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Abstract

We have already entered the heterogeneous computing era when computing sys-
tems harness computational horsepower from not only general purpose CPUs but
also other processors such as graphics processing unit (GPU) and hardware acceler-
ators. Performance, power-efficiency, and reliability are three most critical aspects of
processors, and there usually exists a tradeoff among them. Accelerators are heavily
optimized for performance and power-efficiency rather than reliability. However, it
is equally important to ensure overall reliability while introducing accelerators to
computing systems.

In this paper, we focus on optimizing accelerator’s reliability without adopt-
ing the “whac-a-mole” paradigm which develops accelerator-specific reliability op-
timization. Instead, we advocate maintaining the reliability at the system level, and
propose the design paradigm called “asymmetric resilience,” whose principle is to
develop the reliable heterogeneous system centering around the CPU architecture.
This generic design paradigm eases accelerators away from reliability optimization.
We present the design principles and practices for the heterogeneous system that
adopt such design paradigm. Following the principles of asymmetric resilience, we
demonstrate how to use CPU architecture to handle GPU execution errors, which al-
lows GPU focus on typical case operation for better energy efficiency. We explore the
design space and show that the average overhead is only 1% for error-free execution
and the overhead increases linearly with error probability.

1 Introduction

Performance, power efficiency, and reliability are three most crucial aspects of computing
systems. However, the CPU scaling can no longer sustain our increasing demand for per-
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Figure 1: Trend for number of accelerators.

formance and power efficiency because of the end of Dennard scaling and the diminish-
ing return of microarchitecture enhancement. As such, hardware accelerators [1, 2, 3, 4]
are deemed to be the solution to provide continued performance and power efficiency
improvements beyond the general purpose CPUs.

Introducing hardware accelerators into computing system can increase the system’s
error vulnerability. Accelerators are optimized for performance and power efficiency.
This usually comes at the price of reduced reliability because of the inherent trade-off
across those three metrics [5]. For example, prior works [6, 7] studying GPU errors
in large-scale systems have found that the GPU’s MTBF (mean time between failures)
is almost 8x lower than that of the CPU. As such, it is crucial to maintain computing
systems’ reliability while introducing accelerators.

As shown in Figure 1, the number of accelerators is increasing at an unprecedented
rate. Accelerators specialize in different computation patterns and thus have signifi-
cantly different architectures. The rich diversity and high count of accelerators make
the reliability challenge progressively steeper. Traditional CPU-centric reliability mech-
anisms would not work because they would defeat the original goal of efficiency that is
targeted by the use of accelerators.

To this end, we propose a design paradigm called asymmetric resilience to ensure the
reliability of heterogeneous systems in the presence of transient accelerator execution
errors. The fundamental idea is to relax the resiliency requirement of the accelerator
architecture and ensure the system reliability centering around the CPU architecture. In
asymmetric resilience, an accelerator only needs to detect the error and report to the
CPU, and the system relies on the CPU to recover from the detected error. As such, we
can avoid the accelerator-specific reliability optimization, and let designers continue to
focus on the accelerator performance or power efficiency optimizations.

We demonstrate the case of applying the asymmetric resilience principles to make a
trade-off between energy efficiency and reliability in a CPU-GPU system. Specifically,
we optimize the GPU’s voltage guardband. Prior works on CPUs showed more than
20% energy saving potential [10, 11] because the nominal voltage is over-provisioned for
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Figure 2: Overview of asymmetric resilience. The fundamental idea is to ensure the system’s
reliability using the most resilient component. Our studied paradigm has two (strong and weak)
resilient domains, which host the CPU and accelerators, respectively. The former is optimized for
resiliency and ensures system-level reliability and the latter is optimized for performance/power.

typical case operation. We propose a new design paradigm in which the CPU handles
GPU’s worst-case condition, and lets the GPU focus on the typical-case operation for
better energy efficiency.

We develop a runtime system that uses the CPU to recover from GPU error caused
by worst-case voltage conditions. We study the important implications and explore the
design space of asymmetric resilience on the basis of a developed testbed system. By
studying the error characteristics of such errors and how those errors propagate from
the GPU to the CPU, we find that the CPU can recover from the GPU error by simply
relaunching the kernel in most cases. We find that 69 out of 81 kernels in studied CUDA
programs only require a single relaunch to recover from the detected error. For the
remaining 12 kernels, our runtime can automatically decide the minimum set of kernels
to relaunch, with a lightweight source-code level annotation. Our runtime system incurs
negligible performance overhead in the error-free execution, and we propose several
optimizations that can minimize the error recovery overhead.

We make the following contributions in this work:

e We propose the concept of asymmetric resilience, a generic design paradigm that en-
sures reliability of accelerator-rich systems in the presence of transient accelerator er-
rors. Such a design paradigm relies on the CPU and exempts accelerators from heavy
resiliency optimizations (Section 2).

e We demonstrate the case of applying the asymmetric resilience principles to make
a trade-off between energy efficiency and reliability in a CPU-GPU system. We show
that it is possible to use the CPU to handle GPU errors caused by worst case conditions,
which lets the GPU operate at the typical case condition for better energy efficiency
(Section 3).

e We show how to use the CPU to recover from GPU errors by implementing an asym-
metric resilience runtime system. Our runtime has near zero overhead when no error
occurs and we study optimizations to minimize its error recovery overhead (Section 4).

We organize the paper as follows. Section 2 details the principles behind asymmetric

3



Asymmetric Resilience 2 ASYMMETRIC RESILIENCE

resilience. Section 3 motivates a case of using asymmetric resilience to make a trade-off
between energy efficiency and reliability. Section 4 describes our asymmetric resilience
runtime system. Section 5 shows our experimental setup for our prototype, and Section 6
evaluates our system. Section 7 discusses current limitation of our system and possible
extension. Section 8 compares against related works, and Section 9 concludes the paper.

