
RC25685 (WAT1909-033) September 25, 2019
Computer Science

 Research Division
 Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

Proceedings of the 13th Symposium and Summer School On
Service-Oriented Computing (SummerSoc19)

Johanna Barzen1, Rania Y. Khalaf2, Frank Leymann1, Bernhard

Mitschang1

Editors

1University of Stuttgart
Universitätsstraße 38

70569 Stuttgart
Deutschland

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

USA

The 13th Advanced Summer School
on Service-Oriented Computing

June 17 - June 23

2019�
Hersonissos, Crete, Greece

The 13th advanced Summer School on Service-Oriented Computing
(SummerSOC’19) continued a successful series of summer schools that started in
2007, regularly attracting world-class experts in Service-Oriented Computing to
present state-of-the-art research during a week-long program organized in several
thematic tracks: IoT, formal methods for SOC, Cloud Computing, Data Science,
Advanced Manufacturing, Software Architecture, Digital Humanities, Quantum
Computing, and emerging topics. The advanced summer school is regularly
attended by top researchers from academia and industry as well as by PhD and
graduate students.

During the different sessions at SummerSOC renowned researchers gave invited
tutorials on subjects from the themes mentioned above. The afternoon sessions
were also dedicated to original research contributions in these areas: these
contributions have been submitted in advance as papers that had been peer-
reviewed. Accepted papers were presented during SummerSOC and during the
poster session. Furthermore, PhD students had been invited based on prior
submitted and reviewed extended abstracts to present the progress on their theses
and to discuss it during poster sessions. Some of these posters have been invited to
be extended as a full paper, which are included in this technical report.

Johanna Barzen, Rania Khalaf, Frank Leymann, Bernhard Mitschang
 - Editors -

Content

A. Chronarakis, S. Gkouskos, K. Kalampokis, G. Papaioannou,
X. Agalliadou, I. Chaldeakis and K. Magoutis

	
	

Poster Session: Extended Abstract

	

A Pattern-Based Method for Designing IoT Systems 1
L. Reinfurt, M. Falkenthal and F. Leymann

Impact of Application Load in Function as a Service 28
J. Manner and G. Wirtz

Coverage criteria for integration testing of serverless applications.............. 37
S. Winzinger and G. Wirtz

ProxiTour: A Smart Platform for Personalized Touring.............................. 46

A Survey on Cloud Migration Strategies for High Performance
Computing .. 57
S. Kehrer and W. Blochinger

Towards a Platform for Sharing Quantum Software.................................... 70
F. Leymann, J. Barzen and M. Falkenthal

How to Reconstruct Musical Experiences from Historical Texts:
Methodological Issues .. 75
C. Neuefeind, B. Mathiak and F. Hentschel

CO2-effcient Home Energy Management: A Service-Oriented
Approach ... 83
L. Fiorini

Optimising Local Energy Storage for Smart Grid Connected Offices 86
B. Setz

ii

	
	
	
	

Smart Lifecycle Management for Devices in the Internet of Things –
A Research Approach .. 88
D. Grüdl

Application Modernization: Refactoring to Microservices 90
J. Fritzsch, S. Wagner and A. Zimmermann

A Formal Security Analysis of Hyperledger Fabric 92
M. Simon and R. Küsters

iii

A Pattern-Based Method for Designing IoT Systems

Lukas Reinfurt1,2, Michael Falkenthal1, and Frank Leymann1

1 Institute of Architecture of Application Systems, University of Stuttgart,
Universitätsstr. 38, 70569 Stuttgart, Germany

[firstname.lastname]@iaas.uni-stuttgart.de
2 Daimler AG,

Epplestr. 225, 70546 Stuttgart, Germany
[firstname.lastname]@daimler.com

Abstract. The Internet of Things pattern language can be a valuable tool for
practitioners that want to design an IoT system. It o�ers them abstract proven
solutions based on existing real world uses and, thus, makes working with the large
amount of di�erent devices, platforms, technologies, and standards in the field of
IoT more manageable. Practitioners can use the pattern language to design an IoT
system by starting with any pattern they deem suitable and then by continuing to
follow the links to related patterns defined by the pattern language. However, when
designing an IoT system, applying patterns in a certain order can be beneficial.
It allows practitioners to think through important aspects of the system in the
right order to minimize context switching and to avoid having to change previous
decisions. Thus, we introduce a pattern-based method for designing IoT systems. It
guides practitioners through the steps of designing an IoT system in a sensible order.
Based on answers to specific questions asked in each step, it points practitioners
to suitable patterns and other helpful tools. The result is a pattern-annotated
architecture diagram that can be used as basis for further architecture refinement,
as a guide for finding existing solutions, and as input for communication with other
involved stakeholders.

