pp. 692–695.
Springer (2013)

8. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated
Deployment and Management of Cloud Applications, pp. 527–549. Advanced Web
Services, Springer (2014)

9. Boettiger, C.: An introduction to docker for reproducible research. ACM SIGOPS
Operating Systems Review 49(1), 71–79 (2015)

10. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Vinothek - A Self-Service Portal for
TOSCA. In: ZEUS. pp. 69–72. CEUR-WS.org (2014)

11. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wettinger, J.: Integrated
Cloud Application Provisioning: Interconnecting Service-Centric and Script-Centric
Management Technologies. In: CoopIS. pp. 130–148. Springer (2013)

12. Collberg, C., Proebsting, T., Warren, A.M.: Repeatability and benefaction in computer sys-
tems research. University of Arizona TR 14-4 (2015)

13. Cosmo, R.D., Zacchiroli, S.: Software Heritage: Why and How to Preserve Software Source
Code. In: iPRES (2017)

14. Endres, C., Breitenbücher, U., Falkenthal, M., Kopp, O., Leymann, F., Wettinger, J.:
Declarative vs. Imperative: Two Modeling Patterns for the Automated Deployment of Ap-
plications. In: Proceedings of the 9th International Conference on Pervasive Patterns and
Applications (PATTERNS). pp. 22–27. Xpert Publishing Services (2017)

15. Hunter, J.: Scientific publication packages–A selective approach to the communication and
archival of scientific output. International Journal of Digital Curation 1(1), 33–52 (2008)

16. Képes, K., Breitenbücher, U., Leymann, F.: The SePaDe System: Packaging Entire XaaS
Layers for Automatically Deploying and Managing Applications. In: CLOSER.
pp. 626–635. SciTePress (2017)

17. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: BPMN4TOSCA: A Domain-Specific
Language to Model Management Plans for Composite Applications. In: Proceedings of the
4th International Workshop on the Business Process Model and Notation (BPMN 2012). pp.
38–52. Springer (2012)

18. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – A Modeling Tool for
TOSCA-based Cloud Applications. In: ICSOC. pp. 700–704. Springer (2013)

19. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F., Michelbach, T.: A Domain-Specific
Modeling Tool to Model Management Plans for Composite Applications. In: Proceedings
of the 7th Central European Workshop on Services and their Composition, ZEUS 2015. pp.
51–54. CEUR Workshop Proceedings (2015)

20. Nyström, P., Falck-Ytter, T., Gredebäck, G.: The TimeStudio Project: An open source sci-
entific workflow system for the behavioral and brain sciences. Behavior Research Methods
48(2), 542–552 (2016)

21. OASIS: Web Services Business Process Execution Language (WS-BPEL) Version 2.0. Or-
ganization for the Advancement of Structured Information Standards (OASIS) (2007)

22. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA)
Primer Version 1.0. OASIS (2013)

23. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA)
Version 1.0. OASIS (2013)

24. OASIS: TOSCA Simple Profile in YAML Version 1.0. OASIS (2015)
25. OMG: Business Process Model and Notation (BPMN) Version 2.0. Object Management

Group (OMG) (2011)

41

26. Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., Kozinsky, B.: Aiida: automated
interactive infrastructure and database for computational science. Computational Materials
Science 111, 218–230 (2016)

27. Stodden, V., Hurlin, C., Pérignon, C.: Runmycode.org: A novel dissemination and
collaboration platform for executing published computational results. In: eScience.
pp. 1–8. IEEE (2012)

28. Stodden, V., McNutt, M., Bailey, D.H., Deelman, E., Gil, Y., Hanson, B., Heroux, M.A.,
Ioannidis, J.P., Taufer, M.: Enhancing reproducibility for computational methods.
Science 354(6317), 1240–1241 (2016)

29. Weigel, T., Almas, B., Baumgardt, F., Zastrow, T., Schwardmann, U., Hellström, M.,
Quinteros, J., Fleischer, D.: Recommendation on Research Data Collections.
Research Data Alliance (2017)

30. Zimmermann, M., Breitenbücher, U., Falkenthal, M., Leymann, F., Saatkamp, K.:
Standards-based Function Shipping – How to use TOSCA for Shipping and Executing
Data Analytics Software in Remote Manufacturing Environments. In: EDOC.
pp. 50–60. IEEE (2017)

42

Application Scenarios for Automated Problem Detection
in TOSCA Topologies by Formalized Patterns

Karoline Saatkamp1, Uwe Breitenbücher1, Oliver Kopp2, and Frank Leymann1

1 Institute of Architecture of Application Systems, University of Stuttgart
2 Institute for Parallel and Distributed Systems, University of Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany
[lastname]@informatik.uni-stuttgart.de

Abstract. There are several reasons why application components are redistrib-
uted to multiple environments: parts of the IT-infrastructure are outsourced or an
application has to be deployed to different customers with different infrastruc-
tures. For an automated deployment, several technologies and standards already
exist. With the TOSCA standard the deployment of an application can be mod-
eled as topology representing the application's components and their relations.
When such a topology-based deployment model is redistributed, problems can
arise that were not present before, such as firewalls that prevent direct access to
a component. Problems can be detected based on problem- and context-formal-
ized patterns. In this paper, we present application scenarios for the pattern for-
malization approach to detect problems in restructured topology-based deploy-
ment models based on selected cloud computing patterns.

Keywords: Cloud Computing Patterns, Formalization, Prolog, TOSCA.

1 Introduction and Background

Over the last years, several technologies for the deployment and management of cloud
applications, such as Docker1, Kubernetes2, or Cloud Foundry3, have been developed.
Besides these vendor-specific technologies, standards, such as the OASIS standard
TOSCA (Topology and Orchestration Specification for Cloud Applications) [24], are
published to describe the deployment and management of cloud applications in a ven-
dor-independent manner. TOSCA enables the description of topology-based deploy-
ment models specifying an application’s structure by its components and their relations
[12]. Such topology-based deployment models are declarative deployment models that
can be interpreted by a runtime that infers the deployment logic from the structural
description [12]. Imperative models, on the other hand, define a process that specifies
the deployment logic explicitly [12].

1 https://www.docker.com/
2 https://kubernetes.io/
3 https://www.cloudfoundry.org/

43

TOSCA topologies are topology-based deployment models, describing the applica-
tion’s components and their relationships. Components can be application-specific
components such as a PHP WebApp as well as middleware components such as a
Tomcat or infrastructure components such as an OpenStack. A component can be, for
example, a PHP WebApp that is hosted on an Apache Web Server, as depicted in Fig.
1. The hostedOn or connectsTo relations describe the relationships between the com-
ponents. Due to several reasons, the components of an application might have to be
redistributed to different environments: parts of the IT are outsourced or an application
has to be deployed for different customers with different environmental conditions.
Based on the Split and Match method introduced in a previous work [27], each appli-
cation-specific component can be annotated with a target label that specifies the in-
tended target location of the component. According to these labels, the topology-based
deployment model is split and matched with the available infrastructure or platform
service in the target location and this results in a restructured deployment model. In the
example depicted in Fig. 1, two components that are formerly hosted on the same vir-
tual machine can be redistributed, for example, to an AWS EC2 and an OpenStack.

Fig. 1. Example of a restructured topology-based deployment model

In the initial topology in Fig. 1 the Apache Web Server and the Tomcat are intended
to be hosted on the same virtual machine Ubuntu, as shown by the dashed greyed out
components. Based on the attached target labels AWS and Internal, the deployment
model is split into two separate stacks. For this, the virtual machine is duplicated for
each target location and the available infrastructure components from the target loca-
tions are selected and injected into the topology-based deployment model.

The restructuring of such deployment models can result in problems that have not
existed before. In the example presented in Fig. 1, sensitive data that used to be ex-
changed within a single virtual machine is now exchanged over the internet, which can

My-EC2
(AWS-EC2)

Ubuntu_AWS
(Ubuntu-14.04-

VM)

Apache Web
Server

(Apache-2.4)

Tomcat
(Tomcat)

Java-App
(WAR)

PHP-WebApp
(PHP-5- Web
Application)

ComponentName
(ComponentType)

hostedOn
connectsTo

username: user
password: *****
Location: aws

sensitiveData: true

HTTPConnection
(connectsTo)

RelationName
(RelationType)

OpenStack
(OpenStack-
Liberty-12)

Ubuntu_internal
(Ubuntu-14.04-

VM)

username: admin
password: *****
Location: internal

Ubuntu
(Ubuntu-14.04-

VM)

My-vSphere
(vSphere)

AWS

Label

Internal

44

lead to security issues. Furthermore, communication restrictions or incompatibilities
can occur. To detect such problems in an automated manner, we presented an approach
to automatically detect problems in restructured deployment models based on formal-
izing architecture and design patterns [26]. This concept is based on existing design and
architecture knowledge in the form of patterns that describe best-practice solutions for
recurring problems in a certain context [1]. Such architecture and design patterns are
discovered and described in several domains, for example, for general architecture so-
lutions [9], application integration [17], security mechanisms [28], and for cloud com-
puting [13]. Independent of the domain, a pattern describes the problem solved by this
pattern, the context when the problem occurs, and the solution in a technology-inde-
pendent manner. However, patterns are only captured as textual descriptions.

To enable an automated problem detection, Saatkamp et al. [26] presented a pattern
formalization approach to formalize the problem and context description of a pattern.
In previous work [26], the applicability of the formalization approach has been pre-
sented for two patterns: the Secure Channel pattern which is part of the security pattern
language by Schumacher et al. [28] and the Application Component Proxy which is part
of the cloud computing pattern language by Fehling et al. [13]. For a prototypical vali-
dation the TOSCA standard has been chosen, because it is a generic standard and inde-
pendent from a certain technology or provider [4]. A TOSCA topology-based deploy-
ment model is described as Topology Template. The application’s components are spec-
ified as Node Templates and their relations as Relationship Templates. The semantic of
these elements is specified by their Node Type or Relationship Type respectively. In
this paper, we extend the validation of the problem detection approach based on for-
malized patterns [26] by further patterns. The TOSCA-based prototype, presented in
the previous paper is used as basis for the validation.

The remainder of this paper is structured as follows: Section 2 gives on overview of
the problem detection approach while Section 3 describes the application scenarios. In
Section 4 related work is discussed and Section 5 concludes this paper.

2 Problem Detection Approach Overview

We presented the approach to automatically detect problems in restructured deployment
models based on formalizing architecture and design patterns a previous work [26].
This is based on the concept of applying architectural and design knowledge in terms
of patterns to restructured topology-based deployment models. The textual description
of such patterns is based on a pattern format. Even if pattern formats differ slightly
between different pattern languages, the essential parts are the same [23,30]: (i) the
problem section that describes the problem solved by the pattern, (ii) the context section
that describes the context in which the problem arises, and (iii) the solution section that
gives a technology-independent description of the best-practice solution. For the detec-
tion of problems occurring in restructured topology-based deployment models, the
problem as well as context description are of main interest. However, for an automated
approach each pattern has to be formalized in a machine-readable manner. Thus, the

45

logic programming language Prolog is used to express the problem and context of pat-
terns as rules that can be applied to topologies which are expressed as facts.

Fig. 2. Overview of the Problem Detection Approach Based on Formalized Patterns [26]

In Fig. 2 an overview of the problem detection approach based on formalized patterns
is depicted. At the top of the figure the different pattern languages are sketched. Each
area represents a pattern language, for example, the enterprise integration patterns [17],
the cloud computing patterns [13], or the security patterns [28] which also include the
Secure Channel pattern. The Secure Channel pattern addresses the problem to ensure
that data being passed across a public network is secure in transit. This textual descrip-
tion is formalized as a Prolog rule to enable an automated problem detection process.
Even if the formalization has to be done manually, the resulting rule expressing the
problem and context of the pattern can be reused for arbitrary topologies. The rule in-
secure_public_communication(C1, C2) queries a fact base for two com-
ponents C1 and C2 that are connected by a relation R which has a key-value property
sensitivedata: true attached. This relation R must be of type connectsTo. In addition,
the two components C1 and C2 must have different locations, indicated by the key-

Model

1

Restructure

2

Transform

3

Detect

4

App-OS

Hyper-

visor

Java-

App

PHP-

App

External Internal

sensitiveData:

true

PHP-

App-OS

Java-

App

PHP-

App

sensitiveData:

true

Java-

App-OS

IaaS

location: ex location: in

Hyper-

visor

% extract of facts
component(php-app).
component(java-app).
relation(php-app,

java-app, httpcon).
relationOfType(httpcon,

connectsTo).
property(httpcon,

sensitivedata, true).

Architecture & Design Patterns

insecure_
public_communication(C1,C2) :-
property(R, sensitivedata, true),
relationOfType(R, connectsTo),
relation(C1, C2, R),
differentLocation(C1, C2),
not(poperty(R, security, true)).

apply

formalize

P
1

P
3

P
n

P
1’

P
2’

P
m’

…
P

2

SECURE
CHANNEL

Problem:
How do we ensure that data being

passed across public or semi-public

space is secure in transit?

Context:
The system delivers functionality […] to

clients across the public Internet. […] The

application must exchange data with the

client. […] This data will be sensitive in

nature.

Insecure

Public Communication:

PHP-App, Java-App

à Secure Channel

46

value property location, and no security mechanisms are used for the connection be-
tween the components. This rule formalizes the problem and context of the Secure
Channel pattern and can be applied to facts representing the structure of a topology.

The procedure to detect problems in a restructured topology-based deployment
model, for example in a TOSCA topology, starts with modeling the application’s struc-
ture (step 1). The topology is then annotated with target labels that indicate the desired
distribution of the components to different target locations. In this example, the PHP-
App shall be hosted in an external environment and the Java-App shall be located inter-
nally. In the restructuring step (step 2), the topology is split and matched using the Split
and Match method by Saatkamp et al. [27]. In a third step, the graph-based description
of the application’s structure is transformed into Prolog facts. This can be automated
based on transformation rules, as descripted in [26]. For each element in the topology
a fact is created. An extract of the facts representing the exemplary topology is shown
in Fig. 2. By applying all formalized patterns to the topology facts, problems can be
detected in the restructured topology-based deployment model. As a result, the detected
problems, the affected components, and the pattern addressing this problem are re-
turned. For the transformation of TOSCA topologies to Prolog facts and the problem
detection in such topologies the Topology ProDec4 tool can be used [26].

3 Application Scenarios Based on Cloud Integration Patterns

The described approach in Section 2 can be applied to several pattern languages. In [26]
the approach has been applied to the Secure Channel pattern from the security pat-
terns [28] and to the Application Component Proxy from the cloud computing pat-
terns [1]. In this paper, two additional application scenarios are presented based on two
cloud integration patterns [1]: Message Mover and Integration Provider. In the follow-
ing, the two patterns are described in more detail and the Prolog rules for formalizing
these patterns are presented. They are also part of the patterns listed in the Topology
ProDec tool and can be used for an automated problem detection in TOSCA topologies.

Fig. 3. Required Patterns: Message Mover (left) and Integration Provider (right)

4 https://github.com/saatkamp/topology-prodec

IAAS

Java-AppPHP-App

location: external

Hypervisor

location: internal

Channel

Frontend-
OS

location: internal

Broker

IAAS

Java-AppPHP-App

location: external

Hypervisor

location: internal

Channel

Frontend-
OS

inbound: false inbound: false
location: internal

Broker

inbound: false

Backend-
OS

inbound: false

Backend-
OS

47

3.1 Application Scenario: Message Mover

The Message Mover is a pattern of the cloud computing pattern language [1]. This pat-
tern is just applicable to a message-based communication. Therefore, in Fig. 3 on the
left a topology with a message-based communication is depicted. In this example, the
PHP-WebApp publishes data to a Queue and the Java-App receives data from it. After
the redistribution the Java-App and the Broker are hosted in the internal datacenter and
the PHP-WebApp is hosted in a public cloud, for example provided by Amazon. The
Java-App is located in a restricted environment and thus, the access from outside the
location is not permitted. To ensure the accessibility to a queue for each component, a
queue shall be available in each location. The integration problem of these distributed
queues can be solved by the Message Mover. However, the problem must be detected
first. In the following the problem and context description of the Message Mover is
presented [13]:

Problem:
How can message queues of different providers be integrated without an impact on
the application component using them?

Context:
The application components comprising a distributed application (160) often ex-
change data using messaging. These messages are stored in message queues. [...] If
these queues reside in different cloud environments that form a hybrid cloud (75)
accessibility to queues of one environment may be restricted for application compo-
nents that are deployed in another environment. [...] Therefore, each of the applica-
tion components shall access a message queue hosted in the cloud environment
where the application component itself is hosted. [...]

The pattern context is similar to the Application Component Proxy. The Application
Component Proxy addresses the problem that a component directly accesses a compo-
nent located in a restricted environment. Because direct access is not permitted to re-
stricted environments an Application Component Proxy is required to access this com-
ponent. More details on the formalization of this pattern can be found in [26]. However,
in this case instead of a proxy an additional queue in the unrestricted environment and
a message mover integrating the queues are required. The pattern aims to solve the
accessibility of a more concrete system component, a queue. Based on the knowledge
from messaging patterns, the problem description is based on the generic Message
Channel in order to not exclude components, like e.g., topics which are publish-sub-
scribe channels [17]. The resulting distributed_messaging rule for the formal-
ized Message Mover is the following:

distributed_messaging(C1, C2):-
 messaging_communication(Channel, C1, C2),
 components_in_different_locations(C1, C2),
 hybrid_environment(C1, C2).

The shown facts serve as conditions for the pattern rule. Each of the facts in turn is a
rule encapsulating a complex query (not shown for brevity, but can be found in the

48

Topology ProDec tool5). The first condition checks whether messaging is used in the
topology because the pattern just relates to message-based systems. In addition, the
problem and context description refers to distributed applications that are used in hybrid
environments. Therefore, the second condition checks whether the communicating
components are located in different environments and if they form a hybrid environ-
ment (third condition).

This rule can be applied to the deployment model depicted in Fig. 3 on the left. Based
on that, the problem is automatically detected and it can be solved according to the
descripted solution for the Message Mover pattern.

3.2 Application Scenario: Integration Provider

The Integration Provider pattern is another cloud integration pattern from the cloud
computing patterns [13]. In Fig. 3 on the right a topology with two components (PHP-
App and Java-App) communicate using messaging is shown. In contrast to the topology
on the left, both components as well as the Channel are located in restricted environ-
ments. Thus, the components as well as the Channel are not accessible from outside the
location. This problem can be solved by the Integration Provider pattern that describes
the problem and its context as follows [13]:

Problem:
How can components in different environments be integrated through a 3rd-party
provider?

Context:
When companies collaborate or one company has to integrate applications of differ-
ent regional offices, different applications or the components of a distributed appli-
cation are distributed among different hosting environments. Communication be-
tween these environments may be restricted. Especially, hosting environments may
restrict any incoming communication initiated from the outside. Communication
leaving the restricted environments is, however, often allowed. Therefore, additional
integration components are required that have to be accessible from restricted envi-
ronments. […]

From the above given description of this pattern, the difference to the distrib-
uted_messaging that formalizes the problem and context description of the Mes-
sage Mover pattern can be seen: Instead of a hybrid environment consisting of a re-
stricted and an unrestricted environment, these are two restricted environments that
must be integrated to enable communication between the components. Besides that, the
Integration Provider pattern is not limited to deployment models using messaging. In
the following the integration_of_restricted_environments rule for-
malizing the problem and context of the Integration Provider pattern is shown:

5 https://github.com/saatkamp/topology-prodec/blob/master/pattern_prologfiles/helper.pl

49

integration_of_restricted_environments(C1, C2):-
 components_in_different_locations(C1, C2),
 component_in_restricted_environment(C1),
 component_in_restricted_environment(C2),
 ((messaging_communication(Channel, C1, C2),
 component_in_restricted_environment(Channel));
 direct_communication(C1, C2)).

The problem only occurs in case the communicating components are located in differ-
ent locations (first condition) and if these locations are restricted. The second condition
is checked by the component_in_restricted_environment fact, which is in
turn a rule encapsulating a complex query. Indicator for a restricted environment is the
key-value property inbound_communication: false. To identify if an integration is re-
quired, the components located in different restricted environments have to communi-
cate. For this, either a message-based or a direct communication must be part of the
deployment model. In case of messaging the Integration Provider pattern only has to be
applied in case the Channel, and thus the Message Broker, is also located in a restricted
environment. Otherwise, an additional integration provider is not required.

The integration_of_restricted_environments rule can be applied to
the topology presented in Fig. 3 on the right. In this example, a problem is detected
because the two communicating components (PHP-App, Java-App) as well as the used
messaging system are located in different restricted environments. After detecting the
problem, the solution described by the pattern can be applied.

The two problem and context formalized patterns, Message Mover and Integration
Provider, show how the problem detection approach presented by Saatkamp et al. [26]
can be used for detecting problems in topology models. Relevant patterns for problem
recognition are not restricted to only one pattern language. They can be found in differ-
ent pattern languages. In application scenarios presented in this work and in [26] pat-
terns from the security [28] and the cloud computing [13] pattern language have been
selected. Using the Topology ProDec tool the different patterns are validated based on
TOSCA topologies modeled with the TOSCA modeling tool Winery6 [21]. The appli-
cation of the pattern formalization approach results in reusable rules that serve as con-
ditions to express the actual pattern rules. For example, the rules compo-
nents_in_different_locations and component_in_re-
stricted_environments are used several times. Such reusable condition rules
ease the formalization of further patterns.

4 Related Work

The underlying approach applied in this paper is presented by Saatkamp et al. [26]. We
applied the approach to further cloud integration patterns and extracted reusable condi-
tion rules that ease the formalization of problem and context descriptions of further
patterns. The formalization of patterns is already addressed by several other works

6 https://github.com/eclipse/winery

50

[3,10,14,19,22]. However, in contrast to our work the solution provided by a pattern is
formalized to identify the implemented patterns in a model instead of the problem
solved by the pattern. In this paper, we present how the context and problem described
by a specific pattern can be formalized to detect possibly occurring problems that can
be solved by applying the respective pattern to the topology-based deployment models.

Kim and Khawand [20] presented an approach to formalize the problem domain of
design patterns. They specify the problem domain as UML diagrams. Compared to
logic programming, this approach has the disadvantage that the non-existence of ele-
ments cannot be specified. Furthermore, the context of the pattern is important to iden-
tify if a problem exists, this is not considered in this work. As a result of a formalized
problem domain of patterns, patterns can be identified that solve the detected problems.

An approach presented by Haitzer and Zdun [16] is based on predefined architectural
primitives that represent entities used in several patterns. They can be used to annotate
software components to identify if a pattern is applicable. This semi-automated ap-
proach focuses on the applicability of patterns in software code. The applicability of
patterns is also focused by the automated management approach presented by
Breitenbücher [5] and Breitenbücher et al. [6,7,8]. Based on the cloud computing pat-
terns [13] management idioms are defined that specify the transformation from a target
topology fragment that represents the current state of an application by its components
and their relations to a desired state that reflects the applied management pattern. These
topology fragments are graphs that must be matched to a subgraph in the overall topol-
ogy representing the current state of the application. Based on similar mechanisms, i.e.,
using graph matching, Arnold et al. [2] and Eilam et al. [11] presented concepts to
facilitate the transformation from abstract topology-based deployment models to con-
crete configurations of the contained components. Also Guth and Leymann [15] use
graph fragments for rewriting and refining architectural graphs. However, their ap-
proaches are based on subgraph isomorphism to identify the target fragment and thus,
the non-existence of elements cannot be detected which is important to detect problems
in topology-based deployment models, as shown in the formalization of the Secure
Channel pattern in [26].

5 Conclusion

In this work we presented two application scenarios of the problem detection approach
using formalized patterns by Saatkamp et al. [26]. We applied the approach to the Mes-
sage Mover and the Integration Provider pattern. Both patterns are related to distributed
applications and, thus, relevant for restructured topology-based deployment models.
We have demonstrated that the approach is also applicable to message-based systems.
Furthermore, reusable rules that serve as conditions to express the actual pattern rules
are defined. In future work, we want to extend the pattern collection and want to im-
prove the tool support to ease the authoring process for new rules.

This approach is not limited to the presented cloud computing patterns [13] or secu-
rity patterns [28]. The approach could also be extended to other patterns, such as the

51

cloud data patterns [29] or the Internet of Things patterns [25]. Furthermore, the ap-
proach can also be used for a general validation of topology-based deployment models
and is not limited to the usage in restructured deployment models. The extension to
further domains will be investigated in future works.

Acknowledgements. This work was partially funded by the BMWi projects
IC4F (01MA17008G) and SmartOrchestra (01MD16001F), and the German Research
Foundation (DFG) project ADDCompliance (636503).

References

1. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings, Con-
struction, Oxford University Press (1977).

2. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totak, A.A.: Pattern Based SOA
Deployment. In: Proceedings of the 5th International Conference on Service-Oriented Com-
puting, pp. 1-12. Springer (2007).

3. Bergenti, F., Poggi, A.: Improving UML Designs Using Automatic Design Pattern Detec-
tion. Handbook of Software Engineering and Knowledge Engineering, 771-784 (2002).

4. Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A., Solberg, A., Wimmer, M., Kappel,
G., Leymann, F.: A Systematic Review of Cloud Modeling Languages. ACM Computing
Surveys 51(1), Article 22, 38 pages (2018).

5. Breitenbücher, U.: Eine musterbasierte Methode zur Automatisierung des Anwendungsma-
nagements. Dissertation, University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology (2016).

6. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Pattern-based Runtime Management of
Composite Cloud Applications. In: Proceedings of the 3rd International Conference on Cloud
Computing and Service Science, pp. 475-482. SciTePress (2013).

7. Breitenbücher, U., Binz T., Kopp, O., Leymann, F.: Automating Cloud Application Man-
agement Using Management Idioms. In: Proceedings of the 6th International Conference on
Pervasive Patterns and Applications, pp. 60-69. Xpert Publishing Services (2014).

8. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wieland, M.: Context-Aware Cloud
Application Management. In: Proceedings of the 4th International Conference on Cloud
Computing and Services Science, pp. 499-509. SciTePress (2014).

9. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Soft-
ware Architecture, Volume 1 – A System of Patterns. Wiley (1996).

10. Di Martino, B., Esposito, A.: A rule-based procedure for automatic recognition of design
patterns in uml diagrams. Software: Practice and Experience 46(7), 983-1007 (2016).

11. Eilam, T., Kalantar, M., Konstantinou, A., Pacifici, G., Pershing, J., Agrawal, A.: Managing
the configuration complexity of distributed applications in Internet data centers. Communi-
cations Magazine 44(3), 166-177 (2006).

12. Endres, C., Breitenbücher, U., Falkenthal, M., Kopp, O., Leymann, L., Wettinger, J.: De-
clarative vs. Imperative: Two Modeling Patterns for the Automated Deployment of Appli-
cations. In Proceedings of the 9th International Conference on Pervasive Patterns and Appli-
cations, pp. 22-27. Xpert Publishing Services (2017).

13. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns
– Fundamentals to Design, Build, and Manage Cloud Applications. Springer (2004).

52

14. Fontana, F.A., Zanoni, M.: A tool for design pattern detection and software architecture
reconstruction. Information sciences 181(7), 1306-1324 (2011).

15. Guth, J., Leymann, F.: Towards Pattern-based Rewrite and Refinement of Application Ar-
chitectures. In: Proceedings of the 12th Advanced Summer School on Service Oriented Com-
puting. IBM Research Division (2018).

16. Haitzer, T., Zdun, U.: Semi-automatic architectural pattern identification and documentation
using architectural primitives. Journal if Systems and Software 102, 35-57 (2015).

17. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Design, Building, and Deploying
Messaging Solutions. Addison-Wesley Professional (2004).

18. Jamshidi, P. Pahl, C., Chinenyeze, S., Liu X.: Cloud Migration Patterns: A Multi-Cloud
Service Architecture Perspective. In: Service-Oriented Computing – ICSOC 2014 Work-
shop, pp. 6-19. Springer (2014).

19. Kampffmeyer, H., Zschaler, S.: Finding the pattern you need: The design pattern intent on-
tology. In: International Conference on Model Driven Engineering Languages and Systems,
pp. 211-225. Springer (2007).

20. Kim, D.K., Khawand, C.E.: An approach to precisely specifying the problem domain of
design patterns. Journal of Visual Languages and Computing 18(6), 560-591 (2007).

21. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – A Modeling Tool for
TOSCA-based Cloud Applications. In: Processing of the 11th International Conference on
Service-Oriented Computing, pp. 700-704. Springer (2013).

22. Lim, D.K., Lu, L.: Inference of design pattern instances in uml models via logic program-
ming. In: 11th IEEE International Conference on Engineering of Complex Computer Sys-
tems, pp. 10-29. IEEE (2006).

23. Meszaros, G., Doble, J.: MetaPatterns: A Pattern Language for Pattern Writing. In: Proceed-
ings of International Conference on Pattern Languages of Program Design, pp. 164-200.
ACM (1997).

24. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA) Ver-
sion 1.0 (2013).

25. Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet of Things
Patterns. In: Proceedings of the 21th European Conference on Pattern Languages of Pro-
grams, Article Nr. 5. ACM (2016).

26. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: An Approach to Automatically
Detect Problems in Restructured Deployment Models Based on Formalizing Architecture
and Design Patterns. Computer Science – Research and Development (2018).

27. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: Topology Splitting and Matching
for Multi-Cloud Deployments. In: Proceedings of the 7th International Conference on Cloud
Computing and Services Science, pp. 247-258. ScitePress (2017).

28. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommerlad, P.:
Security Patterns – Integration Security and System Engineering. John Wiley & Sons (2006).

29. Strauch, S., Andrikopolous, V., Breitenbücher, U. Sáez, S.G., Kopp, O., Leymann, F.: Using
Patterns to Move the Application Data Layer to the Cloud. In: Proceedings of the 5th Inter-
national Conference on Pervasive Patterns and Applications, pp. 26-33. Xpert Publishing
Services (2013).

30. Wellhausen, T., Fiesser, A.: How to Write a Pattern? A Rough Guide for First-time Pattern
Authors. In: Proceedings of the 16th European Conference on Pattern Languages of Pro-
grams. ACM (2012).

53

Intrusion Detection Attack Patterns in Cloud
Computing: Trust and Risk Assessment

Alexandros Chrysikos1

1 Dr. Alexandros Chrysikos, Cyber Security Research Group, School of
Computing & Digital Media, London Metropolitan University, London, UK.
A.Chrysikos@londonmet.ac.uk

Abstract: Dependence on cloud services has been steadily increasing in recent
years, as cloud services are an attractive option to offer flexibility and cost effec-
tiveness through economies of scale. Cloud services are also exposed to security
incidents, such as data breaches and other malicious activities. To mitigate risks to
the confidentiality, integrity, and availability of assets, but also minimise loss to
cloud service providers and users, the attack trust and risk elements need to be
identified, classified, and prioritised. The aim of the proposed conceptual frame-
work is to combine trust and risk assessment sources with data of risk assessment
related to each attack pattern. This novel approach is a new qualitative solution to
examine and determine symptoms, indicators, and vulnerabilities to detect the im-
pact and likelihood of distributed attacks directed at cloud computing environ-
ments. The proposed framework might help to reduce false positive alarms and
improve performance in Intrusion Detection Systems.

Keywords: Cloud computing, Trust Assessment, Risk Assessment, Attack Pat-
tern, IDS, Ontology

1.1 Introduction

Cloud computing is a new emerging model in Information Technology (IT) that
can enable convenient, ubiquitous, on-demand network access to a shared pool of
configurable computing resources. Those resources can also be released with min-
imal management effort and interactions can be rapidly provisioned (Zhang et al.
2010). Cloud computing represents an opportunity for both service providers and
consumers, through the improvement of IT agility, efficiency, and reliability to re-
duce the cost of IT technologies. Specifically, on-demand self-service, resource
pooling, rapid elasticity and measured service, cloud computing systems automat-
ically control and optimize resource usage in order to offer an alternative method
to rent computing and storage infrastructure services (Zissis and Lekkas 2012).

54

Cloud services are provided dynamically to its users via internet, which can
lead to several attacks threatening their confidentiality, integrity, and availability
of the data stored in the cloud (Jadeja and Modi 2012). Detecting attacks can be
challenging for security administrators. Therefore, the use of Intrusion Detection
Systems (IDS) can aid both cloud providers and security administrators to monitor
and analyse network traffic (Aikat et al. 2017). The reason for using such systems
is to prevent attacks by employing detection algorithms. Such algorithms monitor
symptoms, analyse attack patterns, and then produce a multitude of alarms known
as false alarms (Duque and bin Omar 2015).

The proposed framework aims to analyse risks related to each attack pattern.
Specifically, it calculates risks related to each symptom, indicator and vulnerabil-
ity in order to define the attack risk score, and then generate an alert.

In the subsequent sections a review of related detection approaches in cloud
computing is provided. The underpinning systems required for the recommended
solution are also presented. Then, the author describes the proposed framework. In
the concluding section, a discussion about recommendations for further research is
presented.

1.2 Related Detection Approaches

When it comes to detection approaches, security researchers require a mecha-
nism that can integrate and analyse a wide variety of data sources. Particularly,
they need a mechanism that can process information that is generated by hetero-
genous sources implemented in any cloud computing environment. These mecha-
nisms should aim to detect attack patterns and reduce false positive alarms.

Hansman et al (2005) employed five classifiers to describe different types of at-
tack. Specifically, classification by attack vendor, classification by attack target,
classification by operational impact, classification by informational impact, and
classification by defense. All this information can provide the network administra-
tor with data on how to mitigate or deter an attack. Amer and Hamilton (2010) de-
veloped an ontology based attack model to assess the security of an information
system from an attacker’s point of view. The aim of the assessment process is to
evaluate the effects of an attack. The process consists of four stages. The first
stage consists of identifying the system’s vulnerabilities using automated vulnera-
bility tools. These tools evaluate vulnerabilities of computer systems, applications
or networks and generate sets of scan results. The second stage, involves deter-
mining the attacks that might occur due to the previously identified vulnerabilities.
In the third stage, the possible effects of those vulnerabilities are analysed. The
fourth and final stage the attack effects are calculated.

Patel et al. (2013) proposed a four dimensions approach that provides classifi-
cation covering network and computer attacks. Specifically, it provides assistance
in improving network and computer security, as well as language consistency
through attack description. The first dimension focuses on classifying the attack.

55

The second classifies the target of the attack. The third provides vulnerability clas-
sification or uses criteria from Howard and Longstaff’s (1998) approach. The
fourth dimension, addresses the effects of the attack.

Ficco et al. (2013) recommended a hybrid and event correlation approach for
detecting attack patterns. The process involves detecting symptoms by collecting
diverse information at several cloud levels in order to perform a complex event
analysis presented in an ontology.

All of the previously mentioned methodologies demonstrate beneficial ontolo-
gy that may offer informative guidelines regarding cyber intrusions and attack
analysis. However, there is lack of detail required to analyse all symptoms and at-
tacks that could in return minimise the number of false positive alarms. For in-
stance, the same attack in two different cloud services may have a different degree
of impact, but in most existing systems it would be classed as a malicious attack
by both services.

The proposed framework addresses this issue, of a system generating multiple
false positive alarms, through the implication of risk and trust assessment analysis
in the detection process. In this approach, all actors, such as cloud providers and
cloud customers participate in the data analysis to achieve a high level of infor-
mation and data processing. Before describing the proposed framework, though,
the underpinning systems are presented.

1.3 Intrusion Detection System (IDS)

An IDS is very important in terms of preventing an attack against an Infor-
mation Technology (IT) organisation. An IDS conducts a security system diagno-
sis to discover all suspicious activities based on detection algorithms. Specifically,
those systems can help to deter and prevent actions related to security breaches,
system flaws, as well as potential threats that may lead to system violations (Bace
and Mell 2001).

On the other hand, an IDS system may detect many false actions, but it may al-
so lead to a number of false positive alarms and authorized users identified as in-
truders. In a cloud computing environment where all resources are shared amongst
cloud customers, this point becomes even more critical. In order to minimise the
number of false positive alarms and improve the efficiency of attack detection in
all cloud computing environments, the proposed framework includes both cloud
service providers and cloud customers as part of the correlation process in all
cloud layers, such as Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS).

56

1.4 Trust Assessment System

Trust assessment in cloud computing facilitates a variety of information
sources at different levels of abstraction and several deployment models (SaaS,
PaaS, IaaS). Therefore, trust evaluation and changing nature of trust relationships
among different entities in the cloud paradigm become important points to be ad-
dressed (Subashini and Kavitha 2011). Specifically, trust assessment models in-
clude a collection of rules, elements, and process’ to develop trust amongst the
different entities in any computing paradigm. Cloud computing environment com-
ponents such as databases, virtual machines, cloud service providers, cloud service
customers, and cloud services are examples of different entities. Trust models are
classified in two categories, decision models and evaluation models. These models
are applied to the cloud computing paradigm and are further developed through
their connection with trust assessment techniques (Moyano et al. 2012).

The cloud users’ service-related needs are constantly changing in the diverse
environment of cloud computing. Consequently, the role of various factors, such
as feedback, ratings, and Quality of Service (QoS), in trust assessment is very im-
portant. There are four main trust assessment information sources. Specifically, di-
rect and indirect interaction, Cloud Service Provider declarations, and Third Party
assessment (Mouratidis et al. 2013).

Trust dimensions is the other significant area that measures the security
strength and computes a trust value. A trust value comprises of various parameters
that are necessary dimensions to measure cloud services’ security (Huang and
Nicol 2013).

1.5 Risk Assessment System

Risk assessment can be identified as the potential that a given attack will ex-
ploit vulnerabilities of an asset or a group of assets to cause loss or damage to the
assets. According to the ISO 27005 Risk Management, risk is measured by evalu-
ating the probability of successful attacks and the subsequent impact of those at-
tacks, should they occur (Duque and bin Omar 2015).

Risk = Impact * Likelihood (Humphreys 2008)

Specifically, the term Impact refers to the degree of which a risk event might

affect an enterprise, expressed in terms of: Confidentiality, Integrity, and Authen-
tication. The term Likelihood refers to the possibility that a given event may occur
(Duque and bin Omar 2015). The implementation of the aforementioned equation
in the proposed framework aims to stimulate cloud customers to evaluate security
risks and simplify the analysis of all identified events.

57

1.6 Proposed Framework for Attack Pattern Detection through
Trust and Risk Assessment

The proposed framework is a predictive model that detects attack patterns
based on trust assessment and risk assessment analysis. Figure 1 presents a corre-
lation process that consists of a sequence of activities that are designed to analyse
all network traffic through cloud layers (Valeur et al. 2004). The proposed frame-
work applies a correlation process that intends to unify different steps of correla-
tion by adding risk and trust assessment analysis in the diagnosis step, before the
taxonomy step takes place.

Figure 1: Correlation Process (Valeur et al. 2004)

An attack pattern is an abstraction mechanism that describes how an observed
attack type is executed. Following the lifecycle of cyber-attack, when an attack
occurs it uses several paths, from reconnaissance to exploitation, and aims to gain
unauthorized access to data (Shin et al. 2013). Through studying the impact effects
of an attack and simplifying the analysis of monitored events, then it could be pos-
sible to minimise false positive alarms.

58

Figure 2 shows the proposed framework’s three essential security functions: (1)
Monitoring & Data Collection, (2) Analysing & Detecting, and (3) Alarm & Re-
spond.

(1) Monitoring & Data Collection. As a first step, the requirements of the
organisation are defined based on monitoring the event management logs
of all cloud layers (IaaS, PaaS, and SaaS). The next step is to collect data
through Risk Software Agent (RSAg) programs. An RSAg is a goal-
oriented computer program that reacts to its environment and operates
without continuous direct supervision to perform its function. The RSAg
programs store data from IaaS, PaaS, and SaaS. The data storage is struc-
tured in two separate knowledge databases that do not communicate. These
are the Trust Assessment Database and the Risk Assessment Database. The
reason for recommending two isolated databases is to reassure cloud pro-
viders for data pseudonymisation. The cloud providers processing of per-
sonal data is conducted in a way that the data can no longer be attributed to
a specific data subject without the use of additional information (Bolognini
and Bistolfi 2017). The pseudonymised information from those two data-
bases is then combined in the Self-Learning Knowledge Base, which feeds
with data the next function.

(2) Analysing & Detecting. The analysis of attack patterns is conducted by
calculating the score of all indicators. Specifically, the proposed solution
includes a definition for Risk (Ri) as a product of the Probability (Po) of a
security compromise and its potential Impact (Im) (see 1).

Ri = Po * Im (1)

The recommended correlation is used to aggregate the attack scenarios and
symptoms generated by all parts in the cloud computing environment. The
Impact (Im) is a value consisting of the following indicators: Trust As-
sessment Indicator (TaI), Vulnerability (Vu) and Symptoms (Sy). Each of
these indicators has a different impact. The Probability (Po) value is in-
creased in relation to each indicator of an attack pattern (see 2).

Im = TaI + Vu + Sy (2)

The Impact (Im) and Probability (Po) of each indicator is defined by the
cloud customer and cloud provider using data collected from all cloud lay-
ers. The aim is to use attackers’ behavior to determine the Impact (Im) and
expose a potential attacker before an attack can take place. The value of
Risk (Ri) related to each attack determines whether the attack is successful
or false positive alarm depending on the sensitivity of the targeted data as
defined by the owner (cloud provider and cloud customer) (see 3). All this
information is processed and stored in the Processing Knowledge Base.

59

Ri = Po * (TaI + Vu + Sy) (3)

(3) Alarm & Respond. The risk of the attack is calculated and a response is
sent whether it represents a suspicious threat or a false positive alarm. This
is conducted with mechanisms that classify information about all attacks
and determine the impact of each attack pattern and the risk of the attack.
Specifically, the use of machine-learning procedures, such as supervised
classification and clustering, and analytic algorithms has been proven use-
ful to similar proactive detection and defense models (Fu et al. 2010; Osa-
ko et al. 2016). The respond function is conducted in the Decision Making
server that determines the impact of every attack and serves as an Advice
as a Service for the organisations.

Figure 2: Proposed Framework for Attack Pattern Detection

1.7 Conclusion

In the current study a new framework for attack pattern detection in the cloud
computing paradigm is proposed. A framework to recognise and analyse mali-
cious actions based on risk and trust assessment factors and information sources
related to attack patterns. Specifically, the recommended framework classifies at-
tacks by evaluating the probability of a security breach and its potential impact in-

60

dicators, such as trust assessment indicator, vulnerability, and symptoms. The out-
come of this evaluation gives the likelihood of an attack pattern risk. Both cloud
providers and cloud customers are involved in the data collection and correlation
process. This classification might aid to protect data in the cloud and provide a
method that could efficiently analyse suspicious attack actions and reduce false
positive alarms.

In the cloud computing environment, risk and trust assessment need to be as-
sessed continuously using multiple factors. These factors keep changing in the dy-
namic and constantly evolving cloud computing paradigm. Moreover, multi-cloud
environments demand a more risk and trust assessment oriented analysis. There-
fore, risk and trust assessment needs of cloud providers and cloud customers’ have
to be addressed in more detail. Therefore, a taxonomy and analysis of risk and
trust assessment techniques in the cloud computing paradigm is required. Finally,
future work should test the implementation of the suggested framework in an ac-
tual cloud computing environment.

61

References

Aikat J, Akella A, Chase JS, Juels A, Reiter M, Ristenpart T, Sekar V, Swift M
(2017) Rethinking security in the era of cloud computing. IEEE Security & Priva-
cy.

Amer SH, Hamilton J (2010) Intrusion detection systems (IDS) taxonomy-a
short review. Defense Cyber Security, 13(2), 23-30.

Bace R, Mell P (2001) NIST special publication on intrusion detection systems.
BOOZ-ALLEN AND HAMILTON INC MCLEAN VA.

Bolognini L, Bistolfi C (2017) Pseudonymization and impacts of Big (person-
al/anonymous) Data processing in the transition from the Directive 95/46/EC to
the new EU General Data Protection Regulation. Computer Law & Security Re-
view, 33(2), 171-181.

Duque S, bin Omar MN (2015) Using data mining algorithms for developing a
model for intrusion detection system (IDS). Procedia Computer Science, 61,
pp.46-51.

Ficco M, Tasquier L, Aversa R (2013) Intrusion detection in cloud computing.
In P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2013 Eighth In-
ternational Conference on (pp. 276-283). IEEE.

Fu, T., Abbasi, A. and Chen, H., 2010. A focused crawler for Dark Web fo-
rums. Journal of the Association for Information Science and Technology, 61(6),
pp.1213-1231.

Hansman S, Hunt R. (2005) A taxonomy of network and computer attacks.
Computers & Security, 24(1), 31-43.

Howard JD, Longstaff TA (1998) A common language for computer security
incidents (No. SAND98-8667). Sandia National Labs, Albuquerque, NM (US);
Sandia National Labs., Livermore, CA (US).

Humphreys E (2008) Information security management standards: Compliance,
governance and risk management. Information security technical report, 13(4),
247-255.

Huang J, Nicol, DM (2013) Trust mechanisms for cloud computing. Journal of
Cloud Computing: Advances, Systems and Applications, 2(1), 9.

Jadeja Y, Modi K (2012) Cloud computing-concepts, architecture and chal-
lenges. In Computing, Electronics and Electrical Technologies (ICCEET), Interna-
tional Conference on (pp. 877-880). IEEE.

Moyano F, Fernandez-Gago C, Lopez J (2012) A conceptual framework for
trust models. In International Conference on Trust, Privacy and Security in Digital
Business (pp. 93-104). Springer, Berlin, Heidelberg.

Mouratidis H, Shareeful I, Kalloniatis C, Gritzalis S (2013) A framework to
support selection of cloud providers based on security and privacy requirements.
Journal of Systems and Software 86: 2276–93.

Osako, T., Suzuki, T. and Iwata, Y., 2016. Proactive Defense Model Based on
Cyber Threat Analysis. FUJITSU Sci. Tech. J, 52(3), pp.72-77.

62

Patel A, Taghavi M, Bakhtiyari K, JúNior JC (2013) An intrusion detection and
prevention system in cloud computing: A systematic review. Journal of network
and computer applications, 36(1), 25-41.

Shin JS, Son HS, Heo G (2013) Cyber security risk analysis model composed
with activity-quality and architecture model. In International conference on com-
puter, networks and communication engineering (pp. 609-612).

Subashini S, Kavitha V (2011) A survey on security issues in service delivery
models of cloud computing. Journal of network and computer applications, 34(1),
1-11.

Valeur F, Vigna G, Kruegel C, Kemmerer RA (2004) Comprehensive approach
to intrusion detection alert correlation. IEEE Transactions on dependable and se-
cure computing, 1(3), 146-169.

Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and re-
search challenges. Journal of internet services and applications, 1(1), pp.7-18.

Zissis D, Lekkas D (2012) Addressing cloud computing security issues. Future
Generation computer systems, 28(3), pp.583-592.

63

Supporting Application Deployment and

Management in Fog Computing

Stefano Forti?

Department of Computer Science, University of Pisa, Italy
stefano.forti@di.unipi.it

Abstract. Deploying and managing multi-component IoT applications
in Fog computing scenarios is challenging due to the heterogeneity, scale
and dynamicity of Fog infrastructures, as well as to the complexity of
modern software systems. When deciding on where/how to (re-)allocate
application components over the continuum from the IoT to the Cloud,
application administrators need to find the best deployment, satisfying
all application (hardware, software, QoS, IoT) requirements over the con-
textually available resources, also trading-o↵ non-functional desiderata
(e.g., financial costs, security). This PhD thesis proposal aims at devising
models, algorithms and methodologies to support the adaptive deploy-
ment and management of Fog applications.

Keywords: Fog computing · IoT · QoS-aware application deployment ·
Application Management.

1 Introduction

Context – Connected devices are changing the way we live and work. In the
next years, the Internet of Things (IoT) is expected to bring more and more
intelligence around us, being embedded in or interacting with the objects that we
use every day [22, 21]. Self-driving cars, autonomous domotics systems, energy
production plants, agricultural lands, supermarkets, healthcare, embedded AI
will more and more exploit devices and Things that are integral part of the
Internet and of our existence without us being aware of them.

As a consequence of this trend, enormous amounts of data – the so-called Big

Data [42] – are collected by IoT sensors and stored in Cloud data centres [35].
Once there, data are subsequently analysed to determine reactions to events or
to extract analytics or statistics. Whilst data-processing speeds have increased
rapidly, bandwidth to carry data to and from data centres has not increased
equally fast [47]. On one hand, supporting the transfer of data from/to billions
of IoT devices is becoming hard to accomplish due to the volume and geo-
distribution of those devices. On the other hand, the need to reduce latency for
time-sensitive applications, to eliminate mandatory connectivity requirements,
and to support computation closer to where data is generated 24/7, is evident [9].

? PhD Thesis Supervisor: Prof. Antonio Brogi, University of Pisa, Italy.

64

Fog Computing – Recent research e↵orts are investigating how to better ex-
ploit capabilities along the continuum from the edge of the Internet to the Cloud
data centres, to support new IoT applications and their needs. Computational
nodes closer to the edge will act both as filters – reducing the amount of data
sent to the Cloud – and as processing capabilities – producing analytics closer
to where data is being sensed or used.

Among the existing proposals, Fog computing [10, 26] aims at better support-
ing the growing processing demand of (time-sensitive and bandwidth hungry)
IoT applications by selectively pushing computation closer to where data is pro-
duced and by relying on a geographically distributed multitude of heterogeneous
devices (e.g., personal devices, gateways, micro-data centres, embedded servers)
spanning the continuum from the Cloud to the IoT. A substantial amount of
computation, storage and networking is therefore expected to happen closer to
where data is produced and to IoT-based cyber-physical systems, contiguously
to and interdependently with the Cloud. In general, Fog computing platforms are
expected to guarantee that processing always occurs wherever it is best-placed for
any given IoT application, thereby accelerating the velocity of decision making,
by enabling prompter responses to sensed events [45].