2 Asymmetric Resilience

In this section, we propose the design paradigm called asymmetric resilience for ensuring
the reliability of heterogeneous system against accelerator errors. We first describe the
fundamental principles of asymmetric resilience, which divide the system to domains
with different levels of resiliency and ensure the system reliability using the most re-
silient domain. We then show practices of applying those principles to build a reliable
heterogeneous system. This design paradigm relaxes the resiliency requirement of the
accelerator by relying on the CPU to handle the error during accelerator computation.

2.1 Design Principles

In this subsection, we describe the principles of our proposed asymmetric resilience de-
sign paradigm for building a reliable heterogeneous system against accelerator execution
errors. We first explain the meaning of the term “resiliency” and the term “reliability,”
respectively. In our terminology, the term reliability means the system is capable of
consistently performing computation according to its specifications and generating the
expected outcome.

The term resiliency refers to a computing system’s capability of recovering from er-
rors. In other words, computing systems need to adopt different resilient techniques for
different possible types of errors to achieve the reliability. For example, a computing
system can deploy ECC (error correction code) enabled memory for protecting against
soft errors, and can leverage RAID (redundant array of inexpensive disks) for protecting
against disk failures [12].

Our work aims for the accelerator-independent mechanism to handle accelerator’s
error given the fact that the number of accelerators is exploding (Figure 1). In contrast,
we can build a reliable heterogeneous system by developing resilient accelerators that
can detect and recover from errors themselves, which is not desirable because it requires
accelerator-specific optimization and can incur significant overhead. For example, re-
cently studied accelerators [1, 2, 3, 4] all have moderate complexity and it is non-trivial
to transform them to be resilient against errors. Moreover, not all CPU-centric error re-
covery mechanisms can apply to accelerators. For example, CPU can treat a transient
error in the same way as mis-speculation [10, 13, 14] while emerging parallel architec-
tures like GPU do not support speculation.

Recognizing the trend of increasing number of accelerators and the need for an
architecture-independent solution, we propose a generic and low overhead system archi-
tecture for designing a reliable computing system in the presence of accelerator errors.
The fundamental insight is to use the most resilient computing component to handle
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Figure 3: Overview of asymmetric resilience. The fundamental idea is to ensure the system’s
reliability using the most resilient component. Our studied paradigm has two (strong and weak)
resilient domains, which host the CPU and accelerators, respectively. The former is optimized for
resiliency and ensures system-level reliability and the latter is optimized for performance/power.

errors from other less resilient components, rather than make all components handle
errors by themselves. As a result, the system has multiple domains with different levels
of resiliency. As such, we call the proposed system architecture asymmetric resilience.

As the first effort for studying asymmetric resilience, we consider a system with two
domains shown in Figure 3: the strong resilient domain and the weak resilient domain. The
former domain has a strong resilience requirement: it can detect targeted errors and
recover from them. In contrast, the latter domain has a relaxed resilience requirement: it
only needs to detect the error. In asymmetric resilience, the system relies on the strong
resilient domain to guarantee the system-level reliability in the presence of errors from
the weak resilient domain. In other words, the strong resilient domain is the fail-safe
mechanism for the entire system.

In the system with asymmetric resilience, it is natural to deploy the accelerators in
the weak resilient domain, and the CPUs in the strong resilient domain, as shown in
Figure 3. The design paradigm is best applicable to the loosely coupled heterogeneous
system. In such system, the accelerator sits outside of the CPU core’s pipeline, and they
communicate through an interconnect or shared memory. We do not discuss the mem-
ory subsystem here because it does not affect the principles of asymmetric resilience. But
we will explain how the memory subsystem determines the implementation in the next
subsection. In contrast, an accelerator can also be tightly integrated as a special func-
tional unit inside the CPU core pipeline. It is relatively easy to handle the accelerator
execution error in the tightly coupled architecture. Because the accelerator is essentially
a special functional unit in the CPU pipeline [15], its execution error can be treated in a
similar way of handling the pipeline exception.

Our proposed design paradigm can be used to protect the system against transient
errors originating from accelerators. External events such as capacitive cross-talk, power
supply noise, cosmic rays and alpha particles can cause transient errors, and these con-
stitute a major concern. The required effort of using the CPU in the strong resilient
domain is relatively small because the reliability of general purpose CPU architecture
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Figure 4: The role of CPU in resilience design paradigm. (a) shows an error-free execution, and
(b) shows an error recovery process.

in the presence of those transient errors is a well-understood challenge that already has
sophisticated solutions [10, 13, 14, 16].

Adopting asymmetric resilience incurs relatively small overhead in the accelerator
because the only extra required features are capabilities of error detection and reporting.
The error detection is relatively architecture-independent because of the same under-
lying causes for the errors. The proposed design paradigm avoids the architecture-
dependent error recovery procedure by “offloading” such job to the CPU because the
CPU serves as the safety-net for the entire system. This allows accelerator designers
to keep focusing on their performance or power efficiency optimizations instead of the
resiliency.

2.2 Design Practice

In this subsection, we describe how to build a practically reliable computing system
following the principles of asymmetric resilience. Specifically, we discuss the role of the
accelerator, CPU, and memory subsystem in asymmetric resilience.