Keywords: Pattern Languages · Design Patterns · Pattern-Based Method · Internet
of Things · System Design

1 Introduction

In recent years, the Internet of Things (IoT) has grown from a vision into reality. More and
more devices are capable of gathering and communicating data about their surroundings.
Processing this data enables a more detailed understanding of environments and processes,
which in turn can be used to control and optimize them. Closing the feedback loop by
sending back commands to the devices creates cyber-physical systems that bring benefits
into many areas of life, such as smart homes, o�ces, or factories [20].

But building such systems is not easy. A lot of companies, from small startups to
large corporations, are vying to become a household name in the IoT space. New devices,
platforms, and technologies are released frequently, creating a vast amount of alternatives
that are hard to understand, compare, and reason about. A lack of standardization, or
rather a lack of conciliation of the many available standards, has additionally increased
the complexity of this situation.

1

To improve this situation for practitioners who want to understand and build IoT
systems, we mined and described IoT patterns in several relevant areas, such as device
operation modes and energy supply [27, 28], sensing [28], processing [25], communica-
tion [25, 29], registration and bootstrapping [26], management [25, 29], and security [24].
Patterns, as introduced by Alexander in the domain of architecture [2], are structured
textual descriptions of reoccurring problems and their abstract solutions. These solutions
are based on proven real world implementations and are abstracted in such a way that
applying them to a particular problem at hand will result in a slightly di�erent solution
every time [2]. But the abstract core of the solution remains the same and is a useful arti-
fact to build up a knowledge base of solutions to common problems and to communicate
this knowledge to practitioners.

The IoT patterns are interconnected, for example, if two patterns have to be used
together or one after another. Thus, they form a graph, with patterns as nodes, and the
relations between the patterns as edges [8]. The semantics of the edges allow practitioners
to purposefully navigate through the graph from one pattern to the next. Such a pattern
graph is called a pattern language, which is a useful tool for practitioners when trying to
understand a particular domain or when trying to build something in that domain. For the
IoT domain, we authored the IoT pattern language3, which combines all our IoT patterns.
A practitioner can use the IoT pattern language to solve problems in his IoT system. He
can start with one particular problem, apply the appropriate pattern, and then follow the
links between the patterns to solve additional problems.

But there is always the question of where to start. If the practitioner has an existing
system where he wants to improve some aspects, he can use an approach to find suitable
entry points for his current situation based on the problems he currently has [30]. But if
the practitioner is starting from scratch, he might need a more guided approach to build
an IoT system using patterns, which allows him to think through the important aspects
of the system one at a time and in a sensible order. By concentrating on one aspect at a
time, context switches are minimized and related decision are made at the same time. By
prescribing a sensible order, problems, where more recent decisions change the outcome
of past decisions, can be minimized. In this paper, we describe such an approach for the
IoT patterns.

The remainder of the paper is structured as follows: We motivate our approach in
Section 2. Related work is presented in Section 3. Our approach in general and details
about each step are described in Section 4. This section also presents a running example.
Section 5 concludes this paper and presents possible future work.

2 Motivation

For our examples throughout this paper we are going to focus on a concrete practitioner,
Patrick, shown in Figure 1. He is an IoT system architect working as a consultant for
private clients. In his projects, Patrick is usually tasked with helping these clients with
their IoT systems. Sometimes these systems already exist and have to be modified or
fixed. But now, Patrick has the task to create a home automation system from scratch.

3 http://www.internetofthingspatterns.com

2

http://www.internetofthingspatterns.com

???
PatrickIoT Pa�ern

Language
Other Pa�ern
Languages

Other
Methods

IoT System
Architecture

p1

p2

p16 p10 p20

p11

p12
p13

p15p14p9

p7

p3p17

p4p18

p19 p5

p8

p6

Fig. 1. The practitioner Patrick wonders how he should start designing a new IoT system.