Scope of the Thesis – Modern large-scale applications are not monolithic any-
more [51]. Therefore, an application running in a Fog computing infrastructure
consists of a set of independently deployable components (or services, or micro-
services) that work together and must meet some requirements. Deploying and
managing such applications in Fog computing scenarios is, therefore, a challeng-
ing task. Indeed, it requires to dynamically map each of the (possibly many)
application components (i.e., functionalities) to the computational node(s) that
will host them at runtime.

Whilst some application functionalities are naturally suited to the Cloud
(e.g., service back-ends) and others are naturally suited to edge devices (e.g.,
industrial control loops), there are applications for which functionality segmen-
tation is not as straightforward (e.g., short to medium term analytics). Future
tools for the deployment and management of IoT applications should consider
application requirements (i.e., hardware, software, IoT, QoS), infrastructure ca-
pabilities (i.e., hardware, software, IoT devices, network conditions, security)
and deployers’ desiderata (i.e., business and security policies, cost constraints)
to e�ciently support adaptive segmentation of functionalities from the Cloud to
the IoT.

In this context, we are investigating the design, prototyping and validation of
novel models, and predictive algorithms and methodologies which will be useful
to (i) process data about the application, the infrastructure and their monitored
performance so to informedly suggest how to (re-)distribute application compo-
nents, (ii) identify and validate the best sequence of actions to (re-)distribute
components to di↵erent Fog or Cloud nodes based on specified policies, and (iii)

choose when/how to (re-)deploy, (re-)configure or scale components in response
to workload or network variations, churn and failures.

65

2 State of the Art

The problem of deciding how to deploy multi-component applications has been
thoroughly studied in the Cloud scenario. Projects like SeaClouds [16], Aeo-
lus [28] or Cloud-4SOA [24], for instance, proposed model-driven optimised plan-
ning solutions to deploy software applications across di↵erent (IaaS or PaaS)
Clouds. [39] proposed to use OASIS TOSCA [17] to model IoT applications in
Cloud+IoT scenarios. Also, solutions to automatically provision and configure
software components in Cloud (or multi-Cloud) scenarios are currently used by
the DevOps community to automate application deployment or to lead deploy-
ment design choices (e.g., Puppet [3] and Chef [2]). However, only few e↵orts in
Cloud computing considered non-functional requirements by-design [44, 25] or
uncertainty of execution (as in Fog nodes) and security risks among interactive
and interdependent components [61]. With respect to the Cloud paradigm, the
Fog introduces new problems, mainly due to its pervasive geo-distribution and
heterogeneity, need for QoS-awareness, dynamicity and support to interactions
with the IoT, that were not taken into account by previous works [56, 62, 4].

Among the first proposals investigating this new lines, [34] proposed a Fog-
to-Cloud search algorithm as a first way to determine an eligible deployment
of (multi-component) DAG applications to tree-like Fog infrastructures. Their
placement algorithm proceeds Edge-ward, i.e. it attempts the placement of com-
ponents Fog-to-Cloud by considering hardware capacity only. An open-source
simulator – iFogSim – has been released to test the proposed policy against
Cloud-only deployments. Building on top of iFogSim, [40] refines the Edge-ward
algorithm to guarantee the application service delivery deadlines and to opti-
mize Fog resource exploitation. Limiting their work to linear application graphs
and tree-like infrastructure topologies, [60] used iFogSim to implement an al-
gorithm for optimal online placement of application components, with respect
to load balancing. An approximate extension handling tree-like application was
also proposed. Recently, exploiting iFogSim, [33] proposed a distributed search
strategy to find the best service placement in the Fog, which minimises the dis-
tance between the clients and the most requested services, based on request rates
and available free resources. Their results showed a substantial improvement on
network usage and service latency for the most frequently called services. [36]
proposed a (linearithmic) heuristic algorithm that attempts deployments priori-
tising placement of smaller applications to devices with less free resources. Along
the same line, [54] proposed an Edge-ward linearithmic algorithm that assigns
application components to the node with the lowest capacity that can satisfy all
application requirements.

From an alternative viewpoint, [57] proposed the design of a framework for
application deployment in Fog computing, based on Integer Linear Program-
ming (ILP). [5] in addition to proposing a Fog architectural framework, gave a
Mixed-Integer Non-Linear Programming (MINLP) formulation of the problem of
placing application components so to satisfy end-to-end delay constraints. The
problem is then solved by linearisation into a Mixed-Integer Linear Program-
ming (MILP), showing potential improvements in latency, energy consumption

66

and costs for routing and storage that the Fog might bring. Skarlat et al. de-
signed a hierarchical modelling of Fog infrastructures, consisting of a centralised
management system to control Fog nodes organised per colonies ([48, 50, 49]).
Particularly, [48] adopted an ILP formulation of the problem of allocating com-
putation to Fog nodes in order to optimise (user-defined) time deadlines on
application execution, considering IoT devices needed to properly run the ap-
plication. A simple linear model for the Cloud costs is also taken into account.
Similar solutions were proposed, attempting to optimise various metrics such
as access latency, resource usage, energy consumption or data migrations cost
[64, 32, 65, 53, 7, 37]. [41] described instead a fuzzy QoE extension of iFogSim –
based on an ILP modelling of users expectation – which achieved improvements
in network conditions and service QoS.

Regrettably, none of the discussed ILP/MILP approaches came with the code to
run the experiments. Conversely, [58] proposed a software platform to support
optimal application placement in the Fog, within the framework of the CoSS-
Mic European Project [1]. Envisioning resource, bandwidth and response time
constraints, they compare a Cloud-only, a Fog-only or a Cloud-to-Fog deploy-
ment policy. Additionally, the authors of [18, 20, 19] released S-ODP, an open-
source extension of Apache Storm that performs components placement with
the goal of minimising the end-to-end application latency and the availability of
deployed applications. Finally, also dynamic programming (e.g., [46, 52], genetic
algorithms (e.g., [48, 50]) and deep learning (e.g., [55]) were exploited to tackle
the placement of application components with some promising results.

After the first deployment, the management of applications in the Fog is also
time-consuming and error-prone to be tuned manually, lacking adequate sup-
port. [43] proposed a MAPE-K loop to identify action plans to minimise SLA
violations while maximising the use of allocated resources by simulating di↵erent
strategies to manage deployed applications. [30] highlighted the need to check
for inconsistencies that can arise within or between di↵erent stages of a deploy-
ment plan. [30] proposed a deployment management system model to enable the
automated generation of deployment plans for distributed infrastructures after
identifying (with static analysis techniques) possible flaws in deployment plan
specifications. The use of formal models to verify properties of application de-
ployments to Cloud infrastructure has been advocated by various authors. [38]
for instance defined a process calculus to specify deployment, migration and
security policies of virtual machines (VMs) across di↵erent Clouds, in order to
enable the verification of security policies after live VM reconfigurations. [6] pro-
posed a similar approach to preserve data consistency when migrating deployed
applications in Fog scenarios. [29] proposed a pseudo-dynamic testing approach,
which combines emulation, simulation, and existing real testbeds, whilst leverag-
ing multiple methodologies to test complex and large Fog infrastructures taking
into account also scalability and churn conditions. While various proposals ex-
ist to automate the management of applications, to verify the correctness of
deployments to the Cloud, to the best of our knowledge, none of the existing
approaches addresses the validation of application management for the Fog.

67

3 Thesis Objectives

This section aims at illustrating the objectives of the thesis work, seeking to suit-
ably support automated application deployment (and functionality allocation)
in Fog computing. The provision of adequate support to adaptively deploy appli-
cations and manage their components in Fog scenarios is among the crucial steps
for the success of Fog computing. In this context, we intend to design, prototype
and validate novel models, and predictive algorithms and methodologies, which
will improve the decision-making process related to the life-cycle management
of Fog applications.
In what follows, we detail the research goals we intend to accomplish during this
research, from the point of view of modelling (Section 3.1), design of algorithms
and methodologies (Section 3.2), and prototyping and validation (Section 3.3).

3.1 Modelling

First, we aim at contributing to the modelling of the Fog scenario with a par-
ticular focus on:

1. describing arbitrarymulti-component applications topologies considering their
processing (e.g., hardware, software and IoT devices), QoS (e.g., latency,
bandwidth, security) requirements and component inter-dependencies, along
with the possibility for their components to scale both vertically and hori-
zontally, according to workload demand and behaviour models,

2. describing accordingly Fog infrastructures in terms of their capabilities (i.e.,
Cloud data-centres, Fog nodes, Things) and previous performance/utilisation
(e.g., QoS of communication links, historical data on nodes utilisation, re-
liability of nodes and links), considering IoT-Fog, Fog-Fog and Fog-Cloud
interactions,

3. accounting for dynamicity and churn of the infrastructure (e.g., variations
in the QoS of communication links, mobility of IoT devices and Fog nodes,
failures) and in the users’ demand, as well as for application scalability on
heterogeneous devices so to be able to plan for scalable, reliable and depend-
able application deployments,

4. including the possibility of expressing preferences on application deploy-
ment that have to be enforced due to particular end-user targets (e.g., QoS-
assurance, financial budget, resource usage) or deployment needs (e.g., secu-
rity, trust, reliability, energy consumption),

5. identifying and devising appropriate metrics and performance indicators

(e.g., QoS-assurance, resource consumption, reliability) to characterise el-
igible application deployments and plans, also considering their behaviour
over time, as well as financial costs and energy consumption to keep the
application up and running.

Naturally, to support the deployment of applications to Fog infrastructures, we
intend to accompany the devised models with novel algorithms and methodolo-
gies that exploit them as illustrated in the next section.

68

3.2 Algorithms and Methodologies

To exploit the models described in the previous section, we intend to devise
algorithms and methodologies in order to:

1. e�ciently determine eligible context- and QoS-aware deployments of appli-
cation components to Fog infrastructures, according to di↵erent strategies
and by adopting proper heuristics to reduce the search space, whilst select-
ing cost-/energy- aware matchings between application requirements (viz.,
hardware and software) and available Fog/Cloud o↵erings,

2. simulate and predict the (expected) behaviour of di↵erent eligible deploy-
ments under the proposed metrics at varying (i) QoS of available commu-
nication links, (ii) available resources in the current state of the infrastruc-
ture, (iii) workload and users demand, also considering historical data about
the monitored infrastructure and feedback about previously enacted deploy-
ments,

3. compare and recommend and/or automatically select best candidate deploy-

ments – among the eligible ones – based on predicted metrics, expressed
targets and historical data, by plotting results to empower experts to make
informed choices, and by exploiting multi-objective optimisation or learning
techniques,

4. determine and optimise plans that take into account dependencies between
components so to perform application deployment to a given infrastructure,
envisioning deployment (vertical and horizontal) scalability on heterogeneous
devices and optimal resources exploitation (e.g., hardware, energy), and con-
sidering alternative backup deployments to tackle dynamicity issues (e.g.,
increasing workload, mobility, QoS variations, churn and failures),

5. understand when to trigger and how to (optimally) perform reconfiguration

actions (e.g., enactment of an alternative plan), scaling of application com-
ponents, or components re-allocation to di↵erent nodes so to guarantee QoS
or SLA constraints will be met by enacted deployments, whilst avoiding (or
minimising) the likelihood of service disruption.

3.3 Prototyping and Validation

To provide some validation to our approaches we aim, when possible, at providing
formal properties (e.g., correctness, completeness) of the proposed methodolo-
gies, along with a systematic evaluation of their computational complexity. Then,
we plan to prototype all proposed models and methodologies in open-source
tools, so to show feasibility, utility and practicality of the devised solutions.

Finally, with the purpose of testing and demonstrating our prototypes at
work, we aim at designing lifelike use cases and testbeds, by implementing mean-
ingful IoT applications and deploying them to experimental Fog infrastructures.

69

4 First Results

The first results of this work have been already published in some conferences
and journals. In this section, we briefly summarise them and the research they
triggered in the community.

QoS-aware Deployment of Fog Applications – In [11], we proposed a sim-
ple, yet general, model of multi-component IoT applications and Fog infrastruc-
tures. After proving that the problem of determining eligible deployments is
NP-hard, we devised a heuristic backtracking search algorithm to solve it and
we run it on a motivating example from smart agriculture (viz., 3 application
components, 2 Clouds, 3 Fog nodes). The heuristic attempts the placement of
components sorted in ascending order on the number of compatible nodes (i.e.,
fail-first), considering candidate nodes one by one sorted in decreasing order on
the available resources (i.e., fail-last).

In [12], we combined an exhaustive version of our search algorithm with
Monte Carlo simulations so to consider variations in the QoS of communication
links (modelled by probability distributions) and to predict how likely a deployed
application is to comply with the desired network QoS (viz., latency and band-
width) and how much Fog resources it will consume. In [13], we further enhanced
the proposed methodology by proposing a cost model that extends Cloud cost
models to Fog scenarios and integrates them with costs coming from the IoT. It
is worth noting that, with respect to the majority of related works, our approach
works on arbitrary application and infrastructure graph topologies.

All proposed predictive methodologies have been implemented in an open-
source prototype1, FogTorch⇧, and are described in detail in [14], which also o↵ers
a comparison with one of the first tools for simulating Fog scenarios (iFogSim
[34]). FogTorch⇧ can be used to determine, simulate and compare eligible de-
ployments of applications to given infrastructures in a QoS- (with respect to
network variations), context- (with respect to the considered resources), and
cost-aware (estimating monthly revenues and outflows) manner, meeting all de-
ployers’ desiderata. Despite exploiting worst-case exponential-time algorithms,
the prototype has been shown to scale [14] also on the larger VR game example
(viz., 3 to 66 app components, 1 Cloud, up to 80 Fog nodes) proposed in [34].

Inspired by FogTorch⇧ models and algorithms, Xia et al. [63] proposed a back-
tracking solution to FAPP to minimise the average response time of deployed
IoT applications. Two new heuristics were devised. The first one sorts the nodes
considered for deploying each component in ascending order with respect to the
(average) latency between each node and the IoT devices required by the com-
ponent. The second one considers a component that caused backtracking as the
first one to be mapped in the next search step. Despite discussing improved re-
sults on latency with respect to exhaustive backtracking and first-fit strategies,
no prototype implementations were released. Finally, FogTorch⇧ was also modu-
larly extended by De Maio et al. [27] to simulate mobile task o✏oading in Edge
computing scenarios.

1 Available at: https://github.com/di-unipi-socc/FogTorchPI/

70

Mimicking Fog Application Management – CISCO FogDirector [23] is
among the first available management tools for large-scale production deploy-
ments of Fog applications. It provides centralised management services that span
the entire lifecycle of Fog applications, and it can be used via REST APIs that
enable integration with client programs implementing application management.
In [31] we presented a simple operational semantics of all basic functionalities
of FogDirector, describing the e↵ects of the operations that client programs can
perform to publish, deploy, configure, start, monitor, stop, undeploy and retire
their applications in a Fog-Director-managed infrastructure. Based on the given
formalisation, we implemented a prototype2, FogDirMime, which is the core of a
simulator environment for FogDirector. The prototype also simulates probabilis-
tic (hardware and network QoS) variations of the infrastructure that happen
independently from the considered application management.

On one hand, the proposed semantics constitutes a concise and unambiguous
reference of the (basic) behaviour of FogDirector that can be used to quickly
understand its functioning and to check the correctness of management scripts
at design time. On the other hand, FogDirMime can be fruitfully exploited to
experiment and compare di↵erent application management policies, so to predict
their e↵ectiveness and tune them in a simulated environment, according to user-
defined metrics. The prototype was used over a smart building use case.

5 Conclusions & Future Work

We consider our preliminary results and prototypes the first promising steps to
support decision-making when deploying or managing IoT applications to Fog
infrastructures. Yet, such results clearly present some limitations with respect
to the objectives of this thesis, as set in Section 3.

In our future work, we intend to:

1. extend our methodologies to include more aspects of the life-cycle of ap-
plication management, including new features such as components upgrade,
reconfiguration and scaling, while envisioning the possibility for components
to be deployed in di↵erent flavours like in Osmotic Computing [59],

2. consider new metrics and dimensions that will be important in Fog sce-
narios (e.g., security, mobility, energy consumption) and propose ways to
automatically and e�ciently select best candidate (re-)deployments – i.e.,
matching deployers’ desiderata – using (explainable) probabilistic AI [8] or
multi-objective optimisation, and

3. prototype, validate and assess all new methodologies as extensions to our
prototypes or as new open-source tools that can synergically work with them,
and assess them in controlled settings (e.g., over the simple Fog application
we proposed in [15]) as well as, possibly, in lifelike Fog environments.

Naturally, we plan to validate the proposed approaches by formally proving the
correctness and completeness of the proposed algorithms, when possible.

2 Available at: https://github.com/di-unipi-socc/FogDirMime/

71

References

1. CoSSMiC – Collaborating Smart Solar-powered Microgrids, http://cossmic.eu/
2. Opscode. Chef. http://www.opscode.com/chef/
3. Puppetlabs. Puppet. http://puppetlabs.com
4. Arcangeli, J.P., Boujbel, R., Leriche, S.: Automatic deployment of distributed soft-

ware systems: Definitions and state of the art. Journal of Systems and Software
103, 198–218 (2015)

5. Arkian, H.R., Diyanat, A., Pourkhalili, A.: Mist: Fog-based data analyt-
ics scheme with cost-e�cient resource provisioning for iot crowdsensing ap-
plications. Journal of Network and Computer Applications 82, 152 – 165
(2017). https://doi.org/https://doi.org/10.1016/j.jnca.2017.01.012, http://www.
sciencedirect.com/science/article/pii/S1084804517300188

6. Bao, W., Yuan, D., Yang, Z., Wang, S., Li, W., Zhou, B.B., Zomaya, A.Y.:
Follow Me Fog: Toward Seamless Handover Timing Schemes in a Fog Comput-
ing Environment. IEEE Communications Magazine 55(11), 72–78 (Nov 2017).
https://doi.org/10.1109/MCOM.2017.1700363

7. Barcelo, M., Correa, A., Llorca, J., Tulino, A.M., Vicario, J.L., Morell, A.:
Iot-cloud service optimization in next generation smart environments. IEEE
Journal on Selected Areas in Communications 34(12), 4077–4090 (Dec 2016).
https://doi.org/10.1109/JSAC.2016.2621398

8. Belle, V.: Logic meets probability: towards explainable ai systems for uncertain
worlds. In: Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI. pp. 19–25 (2017)

9. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: A platform for
internet of things and analytics. In: Big Data and Internet of Things: A Roadmap
for Smart Environments, pp. 169–186 (2014)

10. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the first edition of the MCC workshop on
Mobile cloud computing. pp. 13–16. ACM (2012)

11. Brogi, A., Forti, S.: QoS-Aware Deployment of IoT Applications Through
the Fog. IEEE Internet of Things Journal 4(5), 1185–1192 (Oct 2017).
https://doi.org/10.1109/JIOT.2017.2701408

12. Brogi, A., Forti, S., Ibrahim, A.: How to best deploy your Fog applications, prob-
ably. In: Rana, O., Buyya, R., Anjum, A. (eds.) Proceedings of 1st IEEE Interna-
tional Conference on Fog and Edge Computing, Madrid (2017)

13. Brogi, A., Forti, S., Ibrahim, A.: Deploying Fog Applications: How Much Does
It Cost, By the Way? In: Proceedings of the 8th International Conference on
Cloud Computing and Services Science, CLOSER 2018, Funchal, Madeira, Por-
tugal, March 19-21, 2018. pp. 68–77 (2018)

14. Brogi, A., Forti, S., Ibrahim, A.: Predictive Analysis to Support Fog Application
Deployment. In: Buyya, R., Srirama, S.N. (eds.) Fog and Edge Computing: Prin-
ciples and Paradigms. Wiley (2018), In press

15. Brogi, A., Forti, S., Ibrahim, A., Rinaldi, L.: Bonsai in the fog: An active learning
lab with fog computing. In: Fog and Mobile Edge Computing (FMEC), 2018 Third
International Conference on. pp. 79–86. IEEE (2018)

16. Brogi, A., Ibrahim, A., Soldani, J., Carrasco, J., Cubo, J., Pimentel, E., D’Andria,
F.: SeaClouds: a European project on seamless management of multi-cloud appli-
cations. ACM SIGSOFT SEN 39(1), 1–4 (2014)

72

17. Brogi, A., Soldani, J., Wang, P.: TOSCA in a Nutshell: Promises and Perspectives,
pp. 171–186. Proceedings of ESOCC 2014. (2014)

18. Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Distributed qos-aware
scheduling in storm. In: Proceedings of the 9th ACM International Conference
on Distributed Event-Based Systems. pp. 344–347. ACM (2015)

19. Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Optimal operator placement
for distributed stream processing applications. In: Proceedings of the 10th ACM In-
ternational Conference on Distributed and Event-based Systems. pp. 69–80. DEBS
’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2933267.2933312,
http://doi.acm.org/10.1145/2933267.2933312

20. Cardellini, V., Grassi, V., Presti, F.L., Nardelli, M.: On qos-aware scheduling of
data stream applications over fog computing infrastructures. In: Computers and
Communication (ISCC), 2015 IEEE Symposium on. pp. 271–276. IEEE (2015)

21. CISCO: Cisco Global Cloud Index: Forecast and Methodology, 20162021 (2015)
22. CISCO: Fog computing and the internet of things: Extend the cloud to where

the things are (2015), https://www.cisco.com/c/dam/en_us/solutions/trends/
iot/docs/computing-overview.pdf

23. CISCO: Cisco Fog Director Reference Guide (v. 1.5) (2017), https:
//www.cisco.com/c/en/us/td/docs/routers/access/800/software/guides/
iox/fog-director/reference-guide/1-5/fog_director_ref_guide.html

24. Corradi, A., Foschini, L., Pernafini, A., Bosi, F., Laudizio, V., Seralessandri, M.:
Cloud PaaS Brokering in Action: The Cloud4SOA Management Infrastructure. In:
VTC 2015. pp. 1–7 (2015)

25. Cucinotta, T., Anastasi, G.F.: A heuristic for optimum allocation of real-time
service workflows. In: Service-Oriented Computing and Applications (SOCA), 2011
IEEE Int. Conf. on. pp. 1–4. IEEE (2011)

26. Dastjerdi, A.V., Buyya, R.: Fog Computing: Helping the Internet of Things Realize
its Potential. Computer 49(8), 112–116 (2016)

27. De Maio, V., Brandic, I.: First hop mobile o✏oading of dag computations (2018),
In press

28. Di Cosmo, R., Eiche, A., Mauro, J., Zavattaro, G., Zacchiroli, S., Zwolakowski,
J.: Automatic deployment of software components in the cloud with the aeolus
blender. In: ICSOC 2015, pp. 397–411 (2015)

29. Ficco, M., Esposito, C., Xiang, Y., Palmieri, F.: Pseudo-Dynamic Testing of Realis-
tic Edge-Fog Cloud Ecosystems. IEEE Communications Magazine 55(11), 98–104
(Nov 2017). https://doi.org/10.1109/MCOM.2017.1700328

30. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: A Deploy-
ment Management System. SIGPLAN Not. 47(6), 263–274 (Jun 2012).
https://doi.org/10.1145/2345156.2254096

31. Forti, S., Ibrahim, A., Brogi, A.: Mimicking FogDirector Application Management.
Computer Science - Research and Development (2018), In press

32. Gu, L., Zeng, D., Guo, S., Barnawi, A., Xiang, Y.: Cost e�cient resource
management in fog computing supported medical cyber-physical system. IEEE
Transactions on Emerging Topics in Computing 5(1), 108–119 (Jan 2017).
https://doi.org/10.1109/TETC.2015.2508382

33. Guerrero, C., Lera, I., Juiz, C.: A lightweight decentralized service placement policy
for performance optimization in fog computing. Journal of Ambient Intelligence
and Humanized Computing (Jun 2018). https://doi.org/10.1007/s12652-018-0914-
0

73

34. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: A toolkit for
modeling and simulation of resource management techniques in the Internet of
Things, Edge and Fog computing environments. Software: Practice and Experience
47(9), 1275–1296 (2017)

35. Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The
rise of big data on cloud computing: Review and open research issues. Information
Systems 47, 98–115 (2015)

36. Hong, H.J., Tsai, P.H., Hsu, C.H.: Dynamic module deployment in
a fog computing platform. In: 2016 18th Asia-Pacific Network Oper-
ations and Management Symposium (APNOMS). pp. 1–6 (Oct 2016).
https://doi.org/10.1109/APNOMS.2016.7737202

37. Huang, Z., Lin, K.J., Yu, S.Y., Hsu, J.Y.j.: Co-locating services in iot systems to
minimize the communication energy cost. Journal of Innovation in Digital Ecosys-
tems 1(1-2), 47–57 (2014)

38. Jarraya, Y., Eghtesadi, A., Debbabi, M., Zhang, Y., Pourzandi, M.: Cloud Calculus:
Security Verification in Elastic Cloud Computing Platform. In: 2012 International
Conference on Collaboration Technologies and Systems (CTS). pp. 447–454 (May
2012). https://doi.org/10.1109/CTS.2012.6261089