The Role of Accelerator Asymmetric resilience only requires accelerator to have the
error detection capability. The specific solution depends on the kinds of errors against
which the system targets to protect. For example, an accelerator can deploy error cor-
rection code (ECC) for protecting against the threat of soft errors in an SRAM array cell
or latch [17, 18, 19]. The accelerator can report errors that cannot be recovered by the
deployed ECC to the CPU for error recovery. In this work, we target on errors caused by
transient supply voltage fluctuation, which requires voltage sensor circuits to detect. We
will discuss the details in Section 4.2. But in general, the error detection is a relatively
architecture independent process because of the same underlying causes for errors.
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The Role of CPU To understand the role of CPU in the asymmetric resilience, we
tirst explain our assumed execution model in the heterogeneous system. We make the
assumption that the acceleration computation is asynchronous relative to the CPU com-
putation in the loosely coupled architecture because it results in higher utilization rate
and improves system performance. Figure 4a illustrates the execution model where
acceleration computation can overlap with CPU computation. Because the accelerator
computation is asynchronous, the CPU needs to issue the synchronization command
when it wants to use results from the accelerator computation.

The CPU has two main roles in the asymmetric resilience: checkpointing and error
recovery. First, the CPU needs to make the checkpoint of necessary data to recover
from the detected error. Since the asymmetric resilience targets errors that happen in
the accelerators, we only need to make the checkpoint of memory that can be written
by the accelerator. However, the kind of memory subsystem affects the memory that
can be accessed by the accelerator, and hence affects how the CPU needs to make the
checkpoint. We will discuss this in detail in the next paragraphs.

Second, the CPU needs to perform the error recovery once the error is detected.
Figure 4b illustrates the error recovery process initiated by the CPU upon the detected
accelerator error. The CPU first pauses its own computation and restores the memory
related to the accelerator computation to the previous checkpoint. After restoring the
checkpoint, it then replays all the issued accelerator computations between the previ-
ous checkpoint and error detection to recover from the error. The program resumes
the CPU computation and the rest of accelerator computation until the synchronization
command.

Note that it is not necessary for the program to replay any CPU computation be-
cause we assume that the error during accelerator computation would not corrupt the
CPU computation before the synchronization point. This assumption requires modifi-
cation to the memory management unit in the CPU depending on the type of memory
subsystem, which we discuss later. With such assumption, the program would have
known whether there was an error during the accelerator computation before the syn-
chronization point. Since the CPU computation only uses the results from the accelerator
computation after the synchronization point, the CPU computation will always use the
error-free accelerator computation result.

The Role of Memory Subsystem The memory subsystem plays a major role in the
asymmetric resilience design paradigm. Because the asymmetric resilience does not re-
quire accelerators in the weak resilient domains to recover from errors, an accelerator
error can corrupt the CPU’s data and result in a catastrophic failure. As such, the asym-
metric resilience design paradigm necessitates the memory subsystem’s error isolation
capability that contains an accelerator’s execution error in the memory region that it has
access to.

We categorize the memory subsystem in the heterogeneous system as shown in Fig-
ure 5, and discuss how to augment each memory subsystem kind with the error isolation
tfeature. Figure 5 shows three kinds of heterogeneous system’s memory: the discrete
memory, the unified memory, and the coherent memory. The CPU and accelerator have



Asymmetric Resilience 3 A CASE FOR ENERGY AND RELIABILITY TRADE-OFF

CPU Accele- CPU Accele- CPU Accele-
<> [<—>]
Processor rator Processor rator Processor rator
Cache Cache
T ! ] ! ]
Memory Memory Memory Memory
(a) Discrete memory. (b) Unified memory. (c) Coherent memory.

Figure 5: Heterogenous systems’ memory subsystem taxonomy:.

separate physical memory in the discrete memory subsystem. In contrast, they share the
same memory in the unified memory subsystem. In the coherent memory subsystem,
the CPU and accelerator share the same memory subsystem, and each has a coherent
cache.

Current discrete CPU-GPU computing system adopts the discrete memory subsys-
tem design. Although the physical memory is separate in such memory subsystem,
all the memory can be in the same virtual address space [20]. In this kind of memory
subsystem, the program running on the CPU needs to allocate and copy the input data
to the accelerator memory, and the accelerator can only access its own memory while
performing its computation. As such, this type of memory subsystem naturally ensures
that the error on the accelerator does not propagate to the CPU memory.

We observe that the other two kinds of the memory subsystem (unified memory and
coherent memory) are also used due to performance and programmability advantages.
We require certain modification to achieve the error isolation effect for those two kinds
of memory subsystems. The fundamental of error isolation is to prevent the accelerator
from accessing an arbitrary memory address. One possible way of achieving that desired
functionality is to modify the page table to distinguish the memory access of CPU and
accelerator. We will discuss how to extend our work for these two memory subsystems
in the discussion section.

3 A Case for Energy and Reliability Trade-Off

In this section, we study a case where we use the asymmetric resilience to make a trade-
off between energy efficiency and reliability. Specifically, we demonstrate that following
asymmetric resilience, the CPU architecture handles the worst case condition on the
GPU and allows the GPU to focus on typical case situation for better energy efficiency.
We first demonstrate that adapting the GPU’s supply voltage to the typical case condi-
tion can significantly improve its energy efficiency compared to the current worst-case
guardbanding GPU design. We then show the feasibility of using the CPU to handle the
worst case condition in the GPU architecture to address the challenge of ensuring the
reliability.
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3.1 GPU Typical-Case Voltage Guardband Optimization

We first demonstrate that there is a significant opportunity of adapting GPU’s supply
voltage to the typical case situation by voltage guardband optimization. Specifically,
we push down the supply voltage (i.e. undervolting at the nominal frequency) to the
limit without impacting the correctness level assumed by an application developer. The
voltage guardband exists to protect against worst case process, voltage, and temperature
variation as well as aging. Because worst case condition rarely occurs, we can operate
the GPU with a lower voltage most of the time and achieve significant energy savings.

We quantity the voltage guardband optimization opportunity by measuring the V,,;,
point of a set of representative GPU programs. V,,;, is the minimum voltage level at
which the program executes correctly but fails if the voltage is reduced further below.
In other words, V,,;, indicates the minimum working voltage at a fixed frequency. The
margin between the nominal voltage and V,,;,, level is the optimization potential.