Patrick knows that designing and implementing IoT systems is complex. In the last
few years, he has seen the countless devices, services, and platforms that have been
introduced, using a large number of di�erent technologies and standards. Some of these
existed before and have been adapted for the new challenges of IoT systems, while others
are new and were specifically designed with these challenges in mind. This has created a
vast and complex landscape of IoT solutions and technologies that is hard to understand.
Thus, Patrick is looking for tools and methods that can help him handle this complexity.

But not everything in the IoT is new. Many components and technologies that are used
in IoT systems have existed and have been used independently. For example, the backend
of an IoT system is often located in the cloud, which is a computing paradigm that has
been very successful independently from the IoT. Or when it comes to security, many
techniques are used that have been established in IT systems long ago. In these areas,
there also exist many tools that help practitioners like Patrick to design IT systems with
best practices in mind, such as the Cloud Computing Patterns [11] or various patterns for
security [13, 32, 33].

However, the IoT adds a new dimension in many areas. It introduces physical devices
that are often constrained in their capabilities. These constraints influence all other
areas that are involved in IoT systems, from communication networks, to processing,
management, and security. Some of the existing tools are still applicable, but new
approaches that take the characteristics of IoT systems into account are also required. To
o�er practitioners, like Patrick, tools to help them with understanding and designing IoT
systems, we introduced the IoT pattern language, which contains patterns for various
aspects of IoT systems.

Patrick has found the IoT pattern language and wants to use it to design the smart
home system for his client. He could start with some patterns and then follow the links
to related patterns that are defined in the pattern language. This may lead to patterns
of di�erent areas being used in a mixed order, which would require Patrick to switch
between those contexts and may lead him to having to revise old decisions when a newly
applied pattern introduces new influencing factors. Instead, it makes more sense to finish
one area first before moving to the next and to move through these areas in a sensible
order. Another problem is that the IoT pattern language is not exhaustive. It links to
patterns from other pattern languages where applicable, but it also makes sense to use
other tools during the system design process that are not pattern related.

3

We think that a more guided approach for designing IoT systems from scratch can help
practitioners like Patrick. Therefore, we introduce a pattern-based method for designing
IoT systems in the following sections. It not only guides practitioners through a sensible
application order of the IoT patterns and other related patterns, but also incorporates or
points to other useful tools. Thus, it o�ers a systematic process for the pattern-based
design of IoT systems.

3 Related Work

IoT systems are essentially cyber-physical systems, for which a number of design
and modeling approaches have been described in literature [15, 18]. But these do not
incorporate patterns. A pattern-based approach for designing reliable cyber-physical
systems was presented in [22], but it is focused on so called reliable component
composition patterns that can improve the reliability of components by serializing or
parallelizing them, and have little in common with the patterns as we use them. To the
best of our knowledge, there is no comprehensive pattern-based method for designing
IoT systems described in literature.

But for some parts of IoT systems, pattern-based methods exist. For example, the
Cloud Computing Patterns [11] are applicable in IoT systems where components, usually
in the backend, are run on a cloud infrastructure. The pattern-based design method for
cloud applications that uses these patterns [9, 10] can be helpful when designing an IoT
system backend and can be integrated in our method. But the patterns and method do not
help with the IoT specific problems of small, constrained devices and their e�ects.

Enterprise integration patterns are also applicable in IoT systems. They are clustered
by six root patterns, each describing a part of a messaging pipeline and pointing to
more detailed patterns for its implementation [16]. This allows a practitioner to design a
messaging pipeline from beginning to end by following the patterns, which resembles
the approach presented in this paper. But these patterns are limited to communication
and, thus, are only useful for designing parts of an IoT system. They can be integrated in
the Communication step of our method.

Patterns for designing distributed control systems [4] may also be applicable to some
IoT systems, but they also lack solutions for IoT specific problems of small, constrained
devices. They also do not o�er a method, but only describe a design approach based on
following the links between patterns in a pattern language once problems in an existing
design or system become apparent [4].

Another area where existing patterns are applicable is security. Several general
methodologies for adding security to distributed systems exist [35]. When it comes
to patterns, Security Patterns in Practice [13] describes three di�erent approaches for
pattern-based secure systems development. In the first approach, information about their
use is added to the patterns themselves to o�er application guidance to practitioners.
The second approach is life-cycle-based, where security patterns are applied at every
development stage. The third approach uses model-driven engineering, where models
are transformed from stage to stage according to rules and meta-models [13]. A di�erent
architectural systems engineering methodology for addressing cyber security with
patterns is also presented in [3]. Depending on their scope, these di�erent methodologies

4

and approaches can either be integrated into our method at the Security step, or can
themselves integrate our method where appropriate. But these methods and pattern only
handle some security aspects of IoT systems and, thus, these approaches do not cover
other IoT specific problems.