39. Li, F., Vögler, M., Claeßens, M., Dustdar, S.: Towards automated IoT application
deployment by a cloud-based approach. In: SOCA 2013. pp. 61–68 (2013)

40. Mahmud, R., Ramamohanarao, K., Buyya, R.: Latency-aware application mod-
ule management for fog computing environments. ACM Transactions on Internet
Technology (TOIT) (2018)

41. Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya, R.: Quality of experience
(qoe)-aware placement of applications in fog computing environments. Journal of
Parallel and Distributed Computing (2018)

42. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers,
A.H.: Big data: The next frontier for innovation, competition, and productivity.
2011 5(33), 222 (2014)

43. Maurer, M., Brandic, I., Sakellariou, R.: Adaptive resource configuration for Cloud
infrastructure management. Future Generation Computer Systems 29(2), 472 – 487
(2013). https://doi.org/https://doi.org/10.1016/j.future.2012.07.004, special sec-
tion: Recent advances in e-Science

44. Nathuji, R., Kansal, A., Gha↵arkhah, A.: Q-clouds: Managing performance inter-
ference e↵ects for qos-aware clouds. Association for Computing Machinery, Inc.
(April 2010)

45. OpenFog: OpenFog Reference Architecture (2016)
46. Rahbari, D., Nickray, M.: Scheduling of fog networks with optimized

knapsack by symbiotic organisms search. In: 2017 21st Conference
of Open Innovations Association (FRUCT). pp. 278–283 (Nov 2017).
https://doi.org/10.23919/FRUCT.2017.8250193

47. Shi, W., Dustdar, S.: The Promise of Edge Computing. Computer 49(5), 78–81
(2016)

48. Skarlat, O., Nardelli, M., Schulte, S., Dustdar, S.: Towards qos-aware fog service
placement. In: 2017 IEEE 1st International Conference on Fog and Edge Comput-
ing (ICFEC). pp. 89–96 (May 2017). https://doi.org/10.1109/ICFEC.2017.12

49. Skarlat, O., Schulte, S., Borkowski, M., Leitner, P.: Resource provisioning
for iot services in the fog. In: 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications (SOCA). pp. 32–39 (Nov 2016).
https://doi.org/10.1109/SOCA.2016.10

74

50. Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., Leitner, P.: Optimized IoT
service placement in the fog. Service Oriented Computing and Applications 11(4),
427–443 (Dec 2017). https://doi.org/10.1007/s11761-017-0219-8

51. Sommerville, I.: Software Engineering. Pearson (2015), 10th edition
52. Souza, V.B., Masip-Bruin, X., Marin-Tordera, E., Ramirez, W., Sanchez, S.:

Towards distributed service allocation in fog-to-cloud (f2c) scenarios. In: 2016
IEEE Global Communications Conference (GLOBECOM). pp. 1–6 (Dec 2016).
https://doi.org/10.1109/GLOCOM.2016.7842341

53. Souza, V.B.C., Ramrez, W., Masip-Bruin, X., Marn-Tordera, E., Ren, G.,
Tashakor, G.: Handling service allocation in combined fog-cloud scenarios. In: 2016
IEEE International Conference on Communications (ICC). pp. 1–5 (May 2016).
https://doi.org/10.1109/ICC.2016.7511465

54. Taneja, M., Davy, A.: Resource aware placement of iot application modules
in fog-cloud computing paradigm. In: 2017 IFIP/IEEE Symposium on Inte-
grated Network and Service Management (IM). pp. 1222–1228 (May 2017).
https://doi.org/10.23919/INM.2017.7987464

55. Tang, Z., Zhou, X., Zhang, F., Jia, W., Zhao, W.: Migration modeling and learn-
ing algorithms for containers in fog computing. IEEE Transactions on Services
Computing pp. 1–1 (2018). https://doi.org/10.1109/TSC.2018.2827070

56. Varshney, P., Simmhan, Y.: Demystifying fog computing: Characterizing archi-
tectures, applications and abstractions. In: 2017 IEEE 1st International Con-
ference on Fog and Edge Computing (ICFEC). pp. 115–124 (May 2017).
https://doi.org/10.1109/ICFEC.2017.20

57. Velasquez, K., Abreu, D.P., Curado, M., Monteiro, E.: Service placement for la-
tency reduction in the internet of things. Annals of Telecommunications 72(1-2),
105–115 (2017)

58. Venticinque, S., Amato, A.: A methodology for deployment of iot application
in fog. Journal of Ambient Intelligence and Humanized Computing (Apr 2018).
https://doi.org/10.1007/s12652-018-0785-4

59. Villari, M., Fazio, M., Dustdar, S., Rana, O., Ranjan, R.: Osmotic computing:
A new paradigm for edge/cloud integration. IEEE Cloud Computing 3(6), 76–83
(2016)

60. Wang, S., Zafer, M., Leung, K.K.: Online placement of multi-component ap-
plications in edge computing environments. IEEE Access 5, 2514–2533 (2017).
https://doi.org/10.1109/ACCESS.2017.2665971

61. Wen, Z., Caa, J., Watson, P., Romanovsky, A.: Cost e↵ective, reliable and secure
workflow deployment over federated clouds. IEEE Transactions on Services Com-
puting 10(6), 929–941 (Nov 2017). https://doi.org/10.1109/TSC.2016.2543719

62. Wen, Z., Yang, R., Garraghan, P., Lin, T., Xu, J., Rovatsos, M.: Fog orchestration
for internet of things services. IEEE Internet Computing 21(2), 16–24 (Mar 2017).
https://doi.org/10.1109/MIC.2017.36

63. Xia, Y., Etchevers, X., Letondeur, L., Coupaye, T., Desprez, F.: Combining hard-
ware nodes and software components ordering-based heuristics for optimizing the
placement of distributed iot applications in the fog. In: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing. pp. 751–760. ACM (2018)

64. Yang, L., Cao, J., Liang, G., Han, X.: Cost aware service placement and load dis-
patching in mobile cloud systems. IEEE Transactions on Computers 65(5), 1440–
1452 (May 2016). https://doi.org/10.1109/TC.2015.2435781

65. Zeng, D., Gu, L., Guo, S., Cheng, Z., Yu, S.: Joint optimization of task schedul-
ing and image placement in fog computing supported software-defined embedded
system. IEEE Transactions on Computers 65(12), 3702–3712 (Dec 2016)

75

An Approach to Automatically Check the Compliance of
Declarative Deployment Models

Christoph Krieger, Uwe Breitenbücher, Kálmán Képes, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart
Universitätsstr. 38, 70569 Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de

Abstract. The automation of application deployment has evolved into one of
the most important issues in modern enterprise IT. Therefore, many deployment
systems have been developed that process deployment models for automating
the installation of systems. Creating such deployment models becomes more
and more complex as compliance plays an increasingly important role. Not only
external laws and regulations must be considered, but also a company’s internal
requirements must be fulfilled. However, this is a very complex challenge for
the modelers as they require a firm knowledge of all the compliance rules that
must be observed. As a result, this often leads to deployment models that vio-
late compliance rules due to manual modeling mistakes or because of unaware-
ness. In this paper, we introduce an approach that enables modeling of reusable
Deployment Compliance Rules that can be executed automatically to check
such regulations in declarative deployment models at design time. We validate
our approach with a prototype based on the TOSCA standard and the Open-
TOSCA ecosystem.

Keywords: Cloud Computing, Compliance, Deployment Modeling.

1 Introduction

There are many laws, regulations, and guidelines that influence an enterprise’s infor-
mation technology (IT), such as the General Data Protection Regulation [1], the ISO
2018 standard [2], or company internal regulations. Threats to security through the
use of outdated software versions or financial risks due to the use of unlicensed soft-
ware also have an impact on IT landscapes. Moreover, modern application landscapes
often consist of complex composite applications and different heterogeneous systems
[3]. Such large landscapes and systems present a challenging and expensive task to be
maintained and managed manually. To decrease the costs and to minimize human
errors [4], the automation of deployment and provisioning of applications has become
an important subject in academia and industry. Approaches for deployment automa-
tion systems, such as Chef [5], Juju [6], Ansible [7], and Kubernetes [8], consume
deployment models that describe the desired deployment and automatically execute
all required tasks. However, enterprise’s applications and IT landscapes are subject to
a magnitude of requirements. If a company has a vast amount of requirements, it

76

would require great effort and expertise of modelers of deployment models to know
all rules and regulations that concern a particular application deployment. Moreover,
rules are subject to change as new requirements and needs arise, and others are sus-
pended. Not being compliant to all necessary rules can quickly result in serious con-
sequences for companies, such as lawsuits due to unlicensed software or even the loss
of customers due to leaks of personal data and subsequent trust issues by the custom-
ers. Thus, checking deployment models for compliance with a company`s
requirements is of vital importance, but practically not possible if performed manually
by modelers and operators.

In this paper, we present an approach that automates compliance checking of de-
clarative deployment models to ensure that new or updated deployment models are
always compliant with a company’s set of constraints. To achieve this, we present an
approach to specify reusable Deployment Compliance Rules that enables automated
compliance checking of declarative deployment models at design time, which de-
creases the chance of application deployments that are not compliant to a company’s
regulations. Furthermore, the approach separates the modeling of compliance rules
from the modeling of deployment models. This ensures that modelers do not need to
know all constraints and requirements to specify compliant deployment models.

The remainder of this paper is structured as follows: Section 2 motivates our ap-
proach, followed by Section 3 which presents the main concept. Section 4 provides a
formal model for the approach. Section 5 describes the prototypical implementation.
In Section 6, we discuss related work. Finally, Section 7 concludes the paper and
describes future work.

2 Motivation Scenario

Declarative deployment models describe the structure of an application to be de-
ployed by specifying the required components, their relationships, as well as all arti-
facts required for the deployment, thus, the topology of the application [9]. A topolo-
gy is a directed, weighted, and possibly disconnected graph consisting of nodes repre-
senting the components of the application and edges representing the relationships
between them. Types associated with the components and relations specify the de-
sired semantics. In addition, attributes associated with components or relations repre-
sent properties, such as ports or network addresses for servers. Figure 1 illustrates a
topology describing the deployment of an application. The left-hand side shows a
stack consisting of a component of type Web-application which is hosted on a Tomcat
server of type Tomcat8.5.23 as indicated by the hostedOn relation between the two
components. The Tomcat server is hosted on a component of type Ubuntu16.04VM,
which is hosted on a component of type AmazonEC2. The web application is connect-
ed to a component of type MySQLDB5.0, which provides persistent data storage. The
attribute with key DataType and value PersonalData associated to the component
indicates the type of data stored in this database. The database is managed through a
Database Management System (DBMS) of type MySQLDBMS5.0 that is also hosted
on a component of type Ubuntu16.04VM. However, this Ubuntu VM is hosted on an
OpenStack cloud with a specific IP address, as indicated by the IP attribute associated

77

with the component. Thus, this deployment scenario describes a hybrid cloud applica-
tion deployment which is partly hosted in a private cloud (OpenStack) and partly in a
public cloud (Amazon EC2) [10]. In our scenario, the web application is a stateless
component hosted on Amazon EC2 to be scaled out automatically based on the work-
load. The web application retrieves data from the MySQL database, performs pro-
cessing tasks, and stores the results back to the database.

Fig. 1. A declarative deployment model describing the deployment of an application

Deployment models can be subject to a variety of constraints and rules which must be
adhered to. However, it is difficult for modelers to be aware of all regulations, which
quickly results in non-compliant deployment models that violate a company’s rules.
For the presented deployment model, there may be several rules that must be adhered
to. In the scenario, the database contains personal data, i.e., customer names, which is
sensitive data. A company could decide that all personal data must only be stored in a
specific private cloud. The application uses components that should receive regular
updates since old versions of software artifacts often present security risks. In our
scenario, this is relevant for the MySQL database and management system, the
Tomcat server, and the Ubuntu VMs. For example, an outdated Tomcat could expose
vulnerabilities that have been fixed by later versions, such as remote code execution.
In this paper, we present an approach to express such regulations as reusable compli-
ance rules that can be automatically checked at design time.

DataType: PersonalData

(MySQLDB5.0)

(MySQLDBMS5.0)

(Web-application)

(Tomcat8.5.23)

(Ubuntu16.04VM) (Ubuntu16.04VM)

= connectsTo
= hostedOn

IP: 192.168.4.3

(OpenStack)(AmazonEC2)

78

3 Concept to Automatically Check the Compliance of
Declarative Deployment Models

An overview of the included roles, components, and tasks of the approach to automat-
ically check the compliance of declarative deployment models is shown in Figure 2.
There, the Compliant Deployment Modeling System is divided into the two separate
areas Compliance Modeling and Deployment Modeling. The system separates
concerns, as the expertise of compliance experts and deployment experts is integrated
in an automated fashion without the need to exchange knowledge between the in-
volved roles.

The left-hand side of Figure 2 shows the involved roles, components, and tasks of
the Compliance Modeling area. Compliance experts use the Compliance Modeling
Tool for the definition and maintenance of Deployment Compliance Rules, which
formally describe and capture all regulations that must be fulfilled by deployment
models. These rules are stored persistently in a Compliance Rule Repository within
the Compliance Modeling Tool. The stored rules provide a means to detect potentially
relevant areas of deployment models and check their compliance by comparing them
to a compliant fragment. A respective method will be elaborated in the next sections.

Deployment Modeling is concerned with the definition and maintenance of de-
ployment models. The right-hand side of Figure 2 shows the involved roles, compo-
nents, and tasks of the Deployment Modeling area. Deployment experts use the De-
ployment Modeling Tool to define and maintain deployment models that are stored
persistently in a Deployment Model Repository. The deployment experts do not have
to be aware of all regulations concerning deployment models since the Deployment
Modeling Tool uses the Compliance Checker to verify the compliance of declarative
deployment models based on the stored compliance rules. This ensures that only
compliant deployment models are stored in the repository.

Fig. 2. Overview of roles, components, and tasks of the approach

Compliance Modeling Tool

Compliance Rule
Repository

Compliant Deployment Modeling System

Compliance Experts Deployment Experts

User Interface

Compliance
Checker

Deployment Modeling Tool

Deployment Model
Repository

User Interface

define and maintain
deployment models

define and maintain
Deployment Compliance

Rules

Deployment
Model

Deployment Modeling Compliance Modeling

Deployment
Compliance Rule

79

4 Metamodel and Formalization

In our previous work [11], we have conceptually introduced Deployment Compliance
Rules. In the context of this paper, we will present a formal metamodel for the defini-
tion of such Deployment Compliance Rules. For this, in Section 4.1, we first provide
a formal metamodel for declarative deployment models, which is based on topologies.
Section 4.2 provides the metamodel of Deplyoment Compliance Rules, while Section
4.3 describes the algorithm used for automated compliance checking.

Fig. 3. Metamodel of topologies

4.1 Basic Metamodel of Topologies

The metamodel of topologies, is based on the Declarative Application Management
Modeling and Notation (DMMN) introduced by Breitenbücher [12] and further ab-
stracted by Saatkamp et al. [13]. Figure 3 gives an overview of the metamodel. There,
class names contain a starting capital letter.

Let 𝑇 be the set of all Topologies, then 𝑡 ∈ 𝑇 is defined as an eight-tuple:

 𝑡 = (𝐶𝑡, 𝑅𝑡, 𝐶𝑇𝑡, 𝑅𝑇𝑡, 𝐴𝑡, 𝑡𝑦𝑝𝑒𝑡, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑡, 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡) (1)

The elements of 𝑡 are defined as follows:

x 𝐶𝑡: The set of Components in 𝑡, whereby each 𝑐𝑖 ∈ 𝐶𝑡 represents a component of
the application to be deployed.

x 𝑅𝑡 ⊆ 𝐶𝑡 × 𝐶𝑡: The set of Relations in 𝑡, whereby each 𝑟𝑖 = (𝑐𝑠, 𝑐𝑡) ∈ 𝑅𝑡 represents
the relationship between two components, where 𝑐𝑠 is the source and 𝑐𝑡 is the tar-
get of the relationship.

x 𝐶𝑇𝑡: The set of Component Types in 𝑡, whereby each 𝑐𝑡𝑖 ∈ 𝐶𝑇𝑡 describes the se-
mantics for the Components that have this Component Type assigned.

x 𝑅𝑇𝑡: The set of Relation Types in 𝑡, whereby each 𝑟𝑡𝑡 ∈ 𝑅𝑇𝑡 describes the seman-
tics for the Relations that have this Relation Type assigned.

x 𝐴𝑡 ⊆ Σ+ × Σ+ × Σ+: The set of Attributes in 𝑡, whereby each 𝑎𝑖 = (𝐼𝑑, 𝐾𝑒𝑦,
𝑉𝑎𝑙𝑢𝑒) ∈ 𝐴𝑡 describes a property of a Component or Relation with a key and a
value. Each 𝐼𝑑 must be unique within a Topology. 𝐼𝑑, 𝐾𝑒𝑦 and 𝑉𝑎𝑙𝑢𝑒 ∈ Σ+ are
typically strings.

80

x 𝑡𝑦𝑝𝑒𝑡: The mapping that assigns all Relations and Components in 𝑡 to their Rela-
tion Type or Component Type. Let the set of Topology Elements 𝐸𝑡 ≔ 𝐶𝑡 ∪ 𝑅𝑡 be
the union of the set of Components and the set of Relations of 𝑡, and the set of To-
pology Element Types 𝐸𝑇𝑡 ≔ 𝐶𝑇𝑡 ∪ 𝑅𝑇𝑡 be the union of the set of Component
Types and the set of Relation Types of 𝑡. Then, the mapping 𝑡𝑦𝑝𝑒𝑡 associates each
𝑒𝑖 ∈ 𝐸𝑡 with an 𝑒𝑡𝑗 ∈ 𝐸𝑇𝑡 to provide the semantics for each Topology Element.

 𝑡𝑦𝑝𝑒𝑡: 𝐸𝑡 → 𝐸𝑇𝑡 (2)

x 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑡: The mapping that assigns each Topology Element to a set of Attrib-
utes.

 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑡: 𝐸𝑡 → ℘(𝐴𝑡) (3)

x 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡: The mapping that assigns Relation Types and Component Types to
their respective supertype. Let 𝐸𝑇𝑡 be the set of Topology Element Types of 𝑡.
Then, the mapping 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡 associates an 𝑒𝑡𝑖 ∈ 𝐸𝑇𝑡 with an 𝑒𝑡𝑗 ∈ 𝐸𝑇𝑡 with 𝑖 ≠
𝑗. This means that 𝑒𝑡𝑗 is the supertype of 𝑒𝑡𝑖.

 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡: 𝐸𝑇𝑡 → 𝐸𝑇𝑡 (4)

Additionally, we define the mapping 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠𝑡 that maps a Topology Element of
𝑡 to its respective Topology Element Type specified by 𝑡𝑦𝑝𝑒𝑡 combined with all tran-
sitively resolvable supertypes of 𝑡𝑦𝑝𝑒𝑡. Let 𝐸𝑡 be the set of Topology Elements and
𝐸𝑇𝑡 be the set of Topology Element Types of 𝑡.

 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠𝑡 : 𝐸𝑡 → ℘(𝐸𝑇𝑡) (5)

4.2 Metamodel of Deployment Compliance Rules

In the following, we will provide a formal metamodel for Deployment Compliance
Rules. Additionally, we define the conditions under which such a rule is valid, detect-
ed, or satisfied. The concept of automated compliance checking based on Deployment
Compliance Rules is illustrated in Figure 4. There, the left-hand side of the figure
illustrates a declarative deployment model, the right-hand side illustrates a Deploy-
ment Compliance Rule. A Deployment Compliance Rule consists of two Topologies
called Detector and Required Structure. The Detector is used to detect areas in the
deployment model that are subject to the rule while the Required Structure is used to
verify if the rule is satisfied, i.e., if the rule is fulfilled. The rule shown in Figure 4 is
concerned with the storage of personal data in a specific private cloud as discussed in
the motivation scenario presented in Section 2. It specifies that any database that
stores personal data has to be managed by a database management system (DBMS).

81

The DBMS must in turn be hosted in a virtual machine provided by a specific Open-
Stack cloud.

Fig. 4. Concept of detection and checking of Deployment Compliance Rules in declarative
deployment models

Let 𝐶𝑅 ⊆ 𝑇 × 𝑇 be the set of all Deployment Compliance Rules, then 𝑐𝑟 ∈ 𝐶𝑅 is
defined as:

 𝑐𝑟 ∈ 𝐶𝑅 ∶= (𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟, 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒) (6)

The 𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 and 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 are provided as a Topology, i.e.,
𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 ∈ 𝑇 and 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∈ 𝑇.

The detection and checking of Deployment Compliance Rules is based on the detec-
tion of subgraph isomorphisms that also considers the types and attributes of the To-
pology Elements that form the deployment model. Subgraph isomorphisms can be
detected by using the VF2 algorithm described by Cordella et al. [14]. We omit the
VF2 algorithm here and refer interested readers to the provided reference. The detec-
tion of relevant areas in a deployment model is formally the detection of subgraph
isomorphisms. To detect semantically compatible subgraph isomorphisms, i.e. to find
areas with the same structure, types, and attributes, we define a matching relation to
decide if a Topology Element can be matched to another Topology Element. Let 𝑒𝑖 ∈
𝐸𝑡 and 𝑒𝑗 ∈ 𝐸𝑡 with 𝑖 ≠ 𝑗 be two Topology Elements in 𝑡. Then the matching relation
≡𝑒 is defined as follows:

𝑒1 ≡𝑒 𝑒2 ∶⇔ (𝑡𝑦𝑝𝑒𝑡(𝑒1) ∈ 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠𝑡(𝑒2)) ∧ (∀𝑎𝑖 ∈ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑡(𝑒1)∃𝑎𝑗 ∈

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑡(𝑒2) ∶ 𝜋2(𝑎𝑖) ⇔ 𝜋2(𝑎𝑗) ∧ 𝜋3(𝑎𝑖) ⇔ 𝜋3(𝑎𝑗)) (7)

A Topology Element 𝑒1 can be matched to a Topology Element 𝑒2 if the type of 𝑒1 is
of the same type or supertype of the type of 𝑒2. Furthermore, all attributes of 𝑒1 must
also be present in 𝑒2 with equivalent 𝐾𝑒𝑦 and V𝑎𝑙𝑢𝑒. For example, the Component
with Component Type “Database” shown in Figure 4 can be matched to the Compo-
nent with Component Type “MySQLDB5.0”. The “Database” Component has an
attribute with 𝐾𝑒𝑦 = “𝐷𝑎𝑡𝑎T𝑦𝑝𝑒” and 𝑉𝑎𝑙𝑢𝑒 = “PersonalData”. The equivalent at-
tribute, i.e., same 𝐾𝑒𝑦 and 𝑉𝑎𝑙𝑢𝑒, is also assigned to the “MySQLDB5.0” Compo-

Detector Required Structure

DataType: PersonalData

(Database)

(VirtualMachine)

IP: 192.168.4.3

(OpenStack)

DataType: PersonalData

(Database)

(DBMS)

Detect

Check

Check

Check

DataType: PersonalData

(MySQLDB5.0)

(MySQLDBMS5.0)

(Web-application)

(Tomcat8.5.23)

(Ubuntu16.04VM) (Ubuntu16.04VM)

IP: 192.168.4.3

(OpenStack)(AmazonEC2)

Check

82

nent. In addition, the Component Type “Database” is a supertype of the Component
Type “MySQLDB5.0”.

Let 𝐸 be the set of all Topology Elements. Then 𝑚 ∈ 𝑀, 𝑚 ⊆ 𝐸 × 𝐸 is defined as a
bijective mapping that maps a Topology Element 𝑒𝑖 ∈ 𝐸 to another Topology Element
𝑒𝑗 ∈ 𝐸 with 𝑖 ≠ 𝑗:

 𝑀 ∶= ℘(𝐸 × 𝐸) \ ∅ (8)

A matching mapping is a mapping between two Topologies that preserves the struc-
ture and semantics of the Topologies and the individual Topology Elements by also
considering the matching relation ≡𝑒. A mapping 𝑚 ∈ 𝑀 is a matching mapping from
𝑡1 ∈ 𝑇 to 𝑡2 ∈ 𝑇 if 𝑡1, 𝑡2, and 𝑚 fulfill the relation 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 ⊆ 𝑇 × 𝑇 × 𝑀:

 (𝑡1, 𝑡2, 𝑚1) ∈ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 ∶⇔ (𝑚1 ⊆ 𝐸𝑡1 × 𝐸𝑡2) ∧ (∀𝑐𝑖 ∈ 𝐶𝑡1∃! 𝑐𝑗 ∈ 𝐶𝑡2: (𝑐𝑖, 𝑐𝑗) ∈
𝑚1 ∧ 𝑐𝑖 ≡𝑒 𝑐𝑗) ∧ (∀𝑟𝑘 ∈ 𝑅𝑡1∃! 𝑟𝑙 ∈ 𝑅𝑡2 ∶ (𝑟𝑘, 𝑟𝑙) ∈ 𝑚1 ∧ 𝑟𝑘 ≡𝑒 𝑟𝑙 ∧
(𝜋1(𝑟𝑘), 𝜋1(𝑟𝑙)) ∈ 𝑚1 ∧ (𝜋2(𝑟𝑘), 𝜋2(𝑟𝑙)) ∈ 𝑚1) (9)

The mapping 𝑚1 represents a subgraph isomorphism from 𝑡1 to 𝑡2 that also considers
the matching relation ≡𝑒. Each Component in 𝑡1 is mapped to exactly one matching
Component in 𝑡2, to which no other Component in 𝑡1 has been mapped to. Analo-
gously each Relation in 𝑡1 is mapped to exactly one matching Relation in 𝑡2 with the
addition that the relations sources and targets have also been mapped to each other
and therefore the mapping preserves the structure of the topologies. For example, in
Figure 4, the Required Structure can be matched completely to the right-hand stack of
the Topology since all indicated component pairs fulfill the matching relation ≡𝑒 and
both stacks are structurally identical.