We measure the V,,;, point for each individual kernel in the program. We gradually
increase the GPU processor undervolt percent level when running each kernel and stop
the experiment when the kernel starts to experience an error. We conduct such exper-
iment in a testbed developed in this work with error checking capability, the details of
which will be explained in Section 4. Briefly, we compare the GPU’s allocated memory
state with a “golden” state reference after each kernel execution. We consider the kernel
executed correctly if memory states from the undervolt execution and golden reference
are identical at the byte-level. We run all programs 1000 times at their measured V,,;,
points to ensure statistically sound results.

Our measurement indicates that the current GPU voltage is significantly over-provisioned
due to the worst-case guardband methodology. Figure 6 shows the margin between the
nominal voltage and kernel V,,;,, point on a GTX 680 card with Kepler architecture. The
voltage stock setting of studied GTX 680 is 1.09 V at a frequency of 1.1 GHz. We find
that up to 18.3% of the nominal voltage can be reduced without affecting the kernel’s
functional correctness.

We also observe a large variability in the studied kernel’s V,,;,, values. In other words,
a kernel’s V,,;;, value strongly depends on its characteristics. As indicated in Figure 6, the
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maximum undervolt percent for a kernel (18%) is twice of the minimum value (9%). Such
strong kernel dependent guardband requirement necessitates a kernel characteristics
aware guardband management. Otherwise, half of the optimization opportunity would
be wasted: our measured system-level energy saving with 18% undervolt is 25%, but
only 12% with 9% undervolt. Note that the system-level energy includes DRAM and
peripherals, which are not undervolted.

3.2 CPU Worst-Case Voltage Guardband Handling

In this subsection, we present our motivational results and analysis for the design
paradigm that GPU adapts to the typical case condition while the CPU handles its worst
case condition following asymmetric resilience principles. Prior work on the GPU guard-
band study has shown how to adapt to a kernel’s V,,;;,, by using performance counters
based V,,;, prediction model [21], but has not studied how to handle the worst case
condition. Our work studies how to use the CPU architecture to handle the worst case
condition in the GPU architecture.

We first analyze the characteristics of GPU error caused by the worst case event to
study how to handle it. We specifically study errors caused by voltage noise because
prior work [21] shows that a significant portion of the voltage guardband is allocated
to protect against voltage noise and it also determines a kernel’s V,,;,, value. Voltage
noise refers to the constantly varying supply voltage as shown in Figure 7. It is the
interaction result between the processor’s non-zero impedance power delivery network
and continuously varying current consumption [22]. For example, a sudden current
surge after a pipeline stall caused by cache miss can cause the voltage droop below its
nominal value. This also explains why the V,,;, is program dependent. Designers must
add a large enough guardband to cover the worst-case voltage droop magnitude because
it can slow down the circuit and cause a timing error.

We perform a comprehensive study on the error characteristics and how the GPU er-
ror affects the CPU by operating each kernel below its V,,;,, point. Since we compare the
entire allocated memory spaces in the GPU using our developed testbed, we can study
how a timing error corrupts the memory spaces in a very fine-grained level. Figure 8
shows the aggregated kernel execution results when operating below its V,,;, point. We
tirst observe that the kernel still has a probability of executing correctly even though
operating below its V,,;,, point, which was also observed by prior study [21].

We observe two major kinds of error events, which are memory output corruption
and illegal memory access, as shown in Figure 8. The memory output corruption means
that the kernel runs to completion but the output is different from the golden reference.
When this occurs, the program finishes execution without any warning but produces an
incorrect end result, which is commonly referred to silent data corruption (SDC) [23].
The illegal memory access means that the kernel execution reads or writes to an illegal
memory address due to the error caused by large voltage droop. The illegal memory
access will result in an explicitly reported CUDA runtime error. We summarize two
important implications:

Implication 1: We observe that the error caused by voltage droop only corrupts the
kernel’s output memory, and does not corrupt the kernel’s input memory. The possible

10
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explanation is as follows. An input memory corruption means that an error at the
address calculation results in the input memory address space, which is much smaller
compared to the entire memory space. As such, an address calculation error most likely
leads to an illegal memory address. The GPU itself (possibly its memory management
unit) can catch the illegal memory access and raise a CUDA runtime error.

Implication 2: We find that a GPU error does not affect the CPU’s states until it
accesses GPU’s erroneous memory. Although we find that the GPU error can cause
an incorrect end-result, the CPU’s state can only be corrupted when the CPU needs to
access the GPU results. The error in the GPU could also possibly lead to an illegal access
to the CPU memory, which will be caught as an illegal memory access error.

In summary, we observe that the memory output corruption and illegal memory
accesses are most dominant error events when the kernel operates below the V,,;, point.
We make the fundamental observation that the GPU error does not affect the CPU’s
states if the error is detected promptly. Such observation motivates us to use the CPU
to recover from the GPU error using the principles of asymmetric resilience. In our
experiment, we observe that an OS crash might occur when operating below the V.
But it does not occur until an additional 4-5% undervolt percent below the V,,;, point,
which leaves us enough error margin for avoiding the OS crash.

4 Asymmetric Resilience Runtime Design

Having demonstrated the possibility of using the CPU to recover from the GPU execu-
tion error, we present our runtime system design following the asymmetric resilience
principles. We first present an overview of a testbed system on which we implement our
runtime system. The testbed implements an intelligent and automatic redundant kernel
execution that mimics GPU’s error checking capability. We then present the details of
our runtime system running on the CPU that can recover from GPU errors by automatic
relaunch for most of the kernels. For kernels that we cannot automatically relaunch, we
propose a solution to find the minimum set of kernels to relaunch with the annotation
of the kernel’s input and output.

11



Asymmetric Resilience

4 ASYMMETRIC RESILIENCE RUNTIME DESIGN

| Category | CUDA runtime API \
10° :
] :_ Nurmber of total kel 0 Allocation cudaMalloc, cudaFree, cudaMallocPitch,
g 10 o[ O Numberofpassed kemels | I cudaMallocArray, cudaMalloc3DArray
o 2
5 | | cudaMemcpy, cudaMemcpy?2D,
o 1
g cudaMemcpyToArray
£ Copy
10 cudaMemcpy2DToArray
10"
RSOSSNSO ISR PSSP S8 cudaMemcpyToSymbol, cudaMemset
FEOLTHLSILLTLE S5 EF FF [OES58 cudaBindTexture
$ ISITE ST 8 EIF T I 8IS
S O & O S 1@ O .
M O & S & A Bindin cudaBindTexture2D,
SO & 2 5 .
¢ & « & cudaBindTextureToArray
cudaUnbindTexture

Figure 10: All programs are deterministic be-
cause they pass the byte-level comparison.

41 Testbed Design

In this subsection, we describe the details of a testbed system that we developed for
studying the GPU execution error protection and recovery mechanism. The asymmetric
resilience requires the error detection capability in the GPU (Section 2.2). Because we do
not have access to any error checking capability in the studied GPUs, we choose to use
the dual module redundancy (DMR) to detect the possible GPU execution error. Note
that this apparatus is used for illustrative purposes only. If we had access, we would
rely on specially designed sensors for error detection inside GPU.

In our testbed, we develop a DMR runtime system which is capable of i) maintaining
an identical state of the original GPU in an extra shadow GPU; ii) launching an identical
shadow kernel from the original GPU in the shadow GPU;j iii) comparing the results from
the original kernel and shadow kernel to detect the possible execution error. Figure 9
shows the overview of the developed testbed, for which we use a multi-GPU system.
The program runs on the original GPU and our runtime implements the DMR using the
shadow GPU.

We implement our runtime system at the CUDA runtime API level as shown in
Figure 9, which is the programming interface between CPU and GPU [24]. For exam-
ple, developers use the CUDA runtime API to allocate and copy memory in the GPU.
The CUDA driver API shown in Figure 9 is the other alternative of implementing our
testbed [25]. We choose the runtime API because it provides a higher-level abstraction.

We use the software library CUPTI (CUDA profiling tools interface [26]) as shown
in Figure 9. The CUPTI library provides two important instrumentation features for
implementing the DMR based error detection in the closed sourced CUDA runtime
APIs. First, it allows user-defined callbacks at the entry and exit point of each CUDA
runtime function, which we use to monitor and control the original program’s execution
flow. Second, each callback also provides the original arguments of the CUDA runtime
function, which are required for maintaining the shadow state and performing shadow
computation for the DMR based error detection.

In order to implement the DMR, we first need to maintain a shadow memory state
in the shadow GPU that must be identical to the original GPU card. This is required be-
cause the memory allocated through CUDA runtime functions belong to the pre-selected
device, and a GPU card cannot access the memory allocated to the other GPU card. In
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other words, the shadow GPU must have its identical copy of memory to launch a kernel
to perform the redundant computation.

We develop an efficient approach for creating an identical state in the shadow GPU.
Our approach intercepts CUDA runtime functions in the original GPU execution, and
repeats certain functions in the shadow GPU. This allows us to maintain an identical
memory state because a program can only modify GPU’s memory states via CUDA
runtime functions. We categorize the runtime functions into three kinds: memory allo-
cation/deallocation, memory copy, and memory binding.

When the program executes the runtime function in any of the three categories, our
runtime system intercepts the runtime function, reads the original arguments, and repeat
the same operation in the shadow GPU with the CUPTT’s callback based instrumentation
feature. For example, whenever the program allocates the memory in the original GPU
or copies memory from the CPU to the original GPU, we perform the same operation in
the redundant GPU. We implement all the runtime APIs in Table 1 that are sufficient for
our studied programs.

Our runtime system directly launches the same kernel to the redundant GPU be-
cause it can maintain the identical memory state. This allows us to perform the DMR
at the kernel level. A kernel launch in CUDA comprises of a series of runtime func-
tions. The first is cudaConfigureCall, which specifies the grid and block dimensions for the
kernel launch. The second is cudaSetupArgument, which pushes an argument with specified
bytes onto the top of GPU execution stack. Since it only pushes an argument a time, a
kernel with multiple argument needs to call this function multiple times. The third is
cudaLaunch, which launches the kernel function on the GPU. For the first and third run-
time function, we execute them in the redundant GPU with the same argument as in the
original GPU. We substitute the arguments of cudaSetupArgument that point to the allocated
memory address in the original GPU with the memory address in the shadow GPU.

Our developed DMR runtime system allows us to perform the error checking at the
end of each kernel’s execution. After both the original and shadow kernel complete the
execution, we copy their memory back to the CPU and perform a byte-level comparison
using the utility memcmp [27]. The byte-level comparison is relatively strict for detecting
the SDC error because the program may use floating points or be non-deterministic.
We verify if this is the case by executing the original kernel and shadow kernel at the
nominal voltage and comparing the number of total kernels and number of kernel that
passes the byte-level comparison. Figure 10 shows such comparison for our programs
running 100 times. As it shows, all kernels in all programs pass the byte-level result
comparison, suggesting all studied kernels are deterministic.