A Deployment Compliance Rule 𝑐𝑟1 is valid if there is exactly one matching map-
ping from the Detector to the Required Structure and the following holds:

 ∃! (𝜋1(𝑐𝑟1), 𝜋2(𝑐𝑟1), 𝑚) ∈ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 (10)

This ensures that each matching mapping found for the Required Structure corre-
sponds to a matching mapping found for the Detector.

A Deployment Compliance Rule 𝑐𝑟1 is detected in a Topology 𝑡1 if there is at least
one matching mapping from the rule’s Detector 𝜋1(𝑐𝑟1) to the Topology:

 ∃(𝜋1(𝑐𝑟1), 𝑡1, 𝑚) ∈ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 (11)

For a Deployment Compliance Rule 𝑐𝑟1 to be satisfied for a Topology 𝑡1, there has to
be exactly one corresponding matching mapping from the Required Structure
𝜋2(𝑐𝑟1) 𝑡𝑜 𝑡1 for each matching mapping form the Detector 𝜋1(𝑐𝑟1) 𝑡𝑜 𝑡1:

∀(𝜋1(𝑐𝑟1), 𝑡1, 𝑚𝑖) ∈ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 ∃! (𝜋2(𝑐𝑟1), 𝑡1, 𝑚𝑗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 ∶ (∀𝑒𝑘 ∈ 𝜋2(𝑚𝑖) ∶

𝑒𝑘 ∈ 𝜋2(𝑚𝑗)) (12)

83

Each area that has been found in 𝑡1 by mapping the Detector to 𝑡1 also satisfies the
Required Structure and therefore, the Deployment Compliance Rule 𝑐𝑟1 is satisfied,
i.e., the rule is fulfilled. For example, the rule in Figure 4 is detected in the declarative
deployment model as there is a matching mapping from the rule’s Detector to the
Topology of the deployment model. Since there exists exactly one corresponding
matching mapping from the Required Structure to the Topology for each matching
mapping from the Detector to the Topology, the rule is also satisfied.

4.3 Compliance Checking Algorithm

Based on the presented metamodel, an algorithm is proposed to automatically check a
Topology for a given Deployment Compliance Rule. This algorithm is described in
Algorithm 1 in pseudocode. It is executed once for every Deployment Compliance
Rule that is defined for a Topology. The algorithm uses a Deployment Compliance
Rule and a Topology as inputs. The result is a set containing matching mappings of
the Detector to the Topology to indicate rule violations. If the set is empty, the given
Deployment Compliance Rule is satisfied for that Topology. In the case, that a De-
ployment Compliance Rule is not detected for a Topology, the algorithm also returns
an empty set indicating that the rule is satisfied. The given Topology is analyzed for
matches to both the Detector (line 3) and the Required Structure. Subsequent, all
mappings found for the Detector are checked for a corresponding mapping for the
Required Structure (line 5). If none is found, the Detector’s mapping is added to the
result set 𝑅 (line 6). At the end of the algorithm, 𝑅𝑒𝑠𝑢𝑙𝑡 contains mappings to areas
where the given Deployment Compliance Rule is violated. If 𝑅𝑒𝑠𝑢𝑙𝑡 is empty, the
rule is satisfied for the given Topology.

Algorithm 1. Pseudocode to identify Deployment Compliance Rule violations in a Topology

84

5 Prototypical Implementation

The prototype described in this section implements the metamodel for Topologies and
Deployment Compliance Rules as well as the algorithm introduced in Section 4. Fur-
thermore, the prototype enables compliance experts and deployment experts to model
Deployment Compliance Rules, Topologies, Component Types, and Relation Types
with a graphical user interface while also providing the functionality to check the
Topologies for compliance.

The prototype consists of a graphical user interface, a compliance checker, a model
repository, and an application programmer interface (API). In our prototype, we com-
bine the Compliance Checker, the Compliance Modeling Tool, and the Deployment
Modeling Tool introduced in Section 3 to one component, the Modeling Tool. The
graphical user interface enables modelers to create and update deployment models as
well as Deployment Compliance Rules. The user interface also enables the definition
of reusable component and relation types and their hierarchical structure. The compli-
ance checker provides the functionality to validate Deployment Compliance Rules
and to check the compliance of deployment models. For that purpose, the compliance
checker has access to the model repository. The model repository is a combination of
the Compliance Rule Repository and the Deployment Rule Repository introduced in
Section 3. It is used to persistently store deployment models, Deployment Compliance
Rules, component types, and relation types. The API of the modeling tool provides
external access to the functionality of the modeling tool, such as the storing and
checking of deployment models.

Since our prototype is based on TOSCA and the OpenTOSCA ecosystem [15], we
briefly introduce the TOSCA standard and provide a mapping from the formal meta-
model to TOSCA. TOSCA is an OASIS standard that enables the specification of
cloud applications by defining their structure and their orchestration. We only intro-
duce constructs in TOSCA that are necessary for our method and refer interested
readers to the specification [16], the simple profile [17], and the primer [18]. A
TOSCA Topology Template represents the structure of an application. It specifies all
components needed for the deployment of an application as well as the relationships
between them. The Topology Template is a directed graph with typed nodes and
weighted edges and corresponds to a Topology defined in the metamodel. Node Tem-
plates and Relationship Templates represent the Components and Relations of the
metamodel. Component Types and Relation Types can be mapped to Node Types and
Relationship Types of TOSCA. The attributes defined by the metamodel can be
mapped to Properties. In TOSCA, Node Types can be specified with a Proper-
tiesDefinition that defines the structure of possible properties for the Node Templates.
The actual attribute values are specified by Node Templates. Since TOSCA allows
extensions to the specification, we introduce the new element ComplianceRule that
has exactly two Topology Templates as elements: Detector and RequiredStructure.
Therefore, we have a complete mapping from the metamodel to TOSCA.

The prototypical implementation extends Winery [19]1, which is a graphical mod-
eling tool for modeling and managing applications using TOSCA. Winery already
provides a mechanism for persistent storage of TOSCA elements which was extended

1 http://eclipse.github.io/winery

85

to also store Deployment Compliance Rules. Additionally, we added the new compo-
nent Compliance Checker to Winery which realizes the concepts presented in this
paper. To associate TOSCA deployment models with Deployment Compliance Rules,
we use the concept of namespaces, i.e., all Topology Templates must be checked for
all Deployment Compliance Rules that are in the same namespace. Therefore, each
rule defined for a certain namespace automatically applies to all Topology Templates
defined in that namespace.

6 Related Work

In this section, we discuss and compare works that are related to our method. Soft-
ware architecture is often described with 5 views first described by Kruchten [20].
However, there can still be other views on the architecture of a software system, such
as the view on the deployment model of a system. Software architecture erosion [21]
describes the deviation of actual software artifacts from their architecture that mani-
fests over time. It has been addressed with various methods such as model-driven
approaches, through dependency analysis, or through checking mechanisms, such as
the reflexion models approach by Murphy et al. [22]. They describe high-level mod-
els, i.e. boxes and arrows that are used by software architects to describe and reason
about the architecture of a software artifact. To test the compliance with the architec-
ture, they generate a low-level model from existing artifacts through the use of code-
analysis and compare the two models to find convergences, divergences, and absenc-
es, e.g., correct, additional, and missing connections between components. Koschke
and Simon extended this approach by introducing hierarchical reflexion models [23].
The method uses an architecture model to express implicit requirements and con-
straints for the resulting software artifact. With our method, we provide reusable
rules, that can be applied to deployment models in general. Other approaches to con-
trol software architectures include Architecture Description Languages [24] to de-
scribe architectures or Architecture Constraint Languages [25] to express constraints.
Deiters et al. [26] introduce Rule-Based Architectural Compliance Checks for Enter-
prise Architecture Management that are expressed as queries. However, these
approaches for describing constraints to check the compliance of software artifacts to
their intended architecture are application specific and on the level of artifacts. With
our method, we enable to specify compliance rules on the level of deployment models
in a very generic manner. Hence, they can be used to check the deployment models of
different applications.

There are many works in the area of business process verification to ensure that
business process models adhere to regulations. Due to the great number of works we
refer interested readers to a survey on business process compliance by Fellmann and
Zasada [27]. Schleicher et al. [28] introduce an approach to express control-flow and
data-related compliance rules for business processes while Koetter et al. [29] intro-
duce a generic Compliance Descriptor that links compliance rules to their source.
Tran et al. [30] introduce an approach that enables compliance modeling for service-
oriented systems through the use of domain-specific languages to model compliance
for different areas. Liu et al. [31] propose to separate the modeling of business pro-

86

cesses from the modeling of compliance rules. In their method, they use the Business
Process Execution Language (BPEL) [32] as a model for business processes and the
Business Property Specification Language (BPSL) [33] to specify their compliance
rules. They use established model checkers based on linear temporal logic to verify
process models with their rules. These compliance rules deal mostly with temporal
aspects in the execution of business processes while our method provides a compli-
ance checking mechanism for deployment models that can be used to address issues,
such as outdated software versions or structural properties, i.e., how components may
be hosted under certain circumstances.

7 Conclusion & Future Work

In this paper, we presented Deployment Compliance Rules that enable to describe
restrictions, constraints, and requirements for declarative deployment models in a
reusable manner. We provided a formalized model for Deployment Compliance Rules
and an algorithm to automatically check if a deployment model violates a given rule.
Based on this, we presented an approach to ensure that created or updated deployment
models are compliant to the current set of Deployment Compliance Rules. Further,
the approach allows separating the definition of Deployment Compliance Rules from
the creation and maintenance of deployment models. A validation of the approach is
provided via the implementation of a TOSCA-based prototype although the provided
formalization enables to apply the approach to any graph-based and declarative de-
ployment model language. In the future, we plan to extend the approach to also verify
the consistency of the rule repository through detection of conflicting rules within the
repository.

Acknowledgments. This work was partially funded by the German Research Founda-
tion (DFG) project ADDCompliance (636503) and the BMWi project SmartOrchestra
(01MD16001F).

References

1. General Data Protection Regulation, https://eur-lex.europa.eu/legal-
content/EN/TXT/?qid=1532348683434&uri=CELEX:02016R0679-20160504.

2. ISO/IEC 27018:2014 Code of practice for protection of personally identifiable information
(PII) in public clouds acting as PII processors. International Organization for Standardiza-
tion (2014).

3. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wettinger, J.: Integrated Cloud Appli-
cation Provisioning: Interconnecting Service-Centric and Script-Centric Management
Technologies. In: On the Move to Meaningful Internet Systems: OTM 2013 Conferences
(CoopIS 2013). pp. 130–148. Springer (2013).

4. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do internet services fail, and what
can be done about it? In: Proceedings of the 4th Conference on USENIX Symposium on In-
ternet Technologies and Systems (USITS 2003). USENIX (2003).

87

5. Opscode, Inc.: Chef Official Site. (2017).
6. Canonical Group Ltd(GB): Juju Official Site. (2017).
7. Mohaan, M., Raithatha, R.: Learning Ansible. Packt Publishing (2014).
8. Kubernetes, https://kubernetes.io/.
9. Breitenbücher, U., Képes, K., Frank, L., Wurster, M.: Declarative vs. Imperative: How to

Model the Automated Deployment of IoT Applications? (2017).
10. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Pat-

terns: Fundamentals to Design, Build, and Manage Cloud Applications. Springer (2014).
11. Fischer, M.P., Breitenbücher, U., Képes, K., Leymann, F.: Towards an Approach for Au-

tomatically Checking Compliance Rules in Deployment Models. In: Proceedings of The
Eleventh International Conference on Emerging Security Information, Systems and Tech-
nologies (SECURWARE). pp. 150–153. Xpert Publishing Services (XPS) (2017).

12. Breitenbücher, U.: Eine musterbasierte Methode zur Automatisierung des Anwendungsma-
nagements, (2016).

13. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: Topology Splitting and Matching
for Multi-Cloud Deployments. In: Proceedings of the 7th International Conference on
Cloud Computing and Services Science (CLOSER 2017). pp. 247–258. SciTePress (2017).

14. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomorphism algorithm
for matching large graphs. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence. 26, 1367–1372 (2004).

15. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wagner, S.:
OpenTOSCA - A Runtime for TOSCA-based Cloud Applications. In: Proceedings of the
11th International Conference on Service-Oriented Computing (ICSOC 2013). pp. 692–695.
Springer (2013).

16. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA) Ver-
sion 1.0. Organization for the Advancement of Structured Information Standards (OASIS)
(2013).

17. OASIS: TOSCA Simple Profile in YAML Version 1.0. Organization for the Advancement
of Structured Information Standards (OASIS) (2015).

18. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer
Version 1.0. Organization for the Advancement of Structured Information Standards
(OASIS) (2013).

19. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – A Modeling Tool for
TOSCA-based Cloud Applications. In: Proceedings of the 11th International Conference on
Service-Oriented Computing (ICSOC 2013). pp. 700–704. Springer (2013).

20. Kruchten, P.B.: The 4+1 view model of architecture. IEEE software. 12, 42–50 (1995).
21. De Silva, L., Balasubramaniam, D.: Controlling software architecture erosion: A survey.

Journal of Systems and Software. 85, 132–151 (2012).
22. Murphy, G.C., Notkin, D., Sullivan, K.J.: Software reflexion models: Bridging the gap

between design and implementation. IEEE Transactions on Software Engineering. (2001).
23. Koschke, R., Simon, D.: Hierarchical Reflexion Models. In: WCRE. pp. 186–208 (2003).
24. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software

architecture description languages. IEEE Transactions on software engineering. 26, 70–93
(2000).

88

25. Tibermacine, C., Fleurquin, R., Sadou, S.: A family of languages for architecture constraint
specification. Journal of Systems and Software. 83, 815–831 (2010).

26. Deiters, C., Dohrmann, P., Herold, S., Rausch, A.: Rule-based architectural compliance
checks for enterprise architecture management. In: Enterprise Distributed Object Compu-
ting Conference, 2009. EDOC’09. IEEE International. pp. 183–192. IEEE (2009).

27. Fellmann, M., Zasada, A.: State-of-the-art of business process compliance approaches.
(2014).

28. Schleicher, D., Grohe, S., Leymann, F., Schneider, P., Schumm, D., Wolf, T.: An approach
to combine data-related and control-flow-related compliance rules. In: Service-Oriented
Computing and Applications (SOCA), 2011 IEEE International Conference on. pp. 1–8.
IEEE (2011).

29. Koetter, F., Kochanowski, M., Weisbecker, A., Fehling, C., Leymann, F.: Integrating com-
pliance requirements across business and it. In: Enterprise Distributed Object Computing
Conference (EDOC), 2014 IEEE 18th International. pp. 218–225. IEEE (2014).

30. Tran, H., Zdun, U., Oberortner, E., Mulo, E., Dustdar, S., others: Compliance in service-
oriented architectures: A model-driven and view-based approach. Information and Software
Technology. 54, 531–552 (2012).

31. Liu, Y., Muller, S., Xu, K.: A static compliance-checking framework for business process
models. IBM Systems Journal. 46, 335–361 (2007).

32. OASIS: Web Services Business Process Execution Language (WS-BPEL) Version 2.0.
Organization for the Advancement of Structured Information Standards (OASIS) (2007).

33. Xu, K., Liu, Y., Wu, C.: Bpsl modeler–visual notation language for intuitive business prop-
erty reasoning. Electronic Notes in Theoretical Computer Science. 211, 211–220 (2008).

89

Towards Pattern-based Rewrite and Refinement of
Application Architectures

Jasmin Guth and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart
Universitätsstr. 38, 70569 Stuttgart, Germany
[lastname]@iaas.uni-stuttgart.de

Abstract. With the ongoing growth of IT application systems, the development
and modeling process of their architectures becomes increasingly complex. Ar-
chitectural patterns capturing proven solutions for recurring problems in an ab-
stract and human readable way should support this process. Due to the abstract
character of patterns, they cannot be applied to a concrete architecture automati-
cally: For each use case, patterns have to be read, understood, adapted to the re-
spective use case, and realized manually. In this work, we tackle these issues by
proposing an approach for an automated realization of architectural patterns
within a given architectural graph based on graph transformation techniques.

Keywords: Application Architectures, Patterns, Solution Paths, Rewrite, Re-
finement, Graph Transformation.

1 Introduction

With the ongoing growth of IT application systems, the manual modeling and develop-
ment phase of their architectures becomes increasingly complex. Diverse modeling
tools are available to support this process, whereby each tool employs a different format
and, hence, the graphical representation, if available, differs as well. This also affects
the granularity of details depicted, like, e.g., abstract components are depicted or even
implementation details are given. To enable a classification of architectures, Malan and
Bredemeyer [1] delimit between three levels: (i) Conceptual architectures which are
abstract, (ii) logical architectures which are detailed, and (iii) execution architectures
which describe the process and deployment view. Further, each level can be subdivided
into a behavioral and structural view. Since an application system architecture has sig-
nificant impact on the prospective usability, performance, and maintainability, its de-
velopment phase is of explicit importance [2]. To ease this process and to support the
developer, diverse pattern languages can be used [3]. Patterns describe proven solutions
for recurring problems documented in an abstract and human readable way [4]. Due to
the abstract character of patterns, they cannot be applied to an architecture directly:
Patterns have to be read, understood, adapted, and realized manually for each use
case [4]. However, there are many pattern languages available, but a general approach
to automatically apply patterns to architectures to refine and model the architecture by

90

selecting patterns is still missing. Hence, each pattern is realized over and over again
manually, which leads to a multitude of possibly incorrect pattern realizations.

The result of the discussion above is that patterns are a profound support during the
development and modeling phase of an architecture, missing a tool and method inte-
gration. The manual modeling and development of application system architectures is
already a time consuming and error prone task. The lack of pattern integration leads to
an amplification of those negative aspects and a multitude of possibly incorrect pattern
realizations. Hence, the usage of patterns during the modeling phase, which should ac-
tually support and ease this phase, impedes it and makes it even more complex.

In this paper, we tackle these issues by introducing an approach to enable an auto-
mated pattern integration within the modeling and development process of the struc-
tural view of application system architectures on a conceptual level. In general, this
leads to an adapted modeling process: (i) Abstract architectures can be refined by ap-
plying patterns, i.e., corresponding components and connectors are added which results
in a more concrete architecture [5], and (ii) existing architectures can be rewritten based
on applied patterns, i.e., components and connectors get exchanged or deleted [6].

Following, we will combine (i) the knowledge of proven solutions for recurring
problems in terms of patterns, (ii) the modeling and development process of architec-
tures, and (iii) architectural effects of patterns if applied onto architectures.

The remainder of this paper is structured as follows: Fundamentals to ease the un-
derstanding are presented in Section 2. We introduce the concept of our approach in
Section 3 and work related to our approach is discussed in Section 4. We conclude this
work and give a short overview of future work in Section 5.

2 Fundamentals

Within this section we give an overview of fundamentals to ease the understanding of
our approach. First, background of application architectures and architectural graphs
that we use to represent an application system architecture is given. Then fundamentals
of patterns, pattern languages, and solution paths are presented.

2.1 Application System Architectures & Architectural Graphs

The structure of an IT system is described by its architecture, depicting the system's
components and their relationships, as well as their external visible properties [7]. Thus,
an IT architecture describes the composition of architectural elements without imple-
mentation details. For the documentation and visualization of an architecture, multiple
architecture description languages, modeling languages, and modeling tools are pre-
sent, such as ACME1, ArchiMate2, or particular UML3 diagrams. Since each language
and tool differs within their capabilities and, hence, their representation range, and due

1 http://www.cs.cmu.edu/~acme/
2 http://www3.opengroup.org/subjectareas/enterprise/archimate-overview
3 http://www.uml.org

91

to the fact, that in most cases diverse people are involved, like, e.g., business process
managers and programmers, which develop and discuss the architecture, the level of
details within an architecture differs [1]. It has become common practice to use draw-
ings of boxes to represent components and lines representing relationships [8]. This
informal proceeding adapts Le Métayer [9] and describes a representation and formal-
ization of software architectures as graphs, in which nodes represent components and
edges represent relationships among them. Within this work, we use such a graph rep-
resentation of architectures, referred to as an architectural graph to formalize an appli-
cation system architecture. Those architectural graphs represent structural architectures
on the conceptual level [1]. Fig. 1 shows an exemplary architectural graph, whereby
nodes represent the components of the architecture and edges represent the connectors
among the components. Furthermore, each node is mapped to a type, such as applica-
tion, server, or virtual machine. This mapping is required for a verification if the corre-
sponding pattern is applicable to the architectural graph, since a specific pattern cannot
be applied to all kind of architectural graphs due to possibly required components and
relationships, a detailed description follows in Sect. 3.3.

Fig. 1. Architectural Graphs

2.2 Patterns, Pattern Languages & Solution Paths

Patterns describe proven solutions for recurring problems within a certain context in an
abstract and human readable way [4]. For example, a pattern may provide an abstract
solution for common problems on how to design an application architecture. Patterns
abstractly document an approach on how to solve a certain problem, since they are
independent of the underlying technologies, such as specific runtime environments or
programming languages [4]. Typically, concrete implementation realizations, such as
code snippets, are not documented. Hence, patterns need to be adapted to the respective
use case, and can, therefore, be used within various kinds of IT environments [4].

Components &
Types

Connectors

92

A pattern language comprises a collection of related patterns, forming a network as
depicted in Fig. 2, in which one can navigate from one pattern to another related one
that might become relevant after the application of the first pattern [3,10]. Several pat-
tern languages are available in the field of IT, whereby each language has a different
focus. For example, Gamma et al. [11] published design patterns focusing on object-
oriented software, Fowler [12] introduced patterns for the development of enterprise
application systems, and Fehling et al. [13] published patterns which focus on cloud
computing and its architectures. Besides such general pattern languages, several pat-
terns are available, published and realized by platform providers, such as the AWS
Cloud Design Patterns [14]. Such provider-specific patterns are excluded from this
work since they are bound to the provider and implement provider-specific realizations.

Fig. 2. Pattern Language and Exemplary Solution Path [15]

As described above, a pattern language forms a network of patterns, which connects
related patterns [3,10]. After an entry point, i.e., a pattern which solves the problem at
least partially, to this network is found and selected, subsequent and related patterns
can be navigated to and selected as well [15]. Each such a possible path of selected
patterns within this network forms a solution path [15,16], one exemplary solution path
is shown in Fig. 2. Within our approach, we use solution paths to define the application
order of patterns to architectural graphs, since solution paths are directed paths.

3 Concept of Pattern-based Rewrite & Refinement of
Application Architectures

The aim of our approach is to enable a pattern-based rewrite and refinement of archi-
tectures through an automated application of patterns. Therefore, architectures are rep-
resented as architectural graphs as described in Sect. 2.1. To define the application order
of patterns, we use the selected solution path, as described in Sect. 2.2. Fig. 3 gives an
overview of our approach. On the upper left side, the input is shown, i.e., the basis
architectural graph and a selected solution path, which is described in Sect. 3.1. The
remaining steps are iterative, since each pattern of the selected solution path is applied
individually: First, the pattern which is applied next is defined, as described in Sect. 3.2.

Pattern Language

P1
P2

P5

P3 P4 P7

P6

Solution Path

93

Then the requirements of this pattern are checked, as explained in Sect. 3.3. In the last
step, the architectural graph is rewritten or refined, as described in Sect. 3.4.

Fig. 3. Concept of Pattern-based Rewrite and Refinement of Application Architectures

3.1 Input

A basis architectural graph and a selected solution path of a specific pattern language
forms the input of our iterative approach, as shown on the top left of Fig. 3. The basis
architectural graph is a possibly abstract architecture represented as a graph, as de-
scribed within Sect. 2.1, on which the modifications resulting of the application of a
pattern are performed. For instance, a client server architecture could be such a basis
architectural graph with three nodes, i.e., two nodes of type client and another node of
type server, as well as two edges connecting both client components with the server
component. Furthermore, the selected solution path, as described within Sect. 2.2,
forms the second part of the input. The selected solution path comprises all patterns that
have to be applied, and the order of the directed solution path defines the application
order in which the patterns are applied to the basis architectural graph. For each pattern
of the solution path all following described three steps are performed. The resulting
architectural graph of one iteration serves as an input for the next iteration. Within the
first iteration the basis architectural graph of the input is used to operate on.