4.2 Error Recovery Using the CPU

In this subsection, we describe how we apply the principles of the asymmetric resilience
to use the CPU architecture recover from the GPU execution error. Our proposed mech-
anism can be mostly generalized to recover from errors in accelerators. Specifically,
there are three primary functions required in the asymmetric resilience: the error detec-
tion, checkpointing, and error recovery. In our prototype, we implement all the three
functions in our developed testbed using the CUDA runtime APIs. Our current imple-
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An example of non-relaunchable kernel

void CUDAkernelQuantizationFloat
(float *SrcDst, int Stride)

69

Relaunchable {

//copy current coefficient
float curCoef = SrcDstidx];
//quantize the current coefficient
float quantized = round(curCoef

/ curQuant);
curCoef = quantized * curQuant;
able //copy quantized coefficient back
SrcDst[idx] = curCoef;

Figure 11: Comparing number of kernels that can and cannot recover from execution errors by
relaunching.

mentation of error detection incurs a large overhead due to the lack of error checking
capabilities in our studied GPUs. The checkpointing and error recovery are generically
applicable to other types of accelerators.

We first explain the targeted error in our system. We then show that in the most
commonly seen cases, we can simply relaunch the kernel using the CUDA runtime
running on the CPU to recover from the GPU kernel execution error. In the case where
the kernel relaunch cannot be recovered, our proposed mechanism requires a lightweight
annotation of each kernel’s input and output, and leverages the existence of implicit
checkpoint in the CPU memory to recover from the GPU error. We describe those details
in the following paragraphs.

Targeted Error In this work, we target on the error caused by transient voltage droops,
which we detect through the kernel-level DMR. However, the ideal detection mecha-
nism is to use voltage sensors. The voltage sensors that can be used for droop detection
include the skitter circuit [28, 29], critical path monitor [30, 31], and tune replica cir-
cuit [32]. Alternatively, the voltage droop can also be detected by detecting the timing
error such as Razor shadow flip-flops [10]. Those sensors are much more lightweight
than kernel-level DMR.

Our runtime system aims to recover from memory output corruption error when
the kernel operates below the V,,;,, point. Although our error analysis in Section 3.2
showed that illegal memory accesses can also happen, such error causes CUDA runtime
error. Current CUDA error handling mechanism makes the error recovery unnecessar-
ily difficult because the runtime mandates a GPU reset: the error during the previous
kernel execution persists for all following kernel execution. But a GPU reset destroys all
previously allocated memory and all JIT-compiled codes, which basically requires a pro-
gram restart to recover from the error. Our error recovery mechanism can be extended
to handle CUDA runtime errors if future software allows better error handling. Other-
wise, sensors based error detection mechanism can prevent the error from happening by
setting a “soft” threshold [33].

Relaunchable Kernels In our prototype, we use the CPU to recover the GPU execu-
tion error at the kernel level because the kernel is smallest control granularity at the CPU
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Example 1 I: {mem1} Example 2 1I: {mem1} Example 3 1I: {mem1} I: ] Example 4 I: 2 I: ]
0: {mem2} 0: ] 0: {mem2} O: ] 0: @ 0: ]
1/0: o 1/0: {mem2} 1/0: o 1/0: {mem2} 1/0: {meml} 1/0: {meml}

( copy )(Ker‘nel—l) ( copy )(Ker‘nel—l) ( copy )(Ker‘nel—l) (Kernel—Z) copy Kernel-1
Repeat
N-1 times

Relaunch set: Relaunch set: Relaunch set: Relaunch set:
{kernel-1} {copy-mem2, kernel-1} {kernel-1, kernel-2} {copy-meml, kernel-1 x N, kerne-2 }

Figure 12: Examples of determining which kernels to relauch for recovering errors. The input,
output, input/output memory are noted as I, O, and I/O, respectively. The kernel in Example 1
is relaunchable because it has no I/O memory. The rest three examples involve non-relaunchable
kernels, for which runtime needs to copy CPU data and relaunch a set of dependable kernels.

side. Ensuring the reliability at the kernel level also greatly simplifies the checkpointing
process, which usually incurs a large runtime and storage overhead. In our system, we
only need to make the checkpoint for arguments for relaunching the previous kernel(s).
We avoid making checkpoint of architectural states during kernel execution which oth-
erwise could incur signifiant overhead owing to the thousands of concurrently running
threads in the GPU.

We find that recovering from kernel execution errors can be achieved by relaunching
the kernel computation in most cases. We define such kernel as relaunchable because its
error can be recovered by relaunching. We observe that most kernels have well-defined
input and output memory addresses. Our error characteristics analysis (Section 3.2)
showed that the error caused by a transient voltage droop does not corrupt the input
address space. As such, the CPU can re-issue the kernel computation to the GPU to
recover from the detected error.

Non-Relaunchable Kernels We also find that there exists kernels that cannot recover
from errors by relaunching, which we define as non-relaunchable. Figure 11 shows the
comparison between number of relaunchable kernels and number of non-relaunchable
kernels in studied programs. We find that only 12 out of 81 kernels are non-relaunchable,
which can be further categorized into the following two scenarios.

In the first scenario, the kernel is not idempotent, which means a re-execution of the
kernel will lead to a different result [34]. For example, a kernel has an argument pointing
to a memory region that is used as both input and output, and performs increment
operation for the memory region. Simply relaunching the kernel will cause an incorrect
result. Figure 11 also shows an example of such non-relaunchable kernels. In the second
scenario, the kernel is idempotent but the correct execution only updates a portion of
its memory output region. For example, a kernel calculates the histogram for an array
stored in an input memory region and writes the results to an output memory region.
An execution error can cause the kernel to update the wrong bin in the histogram.
Relaunching this kernel cannot recover the error because the correct execution cannot
overwrite the error in the incorrect bin.
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Start . CUDA Runtime
API

/* Error recovery */ /* Record checkpoint */
R = o /* Relaunch Set */ /* D(m): m’s dependent operations */
for io in INPUT& OUTPUT: for o in OUTPUT:
R =R U D(io) D(o).set(kernel)
Execute R in issue order for io in INPUT& OUTPUT:

Relaunch kernel D(io).enqueue(kernel)

Figure 13: Flow chart of runtime system for handling GPU error.