3.2 Apply Pattern of Solution Path

Within the step Apply Pattern of Solution Path, as shown on the top right-hand side of
Fig. 3, the next pattern of the solution path, as defined within the input, is taken to be
applied to the (basis) architectural graph. The solution path defines the application or-
der, i.e., starting with the first pattern P3 of the solution path, within the next iteration

Apply
Pattern of
Solution

Path

Check
Require-
ments

Rewrite
or Refine

Pattern Language

P1
P2

P5

P3 P4 P7

P6

Solution Path

Modified Architectural Graph

Input

P3
P4

P6

Solution Path

Basis Architectural
Graph

R

FR

fR

Required Fragment

Modification Fragment

Local Pattern Operator

Components

Connectors

(Basis) Architectural GraphP3

R

Required Fragment

(Basis) Architectural Graph

⊆?

P3

FR

Modification Fragment

fR

Selected Solution Path

94

the second pattern P4 gets applied, etc. To achieve a proper modification of the archi-
tectural graph, each pattern consists of three attachments: (i) R - The required fragment,
which describes a possibly empty subgraph containing the required components and
connectors of which the pattern cannot be applied without. If the pattern comprises no
requirements the required fragment is an empty graph. (ii) FR - The modification frag-
ment, comprising a possibly empty graph, contains all components and connectors
which have to be embedded in the architectural graph. Embedding a modification frag-
ment covers adding and removing the fragment or parts of it, as well as replacing com-
ponents and connectors of the architectural graph with components of the modification
fragment or even replacing the whole graph. (iii) fR - The local pattern operator defines
the modification of the architectural graph, i.e., how the modification fragment is em-
bedded, like e.g., the fragment is added and connected to a specific node.

3.3 Check Requirements

Within the step Check Requirements, as shown on the bottom right side of Fig. 3 the
above described requirements of the pattern to be applied get verified. Therefore, it is
checked if the required fragment R is a subgraph of the (basis) architectural graph. For
a positive verification, the (basis) architectural graph has to contain the required frag-
ment R, i.e., R is a subgraph of the (basis) architectural graph. If the required fragment
R is not contained within the (basis) architectural graph, i.e., the required fragment R is
not a subgraph of the (basis) architectural graph, the pattern cannot be applied. This
verification is done within each iteration, checking if the actual pattern of the solution
path can be applied. Corresponding to the example within Fig. 3, for applying the pat-
tern P3 the (basis) architectural graph must contain a subgraph with two nodes of a
specific type, as well as an edge connecting both components with each other. This
procedure ensures that for the (basis) architectural graph only suitable patterns are ap-
plied and, thus, that only reasonable architectural graphs result of the next step.

3.4 Rewrite or Refine

The Rewrite or Refine step, shown on the bottom left side of Fig. 3 modifies the archi-
tectural graph based on the modification fragment and the local pattern operator. As
described above, the modification fragment FR consists of all components and connect-
ors to be embedded within the (basis) architectural graph and the local pattern opera-
tor fR defines how the modification fragment gets embedded. This results in a modified
architectural graph. As shown in Fig. 3, embedding the modification fragment FR in the
basis architectural graph means that the lower left node of the basis architectural graph
is replaced by the middle node of the modification fragment and the remaining two
component nodes and the corresponding connectors are added to the architectural
graph. The modification may either result in a refined architectural graph, i.e., more
details in terms of added components and connectors are depicted, or it results in a
rewritten architectural graph, i.e., components and connectors are exchanged or deleted.
The modified architectural graph is then used within the next iteration as the underlying
architectural graph on which the next pattern of the solution path gets applied.

95

4 Related Work

In this section we delimit our approach against existing works that combine the
knowledge of proven solutions for recurring problems, in terms of patterns, and the
modeling and development process of architectures of application systems.

Eden et al. [17] introduce an approach for an automated application of design pat-
terns. For this, programmers have to specify a pattern in an abstract way and the reali-
zation of the pattern in a specific program. Following, the pattern can be applied auto-
matically, whereby the programmer may edit the implementation manually. Contrary
to our work, patterns are used to add source code to a given program and not to model
and define the architecture of an application system on a conceptual level.

Bergenti and Poggi [18] introduce the IDEA (Interactive DEsign Assistant) system
to detect design patterns within UML class and collaboration diagrams. The system
further enables to improve the detected pattern realizations within an UML diagram.
This work focuses on the detection and improvement of design patterns and operates
on a logical architecture, whereby the structural as well as the behavioral view is con-
sidered [1]. Contrary, our work operates on the conceptual level, focusing on the struc-
tural view and uses patterns to automatically model and define the architecture.

Bolusset and Oquendo [5] introduce a formal approach to refine software architec-
tures based on transformation patterns using rewriting logic. Within their approach the
refinement of an architecture does not change the architecture but specifies the compo-
nents of an architecture in more detail, such as the definition of ports. Contrary, our
approach results in a more detailed and possibly changed architecture. Furthermore,
they use transformation patterns in terms of rewriting logic rules and equations and not
in terms of best-practices and proven solutions for recurring problems.

Zdun and Avgeriou [19] present an approach to model architectural patterns through
architectural primitives using UML profiles. This work focuses on modeling architec-
tural patterns. Contrary, they do not use patterns to model and define an architecture.

Arnold et al. [20,21] introduce an approach for an automated realization of deploy-
ment patterns, which describe service deployment best-practices as model-based pat-
terns capturing the structure of a solution without the binding to a specific resource
instance. Therefore, deployment patterns have to be defined and modeled by experts so
that deployer can use them. In contrast to our work, they do not use architectural pat-
terns to model and define the architecture of an application system.

Zimmermann et al. [22] present an architectural design method based on the combi-
nation of pattern languages and reusable architectural design decision models. Contrary
to our approach, within their work they use patterns in terms of architectural decisions.

Eilam et al. [23] present an approach for an automated transformation of deployment
models onto workflow models. Within this work, transformation operations are repre-
sented as automation signatures including a model pattern representing the effects of
operations on resources. Those automation signatures, i.e., model-based patterns are
matched to a deployment desired state model. Hence, in this work patterns are used in
terms of automation signatures and not as proven solutions for recurring problems.

Fehling et al. [24] present an approach to enrich application architecture diagrams
by pattern annotations during the development phase. In contrast to our approach, those

96

pattern annotations express the requirements of application components and usage de-
pendencies on each other and on the runtime. They do not use patterns to model or
define the refinement of the architecture of an application system itself.

Breitenbücher [25] and Breitenbücher et al. [26,27] introduce an approach to auto-
matically apply management patterns onto topologies to enable the management of
composite cloud applications. Contrary to our approach, they do not focus on modeling
an application architecture through a selection and application of patterns. Since they
operate on topology graphs and use graph isomorphism and subgraph isomorphism
methods to verify if a pattern can be applied to a topology graph, this can be used within
our approach as a basis to check if a pattern is applicable to a given architectural graph.
Furthermore, the algorithm used to transfer the topology, i.e., the application of the
pattern, can be used as a basis for the modification of architectural graphs as well.

Jamshidi et al. [28] describe a set of patterns which document how to migrate an
application to a cloud environment. Within each pattern the initial as well as resulting
architecture of the application is described. Even though this can be used for an auto-
mated migration, each pattern is applied to an architecture manually.

Lytra et al. [29] introduce an approach and prototypical implementation for transfor-
mation actions and consistency checking rules to (semi-)automatically map architec-
tural design decisions onto architectural component models. Furthermore, they intro-
duce an architectural knowledge transformation language to define and realize the men-
tioned mapping. In contrast to our approach, this work does not use patterns to define
an architecture, but the selection of architecture design decisions results in pattern im-
plementations. Thus, pattern realizations are one result of their approach, but patterns
are not used to model or define the refinement or rewrite of an architecture.

Hirmer and Mitschang [30] describe an approach to transform non-executable data
mashup plans into an executable format by selecting an appropriate pattern and further
parameters. This approach is based on rule-based transformations and focuses on data
processing and integration scenarios. In contrast to our work, this approach uses prede-
fined modularized implementation fragments which are selected and scripted together.

Amato and Moscato [31] present an approach for a manual formalization of patterns
resulting in workflows and automatic verification of soundness. Contrary, the devel-
oper has to model or formalize the pattern by hand and cannot apply it automatically.

Lehrig [32] and Lehrig et al. [33] introduce the architectural template (AT) method,
which enables design-time analyses of quality-of-service properties of software sys-
tems based on reusable modeling templates capturing architectural knowledge. Con-
trary, their approach operates on existing architectures aiming the analysis of its behav-
ioral models, and, therefore architectural templates are embedded within the architec-
ture automatically. Nevertheless, the embedding of architectural templates can serve as
a basis for the refinement and rewrite of architectural graphs.

Saatkamp et al. [34,35] present an approach to automatically detect problems in re-
structured deployment models by formalizing the problem and context domain of ar-
chitecture and design patterns. This approach can be adapted and integrated within our
approach to verify if a pattern is applicable to an architectural graph. Nevertheless, they
do not apply patterns to a deployment model or use patterns to model or define the
rewrite or refinement of an architecture of an application system.

97

Falkenthal et al. [36,37] introduce concrete solutions of patterns capturing imple-
mentation realizations, such as code snippets. Based on the selected concrete solution
path, they further present a method to aggregate multiple concrete solutions into an
overall solution. Contrary to our work, Falkenthal et al. do not operate on the structural
view of conceptual architectures. Nevertheless, a pattern realization within an architec-
tural graph can be considered as a concrete solution, this indicates that the aggregation
of concrete solutions is also possible within our approach. In future work we will in-
vestigate if their approach is applicable to the structural view of conceptual architec-
tures and if an aggregated application of patterns is a promising approach for our work.

5 Conclusion & Future Work

Up to this point, patterns have to be read, understood, adapted, and implemented for
each use case manually. This procedure has to be integrated into the modeling process
of architectures of application systems. Our approach eases the development and mod-
eling process of architectures by combining this process with the knowledge of proven
solutions for recurring problems in terms of patterns.
Within this work we introduced our approach to enable a refinement and rewrite of
architectures based on selected patterns. Therefore, architectures are depicted as archi-
tectural graphs, with nodes representing components and edges representing connectors
among the components of an architecture of an application system. Following a selected
solution path, patterns are applied to the architectural graph successively. To achieve a
coherent resulting architectural graph, patterns are only applied if their requirements
are fulfilled, i.e., if the required possibly empty subgraph is present within the underly-
ing (basis) architectural graph. The modification of the architectural graph resulting of
the application of a specific pattern is based on a modification fragment, which depicts
a possibly empty graph to be embedded within the architectural graph, and on the local
pattern operator, which defines how the modification fragment is embedded within the
architectural graph. As a result, the architectural graph can be refined through the ap-
plication of patterns, i.e., components and connectors are added, or the architectural
graph can be rewritten, i.e., already present components and connectors are exchanged
or even deleted. Hence, our approach enables a pattern-based refinement and rewrite of
application architectures by using graph transformation techniques.

Within future work, we will formalize and further elaborate the presented approach.
Furthermore, we will investigate, whether there are better ways to define the application
order of patterns, for example, if an application order based on the required fragments
or modification fragments of all patterns of the selected solution path are more effec-
tive. Additionally, we will consider the approach of Falkenthal et al. [36,37] to investi-
gate if an application of the aggregated patterns of the selected solution path is effective.

Acknowledgements. This work was partially funded by the German Research Foun-
dation (DFG) project ADDCompliance (636503).

98

References

1. Malan, R., Bredemeyer, D.: Software architecture: Central concerns, key decisions. Software
Architecture Action Guide. Architecture Resources Pubs., Bredemeyer Consulting (2002).

2. Kaartinen, J., Palviainen, J., Koskimies, K.: A pattern-driven process model for quality-cen-
tered software architecture design - A case study on usability-centered design. In: Proceedings
of the Australian Software Engineering Conference, pp. 17–26. IEEE (2007).

3. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings, Con-
struction. Oxford University Press (1977).

4. Alexander, C.: The Timeless Way of Building. Oxford University Press (1979).
5. Bolusset, T., Oquendo, F.: Formal Refinement of Software Architectures Based on Rewriting

Logic. Proceedings of the International Workshop on Refinement of Critical Systems: Meth-
ods, Tools and Experience 29(5), 1-20 (2002).

6. Meseguer, J.: Research Directions in Rewriting Logic. In: Computational Logic.
Springer (1999).

7. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wes-
ley (2003).

8. Allen, R., Garlan, D.: Formalizing architectural connection. In: Proceedings of the 16th Inter-
national Conference on Software Engineering, pp. 71–80. IEEE (1994).

9. Le Métayer, D.: Describing software architecture styles using graph grammars. IEEE Trans-
actions on Software Engineering 24, 521–533 (1998).

10. Fehling, C., Barzen, J., Falkenthal, M., Leymann, F.: PatternPedia – Collaborative Pattern
Identification and Authoring. In: Proceedings of Pursuit of Pattern Languages for Societal
Change. The Workshop 2014, pp. 252–284 (2015).

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Ob-
ject-oriented Software. Addison-Wesley (1994).

12. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley (2002).
13. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns:

Fundamentals to Design, Build, and Manage Cloud Applications. Springer (2014).
14. Amazon Web Services LLC: AWS Cloud Design Pattern. http://en.clouddesignpattern.org/in-

dex.php/Main_Page, last accessed 2018/06/22.
15. Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F., Hadjakos, A., Hent-

schel, F., Schulze, H.: Leveraging Pattern Applications via Pattern Refinement. In: Proceed-
ings of the International Conference on Pursuit of Pattern Languages for Societal Change,
pp. 38–61. epubli (2016).

16. Zdun, U.: Systematic Pattern Selection Using Pattern Language Grammars and Design Space
Analysis. In: Software: Practice & Experience 37, 983–1016 (2007).

17. Eden, A. H., Yehudai, A., Gil, J.: Precise Specification and Automatic Application of Design
Patterns. In: Proceedings of the 12th IEEE International Conference Automated Software En-
gineering, pp. 143–152. IEEE (1997).

18. Bergenti, F., Poggi, A.: Improving UML Designs Using Automatic Design Pattern Detection.
Handbook of Software Engineering and Knowledge Engineering: Volume II: Emerging Tech-
nologies, pp. 771-784 (2002).

19. Zdun, U., Avgeriou, P.: Modeling Architectural Patterns Using Architectural Primitives. In:
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications, pp. 133–146. ACM (2005).

20. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totok, A.A.: Pattern Based SOA
Deployment. Proceedings of the 5th International Conference on Service-Oriented Computing,
pp. 1–12. Springer (2007).

99

21. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totok, A.A.: Automatic Realization
of SOA Deployment Patterns in Distributed Environments. Proceedings of the 6th Interna-
tional Conference on Service-Oriented Computing, pp. 162–179. Springer (2008).

22. Zimmermann, O., Zdun, U., Gschwind, T., Leymann, F.: Combining Pattern Languages and
Reusable Architectural Decision Models into a Comprehensive and Comprehensible Design
Method. In: 7th Working IEEE/IFIP Conference on Software Architecture, pp. 157–166.
IEEE (2008).

23. Eilam, T., Elder, M., Konstantinou, A.V, Snible, E.: Pattern-based Composite Application
Deployment. In: Proceedings of the 12th IFIP/IEEE International Symposium on Integrated
Network Management, pp. 217–224. IEEE (2011).

24. Fehling, C., Leymann, F., Rütschlin, J., Schumm, D.: Pattern-Based Development and Man-
agement of Cloud Applications. In: Future Internet 4, 110–141 (2012).

25. Breitenbücher, U.: Eine musterbasierte Methode zur Automatisierung des Anwendungsmana-
gements. Dissertation, University of Stuttgart, Faculty of Computer Science, Electrical Engi-
neering, and Information Technology (2016).

26. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Pattern-based Runtime Management of
Composite Cloud Applications. In: Proceedings of the 3rd International Conference on Cloud
Computing and Services Science, pp. 475–482. SciTePress (2013).

27. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Automating Cloud Application Manage-
ment Using Management Idioms. In: Proceedings of the 6th International Conferences on Per-
vasive Patterns and Applications, pp. 60–69. Xpert Publishing Services (2014).

28. Jamshidi, P., Pahl, C., Chinenyeze, S., Liu, X.: Cloud Migration Patterns: A Multi-Cloud Ser-
vice Architecture Perspective. In: Service-Oriented Computing - ICSOC 2014 Workshop,
pp. 6–19. Springer (2014).

29. Lytra, I., Tran, H., Zdun, U.: Harmonizing architectural decisions with component view mod-
els using reusable architectural knowledge transformations and constraints. In: Future Gener-
ation Computer Systems 47, 80–96 (2015).

30. Hirmer, P., Mitschang, B.: FlexMesh - Flexible Data Mashups Based on Pattern-Based Model
Transformation. In: Rapid Mashup Development Tools, pp. 12–30. Springer (2016).

31. Amato, F., Moscato, F.: Pattern-based orchestration and automatic verification of composite
cloud services. In: Computers and Electrical Engineering 56, 842–853. Elsevier Ltd (2016).

32. Lehrig, S. M.: Efficiently Conducting Quality-of-Service Analyses by Templating Architec-
tural Knowledge. Dissertation, University of Stuttgart, Faculty of Computer Science, Electri-
cal Engineering, and Information Technology (2018).

33. Lehrig, S., Hilbrich, M., Becker, S.: The architectural template method: templating architec-
tural knowledge to efficiently conduct quality-of-service analyses. In: Software: Practice and
Experience 48, 268–299 (2018).

34. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: An Approach to Automatically De-
tect Problems in Restructured Deployment Models based on Formalizing Architecture and
Design Patterns. Computer Science - Research and Development (2018).

35. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: Application Scenarios for Auto-
mated problem Detection in TOSCA Topologies by Formalized Patterns. In: Proceedings of
the 12th Advanced Summer School on Service Oriented Computing. IBM Research Divi-
sion (2018).

36. Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F.: Efficient Pattern Ap-
plication: Validating the Concept of Solution Implementations in Different Domains. In: In-
ternational Journal On Advances in Software 7, 710–726 (2014).

37. Falkenthal, M., Barzen, J., Breitenbücher, U., Leymann, F.: On the Algebraic Properties of
Concrete Solution Aggregation. In: Computer Science - Research and Development (2018).

100

The SustainLife Project –
Living Systems in Digital Humanities

Claes Neuefeind1, Lukas Harzenetter2, Philip Schildkamp1, Uwe Breitenbücher2,
 Brigitte Mathiak1, Johanna Barzen2, and Frank Leymann2

1 University of Cologne, 50923 Cologne, Germany
2 University of Stuttgart, 70569 Stuttgart, Germany

{c.neuefeind,philip.schildkamp,bmathiak}@uni-koeln.de
{lukas.harzenetter,uwe.breitenbuecher,

johanna.barzen,frank.leymann}@iaas.uni-stuttgart.de

Abstract. In the arts and humanities, research applications play a central role in
securing and presenting digital results. However, due to their steadily increasing
number and their heterogeneity, it is difficult to ensure the sustainability and du-
rability of this kind of living systems from an organizational point of view. This
paper describes a project for the preservation of specialized web-based research
applications in the humanities. The SustainLife project investigates to what ex-
tent methods and technologies of professional cloud deployment and provision-
ing strategies can be applied to problems of long-term availability of research
software as they are omnipresent in humanities data centers such as the Data
Center for the Humanities (DCH) at the University of Cologne. Technological
basis of the project is the OASIS standard TOSCA and the Open Source imple-
mentation OpenTOSCA, respectively, which was developed at the Institute for
Architecture of Application Systems (IAAS) at the University of Stuttgart. In the
course of the project selected use cases from the field of Digital Humanities (DH)
will be modeled in TOSCA to be able to automatically deploy them upon request
at any time. The TOSCA standard enables a portable description of the modeled
systems independent of specific providers to facilitate their long-term availabil-
ity. The aim is to provide system components described in the use cases in a
component library, as well as in the form of TOSCA-compliant application tem-
plates to make them available for reuse in other DH projects.

Keywords: Living Systems, Sustainability, Research Software.

1 Introduction

The exponential growth and the increasing use of digital research data have a significant
impact on the research process in the humanities. To take advantage of the benefits of
digitization, appropriate infrastructure must be created that guarantees the management
of research data, its permanent availability, and free access. The large number of scien-
tific recommendations, stocktakings, surveys, and institutional guidelines on the sub-
ject of research data, which have been published in recent years, are signs of increasing

101

mailto:lncs@uni-koeln.de

awareness of the problem, political willingness to act, but also of a continuing need for
action [18, 23, 7, 19]. Existing European and national infrastructure projects in the hu-
manities (e.g., CLARIN and DARIAH) as well as the establishment of subject-specific
data centers such as, for example, the Data Center for the Humanities (DCH) of the
University of Cologne (see http://dch.uni-koeln.de), have steadily improved the supply
situation for research data. However, not all of the produced research results are actu-
ally made available for reuse or, respectively, are equipped for permanent availability
in a highly dynamic digital world [20, p. 31, 23, p. 54].

Up to now, the discussion has mostly focused on information systems for the stand-
ardized storage and provision of primary research data. It is largely overlooked that the
majority of the digital products in the humanities do not only consist of primary re-
search data, but are, above all, available in the form of research software. In fact, digital
systems such as research databases, digital editions, digital presentation systems, inter-
active visualizations, and virtual research environments – to name only a few – repre-
sent an essential component of the research results, especially in the context of Digital
Humanities (DH). Often, these are the actual bearers of information content or, respec-
tively, of the added value of the scientific output provided in the project [22]. A sus-
tainability policy that falls back onto the separation and archiving of the primary data
alone inevitably leads to the loss of information, and in the worst case reduces the sci-
entific benefit to zero [1]. In contrast to traditional forms of securing results, published
books for instance, the permanent maintenance, support and provisioning of such “liv-
ing systems” [21] continues to be a major technical, organizational, and thereby ulti-
mately financial challenge. While it is comparatively easy to preserve data sets of pri-
mary research data in data archives for posterity, living systems are part of a digital
ecosystem and must regularly adapt to it, e.g., in the form of updates.

1.1 Problem Statement

Humanities data centers face the challenge of preserving an unknown, potentially un-
limited number of research software, in order to assure their availability on a permanent
basis. Internal evaluations from the consulting activities of the DCH at the Faculty of
Arts and Humanities of the University of Cologne show that more than one third of all
inquiries aim at the creation of individual research platforms [1]. In a survey on research
data among the scientific staff at the Faculty of Arts and Humanities conducted in 2016,
62% of the respondents said that they need support for their running applications [11].
It is therefore all the more surprising that there have been only few dedicated studies so
far on the exact nature of these living systems. Wuttke et al. [22] found that “research
data types” in humanities can be categorized into three types of applications, namely
(i) digital editions, (ii) databases, and (iii) interactive visualizations [22]. A systematic
survey of all humanities research applications is still missing, both in the general re-
search landscape and at the Faculty of Arts and Humanities. Not only a high methodo-
logical diversity is to be expected, but also a considerable diversity of the technologies
used.

This heterogeneity is a major challenge for a sustainable conservation strategy. Re-
search applications are by no means static objects, but are subject to continuous change.

102

http://dch.uni-koeln.de/

For example, many applications are platforms that accept user input and, thus, con-
stantly change their database. Browser updates and changes in usage habits can make
certain components unusable or obsolete and, thus, trigger the need for a serious code
revision. Vital security updates regularly require actions to be taken and can result in
cascades of further updates and software adaptations. To ignore continuous mainte-
nance may save costs in the short term, but seriously increases the problem in the me-
dium and long term. Experiences from the “LAZARUS Project” carried out at the DCH
in 2013-2015 show that applications that remain without maintenance for a longer pe-
riod of time can only be revitalized at a great expense of resources [6].

Furthermore, data centers are confronted with the dilemma that limited project du-
rations make permanent operation significantly more difficult from an organizational
point of view. This is particularly fatal in humanities, where often a different measure
of sustainability is applied than in the comparatively fast-moving natural sciences. The
institutional provision of research data for a few decades fulfills the purpose of verifia-
bility and reproducibility in the sense of good scientific practice; but for the provision
of cultural heritage objects, a time limit does not even make sense. Even if a shutdown
cannot be avoided for safety or cost reasons, it must at least be ensured that the appli-
cation and the data basis are archived in a way that they can be restored loss-free and
reusable at any time.

1.2 Key Challenges

In summary, we see the following challenges in connection with living systems, that
have to be addressed to establish a strategy for their sustainable preservation:

1. So far there is no overview of the overall landscape of research applications in the
Digital Humanities, which is a necessary prerequisite for dealing with the problem.

2. A quick analysis of use cases from the field of DH shows a wide range of technolo-
gies and methodological approaches. In contrast to large commercial information
systems, the field of DH is characterized by a great number of smaller, highly heter-
ogeneous software solutions, which are all equally subject to the problem of “soft-
ware aging” [17].

3. The exposure of these technologies to the Internet is inherently associated with con-
tinuous development efforts, e.g., to keep the systems permanently available through
security updates.

4. However, funding for long-term software maintenance is usually very limited.
5. If a service is not needed anymore, its current application state must be stored so that

it can be reinstated in the same state upon request during the next provisioning. Both
concepts are currently missing.

6. Starting (research) applications ten years after their last successful provisioning, e.g.
to verify the research results, does not work in most cases. Especially, if the under-
lying infrastructure has changed to current state-of-the-art components because of
security and availability issues.

103

2 The SustainLife Project

Against the background of the challenges described above, the Institute for Architecture
of Application Systems (IAAS) of the University of Stuttgart and the Data Center for
the Humanities (DCH) of the Faculty of Arts and Humanities, University of Cologne,
started the joint project “SustainLife” in March 2018, funded by the DFG under the
funding line “Scientific Library Services and Information Systems” (LIS) for a period
of three years. The project develops solutions based on the OASIS standard TOSCA
[14, 16]. TOSCA provides a portable description of IT systems in the form of models
to automate their provisioning and management which is described in more detail in
Section 2.1. This enables the creation of adaptable and future-proof software architec-
tures. In the following sections 2.1 and 2.2, the technical basis (TOSCA and Open-
TOSCA) of the project is explained in more detail. The main objectives of the project
are then described in Section 2.3, followed by the projects’ methodology in Section 2.4.

2.1 TOSCA

The Topology Orchestration Specification for Cloud Applications (TOSCA) [14, 15,
16] is an OASIS standard for modelling, provisioning, and managing cloud applications
in a standardized and provider-independent way. In TOSCA, a cloud application or
service is modelled in a “Service Template”. Inside a Service Template, the “Topology
Template” describes the service’s topology as a directed multigraph, whereby the nodes
are represented by “Node Templates” and “Relationship Templates” detail the edges.
Underneath, TOSCA defines a type system defining common properties and attributes
in “Node Types” and “Relationship Types” respectively. For example, a web applica-
tion written in PHP may be hosted on an Apache webserver which itself is hosted on
an Ubuntu virtual machine. Therefore, three Node Types, “web-application”, “Apache-
server”, and “Ubuntu-VM”, as well as the “hosted-on” Relationship Type must be
available. A Service Template describing this application will contain three Node Tem-
plates, “app”, “webserver”, and “VM”, and two Relationship Templates modelling the
relationship between the app and the webserver, as well as the webserver and the virtual
machine – where each template is an instance of the respective type definition.

In general, TOSCA provides various extensions and mechanisms for modeling, pro-
visioning and managing any type of software component. In addition, existing technol-
ogies, such as container systems like Docker, can be seamlessly integrated. TOSCA is
therefore not a competitive approach to existing technologies, but a way to combine
them [12]. However, in contrast to Docker and Kubernetes, TOSCA enables the de-
ployment of arbitrary software components such as legacy software [12].

To automatically deploy, provision and manage the modelled service, TOSCA de-
fines a self-contained archive called “Cloud Service Archive” (CSAR) which contains
the Service Template, all Node Types and Relationship Types, as well as all required
software artifacts, scripts, and binaries required for provisioning. A TOSCA runtime
environment can consume a CSAR to automatically deploy and instantiate the enclosed
application. For provisioning a service, TOSCA supports both, declarative and imper-
ative [8] deployments using plans like BPMN4TOSCA [9].

104

2.2 OpenTOSCA

In a series of research projects, the University of Stuttgart has developed the Open-
TOSCA ecosystem – an open source implementation for the TOSCA standard, which
will be adapted to the specific needs of the DH and which will form the basis for the
modelling of use cases within the SustainLife project. The OpenTOSCA ecosystem
includes (i) the modeling tool Winery, which enables the creation of TOSCA-based
application models [10], (ii) the runtime environment OpenTOSCA for automated pro-
visioning and management of the modelled applications [4], and (iii) the self-service
portal Vinothek [5], which lists all applications installed in the OpenTOSCA container
and serves as a graphical interface to the user.

In a first publication by Breitenbücher et al. [3] it was already shown that the TOSCA
standard is generally suitable for assuring the digital sustainability of research results
[3], as research applications, which are packaged in CSARs, can be executed years later
by a TOSCA runtime environment. However, there is currently no possibility to update
the service’s components. If a component must be exchanged because of security is-
sues, or because it is not available anymore, the CSAR may no longer be deployable.
This currently limits the use of CSARs for living systems.

2.3 Objectives

The overall goal of the project is to improve the sustainability of living systems in the
Digital Humanities. Against the background of the technological requirements associ-
ated with the TOSCA standard, the subordinated goals of the project result directly
from the challenges described above:

1. Our first goal is to provide a systematic overview of the field of DH that goes beyond
previous literature, particularly in the area of technological and methodological clas-
sification employed in the software artifacts.

2. Investigating the multitude of possible solutions, a set of key components that are
frequently used and that consequently have high potential for synergetic effects will
be identified and modeled in TOSCA artifacts.

3. The project extends the OpenTOSCA ecosystem to include application templates,
component types, and to implement additional management functionalities which
provide standardized operating and maintenance solutions for these components,
e.g., applying (security) updates or software patches.

4. Additionally, concepts are needed which are able to “freeze” and “defrost” an appli-
cation to ensure that they can be reinstated in the same application state as they were
decommissioned.

5. We expect this to reduce maintenance costs and will evaluate this expectation on the
basis of selected use cases. Gained experiences and best practices will be fed back
to the community, e.g., in workshops and publications.

105

2.4 The Sustainability

To achieve these goals, it is essential to first obtain an overview of the specific needs
of living systems in the Digital Humanities in detail; for example, which technologies
are actually being used and how can they be automated to a greater extent using the
TOSCA standard. This is meant to give a general idea of the technological needs and
the potential of the methodology in the context of real use cases. Based on this require-
ment analysis, a set of concrete use cases is selected and a concrete implementation
plan is created for each of them.

On the basis of the concrete use cases, frequently used key components with great
synergetic potential, typical application structures and central maintenance tasks are
identified. First, the components fundamentally required to implement the selected use
cases – such as web servers or operating systems – are modeled using TOSCA in order
to use them for automated provisioning and sustainable maintenance. For example, the
Spring framework, and various databases such as MongoDB, have to be deployable by
the OpenTOSCA ecosystem. The components can then be used in further use cases and
are intended to simplify future application developments, as they can be reused when
modelling other applications in TOSCA.

For automated provisioning and maintenance of applications using TOSCA, associ-
ated models describing the structure of the application must be developed. This is done
in close cooperation with the use case partners. In the process of modelling the use case
applications, the expenses incurred and savings made are recorded, e.g. which problems
occur and which requirements still exist, so that these can be processed further in the
further course of the project.

To facilitate an easier application development using TOSCA and, respectively, the
description of existing applications in TOSCA, model templates are developed which
can be reused as a basis. For this purpose, the use cases are analyzed for typical appli-
cation structures and corresponding models are created. For example, a common pattern
for web applications is to use LAMP-based technologies that use Linux-based operat-
ing systems to run Apache web servers and MySQL databases to run
PHP/Perlin/Python-based applications. Common structures of this kind should be cov-
ered by the templates. The aim of these model templates is therefore to develop new
applications efficiently and with little effort using TOSCA and the OpenTOSCA eco-
system and to maintain them with the help of the management concepts developed in
this project. In addition, a number of further extensions of the OpenTOSCA ecosystem
are necessary for their modelling, which will be carried out in the further course of the
project. These are explained in section 4.

3 Use Cases

Up to this stage of the project, four potential use cases were selected for the project as
examples of “living systems”, all originating from the Faculty of Arts and Humanities
of the University of Cologne. The selected use cases illustrate the diversity of the tech-
nologies used and the high degree of methodological and content-related specialization
that is typical for the DH research community.

106

3.1 Digital Romansh Chrestomathy

Our first use case is the “Digital Romansh Chrestomathy” (DRC, see
http://www.crestomazia.ch), which contains typical DH technologies like XML as well
as very specific tailor-made system components. It is therefore a representative for most
DH software components, as it combines several different problems existing in com-
mon DH software. The DRC was a DFG-funded cooperation project of the Department
for Linguistic Information Processing and the University and City Library of Cologne
between 2009 and 2011. The aim of the DRC project was to create a text corpus based
on Caspar Decurtins' “Rätoromanische Chrestomathie” (RC). With its approximately
7,500 pages of text from four centuries and the coverage of the five main idioms, the
RC is considered the most important collection of texts for the Romansh language. The
project implemented a virtual research environment consisting of an Eclipse-based ed-
itor and a XML database, as well as a portal page for searching the texts [12]. There are
still active users of the editor who contribute corrections and comments, and the search
functionalities are also still in use. Since project completion in 2011, the application
had to be adapted several times to ensure its usability.

Technologies (selection): Eclipse-RAP, eXist-db, Java, SCALA

3.2 Digital Averroes Research Environment

The “Digital Averroes Research Environment” (DARE, http://dare.uni-koeln.de) is a
digital research platform of the Thomas Institute of the University of Cologne. The aim
of the portal is to make the complete work of the philosopher Averroës publicly acces-
sible. In recent years, a large number of manuscripts and print editions have been dig-
itized, scientifically encoded on the basis of the TEI XML standard, and were published
via the DARE portal. The current DARE platform uses the Oxygen XML-editor for
data input and provides a custom search implemented in Free Pascal and XSL-
generated visualizations. In the future, the DARE web application will not only provide
a search and research functionality, but also the possibility to annotate the published
material by external users. The application is currently being refactored to provide a
browser-based user interface based on state-of-the art web technologies.

Technologies (selection): XSL, Free Pascal, Oxygen, Express-js, Nodejs, MySQL

3.3 Vedaweb

Subject of the cooperation project “VedaWeb” (see http://vedaweb.uni-koeln.de), in-
volving the department of Linguistics, the Cologne Center for eHumanities (CCeH) and
the Data Center for the Humanities (DCH) is a web-based platform for the linguistic
research of old Sanskrit texts. VedaWeb will make it possible to view the texts in digital
format as well as to search through them based on lexical and corpus linguistic criteria.
The project builds upon the Rigveda, one of the oldest and most important texts of the
Indo European language family which was composed in Vedic i.e., the oldest form of
Sanskrit in late second millennium B.C. In the course of the project, various research
and analytical tools will be developed and integrated into the VedaWeb platform; for

107

example, a combined search function according to linguistic parameters (lemma, word
forms, morphological and metrical information), access to various translations and
commentaries, as well as the possibility to export retrieved texts in TEI format accord-
ing to user defined criteria. Of central importance is the linking of the text to the Digital
Sanskrit Dictionaries Cologne (see http://www.sanskrit-lexicon.uni-koeln.de), which
are hosted by the CCeH.

Technologies (selection): Spring.io, elasticsearch, mongoDB, Javascript, TEI

3.4 German Early Cinema Database

Our fourth use case is the “German Early Cinema Database” (see http://ear-
lycinema.uni-koeln.de), which is maintained by the Institute of Media Culture and The-
atre at the University of Cologne. The German Early Cinema Database contains data
related to film supply, distribution, exhibition and reception in Germany between 1895
and 1926. The database consists of four parts: (i) approx. 5,000 texts on early cinema
in Germany between 1895 and 1914, from a wide selection of non-film sources, like
specialist journals and general newspapers. (ii) Information on itinerant and fairground
cinemas in Germany and neighboring countries between 1896 and 1926. (iii) Infor-
mation on approx. 45,000 films available on the German market between 1895 and
1920 (irrespective of their country of origin). (iv) A sample of film programs from 1905
to 1914, mostly from permanent cinemas compiled from the newspapers of nine Ger-
man cities of different regions and sizes (approx. 1,200 programs from approx. 100
cinemas, containing approx. 3,800 different films). The implementation is based on a
combination of CakePHP and MySQL. Due to the age of the application, the technolo-
gies used are no longer supported by the local data processing center in cologne. Since
the German Early Cinea Database is an absolutely unique resource for this type of in-
formation, it is a typical example to illustrate the need to preserve this kind of applica-
tions.

Technologies (selection): CakePHP, MySQL, JavaScript

4 Work Packages

Existing work in the TOSCA environment already contributes to the goal of modelling
and preserving applications for an instantiation after several years. However, most of
the work did not consider living systems and their resulting requirements. During the
SustainLife project, we want to address these requirements and extend the Open-
TOSCA ecosystem as depicted in Fig. 1. The already existing components Winery and
OpenTOSCA Container will be extended by the green elements in the respective work
packages (WP) during the project. While boxes describe extensions to the software
components, cylinders represent repositories containing, for example, the artifacts
which are describing the aforementioned use cases in TOSCA. The work packages
wrapping the planned extensions are described in the following sections.

108

Fig. 1. Work plan of the SustainLife project

4.1 Development of Templates for Typical Use Cases (WP1 & WP2)

TOSCA depends on a generic type system enabling the reuse of recurring components
like webservers, operating systems, or messaging middleware. Within the first two
work packages, we will identify the components with the highest synergetic effects and
model them as TOSCA artifacts to enable their automated provisioning using the Open-
TOSCA Container. Examples for components which were already identified in the pre-
sented use cases are an Ubuntu virtual machine, Java runtime environments, and several
types of databases like MySQL and mongoDB.

4.2 Versioning of TOSCA Models (WP3)

Living Systems are subject to constant changes. Webservers, for example, must be up-
dated or even exchanged regularly. Furthermore, if an application is deployed ten years
after its last successful provisioning, many components will be outdated and should not
be used because of, e.g., security or legal issues. Most of these changes are required
because new security issues become public and need to be fixed to ensure that no at-
tacker can gain access to the server or the data. Therefore, a versioning concept for
TOSCA models is required to maintain an overview over all available versions of the
components modeled in TOSCA. Since there is no versioning mechanism for TOSCA
available yet, we will work on an approach in the context of the SustainLife project.

WP1 & WP2: Extension for typical
Digital Humanities Use Cases

WP3: Versioning system for CSARs
including use case models

WP5: Extension to reinstate terminated
applications

WP4: System to automatically update
application components and management functionality

CSAR versioning
system

Version
database

Use case model
templates

Component
types

Application
management
system

Execution
of updates

Add management
functionality

Provisioning &
termination system

Reinstatement of
terminated
applications

TOSCA
Modelling Tool

TOSCA
Runtime

TOSCA
Self-Service Portal

= Existing components = New and extended components

109

Besides the management of security updates and patches, versioning of TOSCA ar-
tifacts is also required in a more general sense. For instance, it is an important prereq-
uisite to track the evolution of a component over time. By comparing different versions
of a service or component, it is possible to reproduce the performed steps and modifi-
cations. Beyond that, versioning also yields the possibility to maintain multiple service
architectures of a single application. For example, if a service was designed to run on a
local infrastructure in one version, another version can describe the topology in a public
cloud setting.

4.3 Modification of Management Functionality (WP4)

Currently, TOSCA supports two kinds of implementing management functionality: (i)
management operations at Node Types, and (ii) separately defined management plans.
In TOSCA, every component type can define custom management functionality by de-
fining management interfaces providing different operations. For example, TOSCA de-
scribes a lifecycle interface with the operations install, configure, start, stop, and unin-
stall [15, 16]. The operations can be implemented, for instance, by shell scripts per-
forming the desired operation. More complex management functionality can be de-
scribed and executed by management plans. The process of provisioning a whole ser-
vice can be modeled with a management plan describing every step of the process
which can be executed automatically by a TOSCA runtime. OpenTOSCA’s Winery
supports both flavors and is able to generate management plans for the provision and
termination of an application [2].

There is one major constraint, however: all management functionality must be
known at modelling time. While the installation of security updates is a known func-
tionality which can be considered during modelling time, new and unforeseen manage-
ment operations cannot be added during runtime which is a requirement coming from
the living systems to remain sustainable. Therefore, we want to set our research focus
in work package four on developing concepts to extend the management functionality
of software components during their runtime.

4.4 Concepts to Reinstate Terminated Applications (WP5)

In the context of living systems, there is the requirement for stopping and reinstating
applications at any subsequent point in time. In this context, the Digital Romansh
Chrestomathy (DRC) presented above serves as an example. The DRC service provides
a web-based editor building upon the Eclipse-RAP framework enabling users to correct
the digital version of the Romansh Chrestomathy. After the remediation is completed,
the editor should still be available for documentation purposes. Since the editor may
not be used for some time, it should be possible to stop the application and reinstate it
in the same application state to save computing resources and consequently costs. To
achieve this, the application state of the DRC service must be stored and recovered
during reinstatement.

Currently, neither the OpenTOSCA ecosystem, nor other cloud management sys-
tems supporting the TOSCA standard provide a functionality for saving and restoring

110

the application state of services which are modeled and instantiated using TOSCA in a
generic way. Consequently, the fifth work package in SustainLife is dedicated to the
development of concepts and functionalities to support freezing and defrosting of state-
ful services using TOSCA and especially the OpenTOSCA ecosystem.

5 Summary

During the SustainLife project we want to focus our research towards supporting living
systems in the Digital Humanities using TOSCA. The overall objective of the project
described here is to develop generic concepts for standards-based operation and mainte-
nance solutions and to implement them for specific components and application struc-
tures in a way that they can find practical application in humanities data centers like the
DCH. One major shortcoming we want to address is that CSARs should still be deploy-
able ten years after their development. Therefore, approaches to freeze and defrost
whole applications, as well as updating used components to state-of-the-art ones, will
be in the focus of our research in SustainLife. Findings and best practices from the
project are prepared in a way that solution models can be transferred to partners and
other data centers, and are communicated to the scientific public community through
workshops and publications.

Acknowledgements

References

1. J. Blumtritt, B. Mathiak, “Consulting Workflow for Humanities Research Data”, In: For-
schungsdaten in den Geisteswissenschaften (FORGE 2016), Hamburg, 2016.

2. U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann, J. Wettinger. “Combining De-
clarative and Imperative Cloud Application Provisioning based on TOSCA”, IC2E, S. 87–
96, 2014.

3. U. Breitenbücher, J. Barzen, M. Falkenthal, F. Leymann. “Digitale Nachhaltigkeit in den
Geisteswissenschaften durch TOSCA: Nutzung eines standardbasierten Open-Source Öko-
systems”. Konferenzabstracts DHd 2017: Digitale Nachhaltigkeit, S. 235-237, 2017.

4. T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, S. Wagner. “Open-
TOSCA - A Runtime for TOSCA-based Cloud Applications”. In: ICSOC, 2013, S. 692-695,
2013.

5. U. Breitenbücher, T. Binz, O. Kopp und F. Leymann. “Vinothek - A Self-Service Portal for
TOSCA”. In: ZEUS 2014, p. 69-72, 2014.

6. S. Bingert, J. Blumtritt, S. Buddenbohm, C. Engelhardt, S. Kronenwett, D. Kurzawe. “An-
wendungskonservierung und die Nachhaltigkeit von Forschungsanwendungen” In: For-
schungsdaten in den Geisteswissenschaften (FORGE 2016), Hamburg, 2016.

 This work is partially funded by the German Research Foundation (Deutsche For-
schungsgemeinschaft, DFG) project SustainLife (641730).

111

7. DV-ISA. “Umgang mit digitalen Daten in der Wissenschaft: Forschungsdatenmanagement
in NRW. Eine erste Bestandsaufnahme”, 2016, Version 0.7, https://www.dvisa-nrw.de/vero-
effentlichungen/veroeffentlichungen-container-oeffentlich/dv-isa-vorstudie-bestandsauf-
nahme-forschungsdatenmanagement

8. C. Endres, Breitenbücher, U., Falkenthal, M., Kopp, O., Leymann, F., & Wettinger, J. “De-
clarative vs. Imperative: Two Modeling Patterns for the Automated Deployment of Appli-
cations”. In Proceedings of the 9th International Conference on Pervasive Patterns and Ap-
plications (PATTERNS), 2017, pp. 22-27

9. O. Kopp, T. Binz, U. Breitenbücher, F. Leymann. „BPMN4TOSCA: A domain-specific lan-
guage to model management plans for composite applications”. In International Workshop
on Business Process Modeling Notation, pp. 38-52. Springer, Berlin, Heidelberg, 2012.

10. O. Kopp, T. Binz, U. Breitenbücher und F. Leymann. “Winery – A Modeling Tool for
TOSCA-based Cloud Applications”. In: ICSOC, 2013, S. 700-704, 2013.

11. S. Kronenwett. “Forschungsdaten an der Philosophischen Fakultät der Universität zu Köln”
(Kölner Arbeitspapiere zur Bibliotheks- und Informationswissenschaft, Bd. 78), 2017.

12. F. Leymann, U. Breitenbücher, S. Wagner, J. Wettinger. “Native Cloud Applications: Why
Monolithic Virtualization Is Not Their Foundation”. Cloud Computing and Services Sci-
ence, Springer, pp. 16-40, 2017.

13. C. Neuefeind, J. Rolshoven, F. Steeg. “Werkzeuge und Verfahren für die Korpuserstellung
durch kollaborative Volltexterschließung”. In: Conference of the German Society for Com-
putational Linguistics and Language Technology (GSCL), Hamburg, pp. 163-168, 2011.

14. OASIS: “Topology and Orchestration Specification for Cloud Applications Version 1.0”,
2013.

15. OASIS. “Topology and Orchestration Specification for Cloud Applications (TOSCA) Pri-
mer Version 1.0”. 2013.

16. OASIS: “TOSCA Simple Profile in YAML”, Version 1.0, 2015.
17. D. L. Parnas. “Software Aging”. In: Proceedings of the 16th International Conference on

Software Engineering (ICSE 1994). IEEE, May 1994, pp. 279-287, 1994.
18. H. Pampel, R. Bertelmann. “Data Policies im Spannungsfeld zwischen Empfehlung und

Verpflichtung”. In: Handbuch Forschungsdatenmanagement, 2011, pp. 49–61.
19. Rat für Informationsinfrastrukturen. “Leistung aus Vielfalt. Empfehlungen zu Strukturen,

Prozessen und Finanzierung des Forschungsdatenmanagements in Deutschland”, 2016,
http://www.rfii.de/download/rfii-empfehlungen-2016/

20. M. Razum, J. Neumann. “Das RADAR Projekt: Datenarchivierung und -publikation als
Dienstleistung - disziplinübergreifend, nachhaltig, kostendeckend”. In: o│bib Das offene
Bibliotheksjournal, 1/1, 2014, pp. 30–44, https://www.o-bib.de/article/view/2014H1S30-
44/117

21. P. Sahle, S. Kronenwett. “Jenseits der Daten: Überlegungen zu Datenzentren für die Geis-
teswissenschaften am Beispiel des Kölner Data Center for the Humanities”. In: LIBREAS.
Library Ideas 23, pp. 76-96, 2013.

22. U. Wuttke, C. Engelhardt, S. Buddenbohm. “Angebotsgenese für ein geisteswissenschaftli-
ches Forschungsdatenzentrum”. In: Zeitschrift für digitale Geisteswissenschaften, 2016.

23. Wissenschaftsrat. “Empfehlungen zur Weiterentwicklung der wissenschaftlichen Informa-
tionsinfrastrukturen in Deutschland bis 2020”, 2012, http://www.wissenschaftsrat.de/down-
load/archiv/2359-12.pdf

112

Smart Interoperability for the Internet of Things

Sebastian Kotstein, Christian Decker

 Herman Hollerith Zentrum (Reutlingen University), 71034 Boeblingen, Germany
sebastian.kotstein@reutlingen-university.de,
christian.decker@reutlingen-university.de

Keywords: Internet of Things, Interoperability, Automatic Protocol Adaptation

Seamless interoperability to share functions between Internet of Things (IoT) compo-
nents is the key for building complex IoT system landscapes supporting novel and com-
prehensive applications [1]. Uniform data formats and communication standards, which
can be understood by any involved component, are the prerequisites for such a seamless
interoperability [1][2]. However, the domain of IoT is very versatile and heterogeneous
from an application and technical point of view [1][3], which inevitably leads to a va-
riety of different and often incompatible communication standards and architectural
proposals [2][3]. To make matters worse, there is usually no consensus among manu-
factures of IoT-enabled products regarding a uniform communication standard and pro-
prietary protocols and formats are used to isolate their own devices form extensions and
communication scenarios with products from other manufactures [3][4]. Developers
and system integrators of IoT-enabled devices and components are faced with the im-
mense challenge of integrating these heterogeneous components in a uniform system
landscape such that the previously postulated seamless interoperability is enabled. In
practice, either an IoT platform supporting as many different communication standards
and formats as possible for all involved components (so-called pre-integrated solution)
is used or a solution (e.g. a middleware) allowing adaptations to the respective commu-
nication standards is chosen [3]. However, an unconstrained interoperability cannot be
achieved with either approaches, since the first approach (pre-integrated solution) limits
interoperability to a few supported standards and the second approach only extends this
limit by manual adaptation, which is expensive and time consuming [5], but does not
completely eliminate it.

Motivated by the finding that an unconstrained interoperability between IoT compo-
nents cannot be solved neither by a universal communication standard, because the re-
quirements are too versatile due to the high degree of fragmentation of the domain of
IoT, nor by manual adaptation, a new approach is introduced called Smart Interopera-
bility.