Implicit Checkpoint Based Recovery We can leverage the implicit checkpoint in the CPU
memory to handle errors in non-relaunchable kernels. The implicit checkpoint exists
because the CPU-GPU heterogenous system adopts the discrete memory subsystem. In
such system, the CPU explicitly manages the GPU’s memory: the CPU allocates the
memory in the GPU, and copy data from its own memory to the GPU for computation.
Owing to the natural error isolation effect of discrete memory in which the error from
the GPU cannot propagate to the CPU (Section 2.2), the CPU memory that the GPU
copies data from can be used as a checkpoint for the corresponding memory region in
the GPU. We call such checkpoint as implicit checkpoint because it is not explicitly made
by our runtime system.

Besides using the implicit checkpoint, our runtime system also needs to track the
dependency between kernels. For example, some programs launch multiple kernels
after copying data from CPU to GPU, where each kernel uses the data for both input and
output, forming a dependency chain. When a kernel in the middle of the dependency
chain encounters an error, its input is the intermediate results from its previous kernel.
In this case, we need to relaunch a set of kernels before the dependency chain to restore
the input memory.

Figure 12 illustrates the process of determining the minimum set of kernels to re-
launch. The kernel in the first example is relaunchable because it has no input/output
memory (noted as I/0), as such the relaunch set is itself when it experiences error. In
the second example, the kernel has an I/O memory region. To recover from the kernel’s
error, the runtime needs to first restore the implicit checkpoint by re-copying the CPU
data and relaunch the kernel. In the third example, kernel-2 has an I/O memory, which
is the output from kernel-1. The runtime needs to relaunch both kernels to recover from
the error of kernel-2. In the fourth example, there is a series of kernels that have I/O
memory, and the runtime needs to relaunch all those kernels for recovery. In the last
case, there is trade-off between using the implicit checkpoint and explicit checkpoint
depending on the error probability and the length of the dependency chain. We explore
such design space.

Because current GPU programming language does not allow programmers to specify
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the input, output, and input & output memory regions, we manually annotate all the
12 non-relaunchable kernels for their input, output, and input & output regions. Such
process can be automated with a compiler analysis pass, which we leave as future work.
Using these annotated information, our runtime system can dynamically track the de-
pendency between kernels and relaunch the smallest set of kernels to recover from error.
Figure 13 summarizes the overall flow of our runtime that can recover from GPU errors.

5 Experimental Setup

We discuss the hardware setup and software infrastructure used in this work for proto-
typing the asymmetric resilience.

Hardware Setup We build our testbed using a multi-GPU system as previously shown
in Figure 9. All our studied programs only use one GPU card, and we use a redundant
GPU card for error detection. Table 2 lists the key microarchitectural specifications of the
two studied GPU cards [35]. The CPU used in this study is an Intel Core i5 processor.

Software Infrastructure We use CUDA 7.0 and the CUPTI version 7.0. We use the MSI
Afterburner [36] to control the GPU chip’s voltage at a fixed frequency. The granularity
for controlling the voltage is 12 mV. We do not modify the memory frequency and
voltage.

CUDA Programs We study a set of 32 programs from the CUDA SDK benchmark
suite version 7.0 [37]. The list of programs can be found in Figure 14. These programs
have diverse performance characteristics, which help us make insightful observations
and comprehensively evaluate our system.

6 Evaluation

In this section, we evaluate the overhead of asymmetric resilience runtime system, and
demonstrate that it incurs negligible overhead when no error occurs. We also show that
our runtime system can recover from high probability errors with reasonable overhead
in most cases. We then explore the design space of combining explicit checkpoint in our
system to further minimize the recovery overhead.

We first evaluate the overhead of asymmetric resilience runtime when no error occurs.
Figure 14a first shows the original program’s execution time between kernel execution

GPU | Architecture Core | Core Clock | Memory Clock | Register Per | L1 | L2
Counts (MHz) (MHz) Core (KB) | (KB) | KB
X 12
GTX680 Kepler 8 1100 3004 256 48 >
GTX780 12 1536

Table 2: GPU cards’ microarchitectural specifications.
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Figure 14: (a) Overhead when no error occurs. (b) Error recovery overhead of our runtime system
in different error scenarios: ‘U’ represents operating below V,,;,, value, and “P5” represents 5%
output error injection probability.

and CUDA runtime functions, which are both normalized to the total kernel execution
time. Most programs spend their majority of time in the kernel execution while some
programs spend most of their time in CUDA runtime functions. For example, SobolQRNG
spends 16.85x kernel execution time in CUDA runtime functions. Figure 14a then shows
the overhead for both the kernel execution and CUDA runtime functions which our
runtime keeps track of. On average, the kernel execution overhead is only about 1%. The
average CUDA runtime functions overhead is 0.6%. Programs such as dwtHaarlD has more
than 10% kernel execution overhead because its kernel execution time is much shorter
compared to our runtime overhead. In summary, our runtime system incurs negligible
performance overhead because we only keep track of operations such as kernel execution
and data copying but rather than the actual memory content.

We then evaluate the overhead of asymmetric resilience runtime system to recover
from errors. We have two error injection mechanisms for evaluating the robustness of
our prototype. We intentionally operate the kernel below its V,,;, (i.e. undervolt) level
as one of the two error injection mechanisms. The undervolt is a realistic cause of GPU
execution errors but it can cause illegal memory access and therefore CUDA runtime
errors, which requires a restart of the program (Section 4.2). As such, we use a second
error injection approach that directly corrupts the kernel execution output to fully test
the error recovery ability of our system.
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Figure 15: Execution time when bounding dependency chain length. “L3” means when the chain
length becomes larger than 3, we make an explicit checkpoint in the CPU.