Smart Interoperability automates the adaptation of different communication standards
of IoT components at runtime and enables interoperable systems in heterogeneous IoT
environments. It follows the approaches of a universal IoT communication standard
and the adaptation of protocols by generating a communication model between two
heterogeneous IoT components at runtime. The individual aspects of communication

113

between two heterogeneous components are recognized at runtime by applying Ser-
vice Discovery techniques. Afterwards, the individual communication model is gen-
erated by combining a known set of universally valid basic primitives for communica-
tion and interaction in IoT. All steps should be performed automatically such that in-
teroperability is achieved completely autonomously.

The ongoing research focuses on the identification and modelling of basic primitives,
the autonomous adaptation of communication such that a communication model based
on these basic primitives can be constructed at runtime as well as adapting Service Dis-
covery techniques to the concept of Smart Interoperability.

This poster abstract presents the intended concept of Smart Interoperability. Further-
more, it amplifies existing approaches for autonomous adaptation of communication
protocols and service composition as well as examines approaches for the identification
of basic primitives based on design patterns.

References

1. Miorandi, D. et.al.: Internet of things: Vision, applications and research challenges. Ad Hoc
Networks 10(7), 1497 – 1516 (2012).

2. Al-Fuqaha, A. et. al.: Internet of Things: A Survey on Enabling Technologies, Protocols,
and Applications. IEEE Communications Surveys & Tutorials 17(4), 2347 – 2376 (2015).

3. Pazos, N. et.al.: ConnectOpen – automatic integration of IoT devices. In: Proceedings of the
2015 IEEE 2nd World Forum on Internet of Things, pp. 640-644. Milan, Italy (2015).

4. Rose, K. et.al.: The Internet of Things: An Overview. Internet Society (2015).
5. Sheng, Q. Z. et.al.: Web services composition: A decade’s overview. Information Sciences

280, 218 – 238 (2014).

114

The Next Generations of Smart Data Centers?

Brian Setz
[0000�0002�9750�2888]

Distributed Systems, Johann Bernoulli Insititute, University of Groningen,

Nijenborgh 9, 9747 AG, Groningen, The Netherlands

b.setz@rug.nl
http://cs.rug.nl/ds/

Data centers are responsible for 14% of the global IT energy footprint . Inside a

data center, the ventilation and cooling accounts for 50% of the energy consump-

tion, servers and storage account for 26%, followed by power conversion losses

(11%), network hardware (10%), and lighting (3%)[1] . To meet sustainability

goals, data centers have to increase their e�ciency, especially when considering

that data centers account for 1-2% of the world’s energy consumption.

The NextGenSmart DC project aims to improve the overall e�ciency of data

centers by taking advantage of the Internet of Things (IoT) principles. The con-

sortium of NextGenSmart DC is formed by key industrial players Cognizant (the

second largest IT company in India) and Shell (the Anglo-Dutch major gas/oil

company), and established research institutions in India (Institute for Develop-

ment and Research in Banking Technology) and The Netherlands (Distributed

Systems, University of Groningen). The central research question is: can a com-
bination of large-scale distributed sensors with the IoT approach and machine
learning deliver a competitive and feasible solution to manage (and then design
the next generation of) utility (energy, water, waste) systems for data centers.

First, we have identified the metrics and key performance indicators that

are applicable to data centers [2]. These metrics have been divided into the

following categories: energy e�ciency (33 metrics), cooling (8), greenness (12),

performance (19), thermal and air management (17), network (10), storage (8),

security (20), and financial impact (11). For each of the 130 metrics, we determine

the unit, the objective (e.g. maximize), the optimal value of the metric, and

the category on which the metric operates. The category refers to the level

on which the metric operates: facility, IT equipment, server rack, or individual

server. Selecting the correct metrics, and continuously monitoring those metrics,

in order to optimize e�ciency, is important in order to meet goals outlined by

key performance indicators.

The quantity of data that can potentially be collected from a data center is

enormous. Especially considering that there are 130 di↵erent metrics on which

to evaluate a data center, each requiring multiple data sources as input. For

example, the Data Center Performance Per Energy (DPPE) metric depends on

4 other metrics, which each depend on two data sources, requiring 8 data sources

to evaluate the DPPE metric. The problem becomes even more striking when

?
The presented research is funded by the Netherlands Organisation for Scientific

Research (NWO) in the framework of the Indo-Dutch Science Industry Collaboration

programme with project NextGenSmart DC (629.002.102).

115

metrics on individual server level are evaluated, as there can be many thousands

of servers in a data center. To collect data from all data sources would require a

large scale deployment of IoT devices. We have designed and developed an IoT

middleware capable of processing large quantities of data in real-time, using a

stream-based approach to service-oriented computing, relying on data sources,

transformations, and data sinks, in order to define data streams.

To evaluate our IoT middleware in the context of data centers, we have

deployed our solution to a small-scale high performance computing cluster con-

sisting of 165 servers. From each server, 13 metrics are collected, bringing the

total to 2145 metrics. Each metric is collected every 10 seconds, resulting in 18

million new data points per day. Over a period of 5 months, the data set has

grown to 2.5 billion data points. We identified the correlation between metrics,

utilizing the metrics with a strong correlation to build new models of the servers.

Including models which determine the CPU thermals, and models which deter-

mine the load of a server, merely by measuring environmental factors external to

a server. The root-mean-squared error (RMSE) of the thermal models is between

3 and 4 degrees Celsius, whereas the RMSE of the load models is between 7 to 8

percent. These models can be used to optimize load and thermal characteristics

of a data center. Data from an additional 100 servers is currently being collected.

Our preliminary results highlight the potential of deploying IoT in data cen-

ters. We have analyzed 130 metrics, and surveyed 7 data centers. Based on

this analysis we have determined the need for a streaming-oriented IoT mid-

dleware in order to achieve real-time processing and monitoring of all possible

data streams within a data center. We have evaluated our IoT middleware on

a high performance computing cluster, and uncovered interesting correlations

between metrics that allowed us to define thermal and load models. Based on

our preliminary results, we identify multiple directions for future research:

– Define an ontology of data center metrics, for which each unique data source

can be defined and cross-metric correlations can be discovered.

– Design custom IoT-based hardware to collect even larger quantities of data

from within the data center.

– Enable the automatic composition of streaming data sources to enable dy-

namic and real-time composition.

– Improve existing data center simulators by including environmental metrics

and models which are grounded on real-world data.

– Explore the potential of automated planning and scheduling to optimize the

e�ciency of data center cooling based on thermal models.

References

1. Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption model-

ing: A survey. IEEE Communications Surveys Tutorials pp. 732–794 (Jan 2016).

https://doi.org/10.1109/COMST.2015.2481183

2. Reddy, V.D., Setz, B., Rao, G.S.V.R.K., Gangadharan, G.R., Aiello, M.: Metrics for

sustainable data centers. IEEE Transactions on Sustainable Computing pp. 290–303

(July 2017). https://doi.org/10.1109/TSUSC.2017.2701883

116

Hyperledger Fabric: Ideas for a Formal Analysis

Mike Simon and Ralf Küsters

Institute of Information Security
University of Stuttgart

Stuttgart, Germany
{mike.simon,ralf.kuesters}@sec.uni-stuttgart.de

� Motivation

Since the invention of the blockchain technology in ���� [�], interest in this rather
new technology has grown rapidly. Initially invented as a solution for decentral-
ized payment systems without a central authority, the blockchain technology has
evolved. Most blockchain implementations are similar from a high-level perspec-
tive: They have a build-in cryptocurrency and operations within the blockchain
are paid via this cryptocurrency. So-called smart contracts enable participants to
deploy and execute code on top of a blockchain.

The possibilities of such a decentralized system draw the industries atten-
tion: (�) blockchains might make intermediaries in several processes superfluous.
Without a man in the middle, processes might be faster and cheaper, (�) when
transferring business processes to smart contracts, one could automate many
still manual processes. Unfortunately, most famous blockchains, such as Bitcoin
and Ethereum [��], do not fit the needs of the industry. These blockchains are
too slow in terms of handling transactions per second. Data privacy and the
realization of data protection laws is a problem, as data stored in the blockchain
is typically public.

In order to solve these problems, the Linux Foundation runs the Hyperledger

Fabric project. Hyperledger Fabric (or short Fabric) is a permissioned, pluggable
blockchain solution without a built-in cryptocurrency [�]. It is designed for usage
in inter-company and inter-country applications. Hyperledger Fabric provides
solutions for the above mentioned issues: (�) it adds a certain degree of centraliza-
tion to the blockchain and makes parallel execution of transaction possible. Thus,
Fabric has a significantly higher transaction throughput than other blockchains,
e.g., it is ��� times faster than Ethereum. (�) Fabric introduces the concept of
channels to allow companies to handle their private data easily and to implement
the requirements of data protection laws.

At first glance, Fabric seems to provide the desired security properties, such
as the common prefix property, persistence, and liveness as introduced by Garay
et al. [�]. Other security notions, such as the chain-quality property, may not be
applicable to Fabric because blocks are “cut” (generated) by special, normally
trusted network participants.

There is no formal analysis or model of Hyperledger Fabric. As, e.g., Gazi
et al. showed in [�], only small mistakes in the construction of a blockchain

117

protocol can lead to an insecure protocol. Especially in the presence of corrupted
participants, one wants to know which security guarantees one can give. Only a
rigorous security analysis shows whether the construction of a blockchain system
is secure.

� Research Plan

The goal of this research is to model Hyperledger Fabric in one of the common
models for security analysis of cryptographic protocols, the UC model by Canetti
[�] or the IITM model by Küsters et al. [�], and formally prove that Fabric is
secure. Most of the formal analyses of blockchains protocols, such as [�], [�], [�],
or [�], use the UC model. However, the UC model has several technical problems
that, e.g., invalidate the composition theorem. Therefore it is preferable to use
the simpler, more general, and formally sound IITM model.

The following steps are planned:

Step �: Determine the most important configuration of Fabric in industry.
Especially the selection of the used consensus algorithm and the so-called en-

dorsement policy (which defines the rules “who” executes a transaction) have a
direct impact on how to model Fabric.

Step �: Devise a model of the selected configuration. Prepare an appropiate,
realistic attacker model which captures the expected capabilities of an adversary
in the context of Fabric.

Step �: Analyze and adapt the above mentioned security notions for Fabric.
Investigate whether the chain-quality notion is applicable for Fabric. Develop a
useful security notion to measure the power of an adversary if chain-quality does
not fit.

Step �: Prove security of Fabric under realistic assumptions, and possibly
propose fixes if necessary.

Step �: Generalize the developed model and try to cover the pluggable design
of Fabric. Extract requirements for the di�erent Fabric components, which are
necessary to provide security.

Acknowledgement. This research was partially funded by the Ministry of
Science of Baden-Württemberg, Germany, for the Doctoral Program “Services
Computing”.�

Keywords: Hyperledger Fabric, Formal Security Analysis, Blockchain, Smart
Contracts

� http://www.services-computing.de/?lang=en

118

http://www.services-computing.de/?lang=en

References

�. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., Caro, A.D.,
Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Muralidharan, S., Murthy,
C., Nguyen, B., Sethi, M., Singh, G., Smith, K., Sorniotti, A., Stathakopoulou, C.,
Vukolic, M., Cocco, S.W., Yellick, J.: Hyperledger fabric: a distributed operating
system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys
Conference, EuroSys ����, Porto, Portugal, April ��-��, ����. pp. ��:�–��:�� (����),
http://doi.acm.org/10.1145/3190508.3190538

�. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: ��nd Annual Symposium on Foundations of Computer Science,
FOCS ����, ��-�� October ����, Las Vegas, Nevada, USA. pp. ���–��� (����),
https://doi.org/10.1109/SFCS.2001.959888

�. David, B.M., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake protocol. IACR Cryptology ePrint Archive ����, ���
(����), http://eprint.iacr.org/2017/573

�. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis
and applications. In: Advances in Cryptology - EUROCRYPT ���� - ��th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April ��-��, ����, Proceedings, Part II. pp. ���–��� (����),
https://doi.org/10.1007/978-3-662-46803-6_10

�. Gazi, P., Kiayias, A., Russell, A.: Stake-bleeding attacks on proof-of-stake blockchains.
IACR Cryptology ePrint Archive ����, ��� (����), http://eprint.iacr.org/2018/
248

�. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: Advances in Cryptology - CRYPTO ���� -
��th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
��-��, ����, Proceedings, Part I. pp. ���–��� (����), https://doi.org/10.1007/
978-3-319-63688-7_12

�. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In: IEEE Symposium
on Security and Privacy, SP ����, San Jose, CA, USA, May ��-��, ����. pp. ���–���
(����), https://doi.org/10.1109/SP.2016.55

�. Küsters, R., Tuengerthal, M.: The IITM model: a simple and expressive model
for universal composability. IACR Cryptology ePrint Archive ����, �� (����),
http://eprint.iacr.org/2013/025

�. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Bitcoin Whitepaper
(����), https://bitcoin.org/bitcoin.pdf

��. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum
Project Yellow Paper ���, �–�� (����), http://gavwood.com/paper.pdf

All links were last followed on April ��, ����.

119

http://doi.acm.org/10.1145/3190508.3190538
https://doi.org/10.1109/SFCS.2001.959888
http://eprint.iacr.org/2017/573
https://doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2018/248
http://eprint.iacr.org/2018/248
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1109/SP.2016.55
http://eprint.iacr.org/2013/025
https://bitcoin.org/bitcoin.pdf
http://gavwood.com/paper.pdf

E�cient Data and Indexing Structure for
Blockchains in Enterprise Systems

Christian Riegger, Tobias Vinçon, and Ilia Petrov

Data Management Lab, Reutlingen University
Alteburgstraße 150, 72762 Reutlingen, Germany
{first}.{last}@reutlingen-university.de

Abstract. Blockchains are a technique for managing transactions in
trustless distributed systems and target among other domains new mar-
kets for enterprises. At present, there is limited support for trustworthy
K/V-Stores for clients of nodes in blockchain networks. Furthermore,
mixed workloads from blockchain network and enterprise systems re-
quire full support of storage, schema and indexing of blockchain data in
K/V-Stores. However, there is at best a partial match between the char-
acteristics of current data structures and the properties of blockchain
and enterprise workloads. We claim that Partitioned B-Trees represent
an appropriate scalable data and indexing structure, which fits well these
properties on modern hardware technologies, due to its flexible partition
management, single index structure and multi-version capabilities.

Keywords: Blockchain · Enterprise Workload · Data Structure.

1 Blockchain Network

Blockchains receive growing attention as a possible technology for Distributed
Ledgers. The logical data organization in blockchains is a backward linked list
of blocks, which contain encrypted transaction data. A blockchain network con-
sists of several nodes, over which the blockchain is synchronized. On every node,
a blockchain network client is implemented [1–4]. Clients implement and are
responsible for operations interacting with the network. K/V-Stores are the
backbone of clients and manage blockchain (meta) data. Businesses include
blockchain data in their evolved enterprise systems [6].

ERPERP

Client K/V-Store
(Meta Data,
Indexes, ...)

send

receive put

get

read append
Blockchain (Physical Blocks)

Node

Blockchain Network Enterprise System

ERP, SCM,
…

RDBMS

DB Connector

POST transactions
& smart contracts

Messaging Service
Connector

GET transactions

(a) State-of-the-Art Architecture

ERPERP

Client K/V-Store
send

receive
put

get

Blockchain (Logical Blocks)

Node

Blockchain Network Enterprise System

ERP, SCM,
…

RDBMS

DB Connector

POST transactions
& smart contracts

Messaging Service
Connector

get (query, scan)

PBT

(b) Required Architecture

Fig. 1. Architecture of Nodes in a Blockchain Network for Enterprise Systems

120

In Fig 1(a), the enterprise systems interact with the blockchain network by
messaging services to a node network client. A K/V-Store maintains meta data
and few indexes (cf. [1–4]). Data in blocks is separated from the K/V-Store.
Current architecture on nodes, separation of indexes and data, as well as format
conversions for messaging services, result in stagnation of business processes and
management decisions, due to high latencies on data gathering. Including the
K/V-Store in enterprise systems as a database (depicted in Fig. 1(b)) minimizes
format conversions and latencies, because all data is managed by the K/V-Store.
Required data can be directly accessed by the enterprise systems. Therefore, a
flexible data and indexing structure is required, that is able to e�ciently manage
all blockchain data in ”Logical Blocks” and scale on modern hardware.

A data and indexing structure has to consider characteristics of blockchain
data. Uniformly distributed hash values of blockchain data are stored in blocks.
Hashes refer to real accounts, transactions and smart contracts, which are ap-
pended all at once in a block. Each block is analogous to a version state in the
Distributed Ledger, whereby data is ordered by processing time. Blocks retain
consensus and store immutable data. Recently appended blocks may be rejected
by the network and if so their data becomes invalid. Unspent transactions are not
immediately added to the blockchain, but have to be validated and eventually
processed next. Smart contracts probably contain analyzable data.

2 K/V-Store Data and Indexing Structure

PBT-Index

Partition no. 0 1 … m

DB Buffer

PBT-Buffer

sequential write of Partition m

c

C
a
ch

e
d P

artitio
n

in-m
em

ory Partition

Fig. 2. Structure of a Partitioned B-Tree

Partitioned B-Trees (PBT) [5] en-
able flexible partition management
in a common index structure by
prepending a partition number to
each record. Updates are absorbed
by a mutable partition in main
memory [7]. Further complexity
(bulk loads of block data, unspent
transactions, multi-version capabilities for performance gains in mixed work-
loads [8], etc.) can be handled by maintaining additional mutable in-memory
partitions [5], which are conditionally merged in further steps. For instance, par-
titions, which contain data of rejected blocks, can be cropped from the index
with low e↵ort, what solves maintenance problems outlined in [9]. Immutable
partitions are results of evictions from main memory to secondary storage media
in a beneficial sequential write pattern [7]. Version ordering of blockchain data
buoys for fast look-ups in partitions, which can be also reorganized in merge
operations and ”Cached Partitions” for query optimization or switches in work-
loads. Furthermore, a common index structure, partition skipping techniques,
asymmetry in semi-conductors and near-data-processing approaches guarantee
acceptable look-up performance. PBTs scale well on modern hardware and their
capabilities facilitate the performant architecture for blockchains and enterprise
systems, which is depicted in Fig. 1(b).

121

References

1. bitcoin/bitcoin: Bitcoin Core integration/staging tree (2018),
https://github.com/bitcoin/bitcoin, accessed: 2018-03-01

2. ethereum/go-ethereum: O�cial Go implementation of the Ethereum protocol
(2018), https://github.com/ethereum/go-ethereum, accessed: 2018-03-01

3. Hyperledger Project (2018), https://github.com/hyperledger, accessed: 2018-03-01
4. paritytech/parity: Fast, light, robust Ethereum implementation. (2018),

https://github.com/paritytech/parity, accessed: 2018-03-01
5. Graefe, G.: Sorting and indexing with partitioned b-trees. In: CIDR 2003,

First Biennial Conference on Innovative Data Systems Research, Asilo-
mar, CA, USA, January 5-8, 2003, Online Proceedings (2003), http://www-
db.cs.wisc.edu/cidr/cidr2003/program/p1.pdf

6. Morabito, V.: Blockchain and Enterprise Systems, pp. 125–142. Springer Interna-
tional Publishing (2017), https://doi.org/10.1007/978-3-319-48478-5 7

7. Riegger, C., Vinçon, T., Petrov, I.: Write-optimized indexing with partitioned b-
trees. In: Proceedings of the 19th International Conference on Information Integra-
tion and Web-based Applications & Services. pp. 296–300. iiWAS ’17, ACM (2017).
https://doi.org/10.1145/3151759.3151814

8. Schwalb, D., Faust, M., Wust, J., Grund, M., Plattner, H.: E�cient transac-
tion processing for hyrise in mixed workload environments. In: Proceedings of
the 2nd International Workshop on In Memory Data Management and Analytics,
IMDM 2014, Hangzhou, China, September 1, 2014. pp. 16–29 (2014), http://www-
db.in.tum.de/hosted/imdm2014/papers/schwalb.pdf

9. Third, A., Domingue, J.: Linked data indexing of distributed ledgers. In: Proceedings
of the 26th International Conference on World Wide Web Companion. pp. 1431–
1436. WWW ’17 Companion (2017), https://doi.org/10.1145/3041021.3053895

122

Veronika Krauß1 and René Reiners1

Fraunhofer Institute for Applied Information Technology FIT, Schloss Birlinghoven,
53754 Sankt Augustin, Germany http://fit.fraunhofer.de

{firstname.lastname}@fit.fraunhofer.de

Abstract. The emerging topic of Internet of Things (IoT) allows novel kinds
of applications and process support in many domains leading to radical
innovations but also reveal problems to currently existing systems,
infrastructures and working processes. This work describes a twostep
approach to investigate possibilities for interaction concepts in combination
with display technologies for the sterile supply process in clinics. First, it
describes an underlying central application platform for integrating existing
devices, services and data sources. Building on top of this interoperability
layer, new application and interaction concepts are defined that are
iteratively engineered with end-users to ensure appropriateness and
acceptance for the final system design.

Keywords: Interoperability · Smart Glasses · Sterile Supply Process · Digital
Hospital

1 Objective and Challenges

In the sterile supply process, it is important for multiple data sources, devices, and
user roles to work hand in hand. Establishing interoperability is challenging due
to proprietary APIs, data formats as well as established, partially legacy, software
systems that are in productive use. In order to support working processes by
providing currently needed and relevant information, a common communication
layer needs to be created, which is open and flexible enough to allow the
integration of new systems and data formats. After this communication layer is set,
new concepts for supporting the working processes can be investigated. Apart
from the technology-driven requirements, established ways of working which
foremost affect humans and their work at hand need to be understood and taken
into account for new designs and ideas. Only an iterative, user-centered design
approach gives room for understanding user needs and practices. Based on gained
application knowledge, new rapidly prototyped solutions can emerge. This way,
the final design has very high chances for user acceptance and improvement in
everyday work.

Interoperability as Basis for Novel Interaction
Concepts in the Sterile Supply Process

123

2 Step One: The Underlying Information Layer

The overall system’s architecture makes use of the LinkSmart® [1] Middleware,
which allows for rapidly connecting devices and data by offering REST and MQTT
APIs. Hardware used for cleaning and sterilizing surgery goods in combination
with hospital management systems can easily be integrated by offering a
corresponding interface to LinkSmart®. Any application that allows visualization
and interaction will now be able to access information by either subscribing
indirectly and/or publishing to an MQTT broker, or directly by accessing the
responsible resource via REST. In the latter case, the resource’s address will be
obtained using a service catalog offered by LinkSmart®. A general overview of the
described information layer is presented in Fig. 1.

Fig.1. Sample architecture demonstrating the integration of devices, services and software
using LinkSmart® as an information layer and application platform. Devices are integrated
using a dedicated adapter. Following this approach, also various interaction devices can get
access to the system.

124

3 Step 2: User-Centered Application Engineering

In parallel to the completion of step one, relevant use cases were identified by
following a user-centered design approach. With the help of end users, visiting
facilities and given the possibility to watch and learn from ”living” processes in a
normal working environment, different user roles, tasks, process steps and
current obstacles could be identified. The identified use cases span the process
steps of cleaning, packing and sterilizing surgery goods alongside with first-level
support mechanisms for workers. For the sake of brevity in this work, details of
the use cases will be omitted.

Now that the domain, task models and user roles are better understood, an
iterative prototyping process starts exploring new ways of supporting the
personnel working in the sterilization process for surgery goods. The focus lies on
increasing the overall process quality and employees’ safety. Every iteration ends
with the evaluation of the current design, be it a concept, storyboard, cognitive
walkthrough or, in later stages, a hands-on prototype. The approach ensures the
integration of new requirements as well as findings that usually come up after
communicating ideas [2]. The final prototype will be implemented on a Microsoft
Hololens [3] and demonstrate the newly gained flexibility and quality of
information that can be delivered on user demand.

4 Future Work

The overall goal of this work is to show the benefits of loosely coupled services in
the sterile supply process that allow an easy interchange of visualizations and
interaction technologies. For this purpose, a demonstrator is currently under
development that supports the packing tasks for surgery packages that are
delivered to the operating room.

In order to better support hands-free interaction with the system, other

devices for recognizing gestures or voice interfaces will be explored. LinkSmart®
as information layer offers the open basis for exploring the design space.

References

1. Linksmart, https://www.linksmart.eu/. Last accessed 17 Jul 2018
2. Alan Dix, Janet Finlay, Gregory Abowd, and Russel Beale. Human-Computer Interaction.

Prentice Hall Inc., Upper Saddle River, NJ, USA, 2nd edition, 1998
3. Microsoft Hololens Homepage, https://www.microsoft.com/de-de/hololens. Last

accessed 10 May 2018

 As #irst interaction device, smart glasses are used to enable hands-free
interaction, augment existing systems and therewith overcome current obstacles
as well as to increase the overall quality of the process. A comparison between side
displays as well as fully-#ledged augmented reality systems such as the Microsoft
HoloLens [3] will provide deeper insights regarding suited visual support.

125

	RC25681.pdf
	SummerSOC2018_IBM_TR.pdf