Figure 14b shows the normalized execution overhead under different error scenar-
ios. The first bar indicated by ‘U’ represents the scenario when operating 12 mV below
the Vi, The next three bars (“P5”, “P10’, “P20”) represent the memory output error
injection with probability of 5%, 10%, and 20%, respectively. We categorize the recov-
ery overhead into two kinds: relaunching the erroneous kernel itself and relaunching
extra kernels that the erroneous kernel is dependent on. We find that most programs
do not need to launch extra kernels, and their recovery overhead increases linearly with
the error probability. The only three programs that need to relaunch extra kernels are
dct8x8, eigenvalues, and fastWalshTransform. The recovery overhead for dct8x8 is still small be-
cause it has only a non-relaunchable kernel whose execution time is small too. However,
the overhead for eigenvalues and fastWalshTransform are very high, because they have mostly
non-relaunchable kernels which form a long dependency chain.

We find that explicit checkpoint can be used to minimize the recovery overhead for
programs with long kernel dependency chain. By making explicit checkpoint, the kernel
dependency chain becomes a single memory copy instead of a series of kernel compu-
tation. We explore the design space of bounding the kernel dependency chain with
different sizes, and show the results for eigenvalues and fastWalshTransform in Figure 15. The
digit after letter ‘L indicates the length of the dependency chain. For example, in the
“L3” case, the length of the dependency chain is bounded to be 3: when the chain size
becomes larger than 3, we make an explicit checkpoint by copying data back to the CPU.
We vary the size of chain from 3 to 30.

Our results unveil an interesting observation that the optimum chain size depends on
the program characteristics. As shown in Figure 15a, eigenvalues prefers short chain size
because its time of copying the checkpoint relative to its kernel execution time is very
small. In contrast, fastWalshTransform in Figure 15b prefers a large chain size because of
high checkpoint copy overhead. This observation suggests that the runtime can use the
ratio between past kernel execution time and data copying time to decide the optimal
chain length.
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7 Discussion

In this section, we discuss current limitation of our system. We believe that our work is
the first step towards making asymmetric resilience more practical and our work can be
extended to a much broader scope.

GPU Architecture Our system currently only tracks CUDA runtime function, but can
be extended to support CUDA driver functions. Such extension will allow our system
to support more programs. We find that some programs use CUDA libraries such as
CUFFT [38]. Those libraries internally use driver functions, which our current system
does not support.

Our system does not support CUDA unified memory [20] and dynamic parallelism [39].
We believe that it is possible and straightforward for extending our work to support
those features. CUDA unified memory allows automatic data copy between CPU and
GPU. Our work requires the capability to intercept the data copy operation to support
this feature. CUDA dynamic parallelism allows a thread in a kernel to launch another
kernel. We can use a tree structure instead of the queue used in our system for main-
taining kernel dependence and deciding the minimum set of kernels to relaunch.

Extending to Accelerators Although our work focuses on the CPU and GPU system
with discrete memory, many insights can be extended to CPU and accelerator system
with unified /coherent memory (Section 2.2). One of the most needed feature is the
memory access isolation mechanism such as preventing the accelerator from accessing
the CPU memory, and preventing the accelerator from corrupting read-only input mem-
ory. Prior works on security or shared memory access control for better performance can
be extended for such purpose [40, 41, 42, 43], which we leave as future work. Although
the implicit checkpoint does not exist in the unified /coherence memory, the trade-off of
making explicit checkpoint revealed in our study is still applicable.

8 Related Work

In this work, we propose a generic design paradigm called asymmetric resilience for
recovering accelerator errors using the CPU architecture. We also demonstrate how to
follow its principles by using CPU architecture to recover from GPU errors caused by
transient voltage droops. We compare and contrast our work with prior works on the
error recovery and guardband optimization in the CPU and GPU/accelerator.

Error Recovery Prior work [44] proposed containment domain which aims to prevent
errors in one part of the system from affecting others. [45] proposed asymmetric reliabil-
ity for designing multi-core architecture with different reliability levels for probabilistic
applications. Our work targets heterogeneous systems with CPU and accelerators and
focuses on using CPU to recover from accelerator errors.

There have been works targeting soft error detection and recovery in CPUs [17, 46,
16,47, 48, 49, 50] as well as GPUs [51, 52]. The CPU-centric works can be used to harden
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CPUs in asymmetric resilience, and our work can be extended for handling on-chip
soft errors. Prior works [53, 54, 55] have studied detection and recovery for other error
types in GPUs. The error detection part applies to our work, and our error recovery is
fundamentally different, for which we rely on the CPU instead of the GPU itself. Prior
works [56] have used the concept of asymmetry for performance or energy optimization,
but our work applies it to reliability optimization.

Guardband Optimization Prior works [11, 10, 57, 58, 59, 60, 61, 62, 63, 64] studied
guardband management in the CPU. There have also been prior works [65, 66, 21, 67, 68]
that emphasized the worst-case mitigation or typical case adaptation on GPU itself. Our
work studies how to use the CPU to handle the worst-case GPU condition.

9 Conclusion

In this work, we demonstrate a runtime system design that uses the CPU to recover from
GPU errors caused by transient voltage droops. Our runtime has near zero overhead
when no error occurs due to our insightful observation on the error characteristics and
how the GPU error propagates to the CPU. We also study optimizations to minimize its
error recovery overhead. By using the CPU handling the GPU’s worst case condition,
the GPU can operate at typical condition and improve its energy efficiency significantly.
We generalize such design to the concept of asymmetric resilience, a generic design
paradigm that ensures reliability of accelerator-rich systems in the presence of transient
accelerator errors. We believe that asymmetric resilience is a promising direction.
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