There are other pattern languages that are not applicable when designing IoT systems
but follow a similar approach as the approach presented in this paper. Designing
Interfaces [34] presents patterns for user interface design. They are clustered in groups
that are ordered by scale, which also approximates the order of the design process. A
practitioner starts designing the biggest user interface pieces first and then gradually adds
smaller and smaller details. SecPatt [1] focuses on easy to use security patterns for web
sites. The patterns are clustered in terms of the practitioner’s experience. As a beginner,
a practitioner starts with the first pattern cluster. As he gains more experience, he can
move to patterns in more advanced clusters. What these approaches have in common
with our proposed approach is that they group their patterns into chronologically ordered
clusters that guide practitioners through a sensible application process. But they do not
use guiding questions to further add structure inside these clusters or to integrate other
methods and tools.

On a more abstract level, the graph created by the IoT pattern language through the
links between its patterns can be seen as a dense primary index structure [12]. The
steps of the method presented in this paper would then create sparse secondary index
structures (views) around context clusters [12], while the overall method orders these
views chronologically. The notion of temporal ordering of pattern application is also
at the center of pattern sequences [23]. It is often necessary to compose patterns from
di�erent domains to create a system, and the order of application matters. A pattern
sequence creates a temporal order of patterns of one or multiple domains. In addition, a
pattern sequence is also more e�ective in presenting a pattern language. Compared to
a pattern language graph, a sequence provides a linear order in which the patterns can
be listed [23]. The method presented in this paper can be seen as the main sequence
of the IoT patterns and related patterns. Another approach is to use patters to capture
architectural decisions, as they do not only describe the decisions themselves, but also
contain possible alternatives, consequences, and the rational behind the decisions. This
can be useful, as these decisions can not be derived from architecture diagrams and
would be lost if they are not recorded otherwise [14]. This approach can be combined
with domain specific Reusable Architectural Decision Models (RADMs) into a method,
called ArchPad that guides pattern selection and architectural decisions [37]. The method
presented in this paper can be seen as a RADM for IoT systems that concentrates on stage
2 (conceptual decisions) and 3 (technology decisions) of the ArchPad method.

Overall, we think that other approaches have shown that pattern-based methods can
add value to pattern languages. The lack of a comprehensive method for the IoT domain
leaves room for a method based on the IoT pattern language, which can also integrate
other existing approaches at the appropriate stages. The next section present our proposal
for such a method.

5

BootstrappingCommunica�onProcessingDevices Managemet

Security

Func�onality

Fig. 2. An overview of the pattern-based method for designing IoT systems and its main steps.

4 Method

Our proposed method is a seven step process based on major pattern clusters in the IoT
pattern language. Figure 2 shows the order of these steps. Note that, while the general
order of the steps is linear, it might make sense to track back or iterate at some points, but
this is not further shown here. In each step, targeted questions about specific details are
asked. Depending on the answers, the method then points to patterns from the IoT pattern
language or from other pattern languages, suggests useful tools or methods, or describes
modifications to the architecture diagram. By following the method, practitioners can
design an IoT system architecture that is annotated with patterns.

The method, as described here, uses Unified Modeling Language (UML) [21] activity
diagrams to represent the architecture. This modeling language was chosen because it is
standardized, widely used, and supports all constructs necessary to describe the structure,
as well as the functionality, of an IoT system. Other modeling languages can be used
instead if required. Each step of the method and its questions address certain quality
attributes, such as functional suitability, performance e�ciency, compatibility, usability,
reliability, security, maintainability, portability, and their sub-attributes, as defined in
ISO/IEC 25010:2011 [17]. These quality attributes are mentioned where appropriate, but
a more detailed description of how each pattern influences those attributes can be found
in the pattern text. Note, that the patterns may not address all possible quality attributes
and, thus, further work might be necessary to address those that are missing.

The first step, Functionality, is not supported by patterns, but is a vital precursor for
the following steps. Here, the overall goals of the system and all activities necessary to
reach those goals are collected. Additionally, important parameters, like physical location
and the estimated size of the collected measurements are established, which inform the
pattern selection in later steps. Crucially, the first step also decides if the planned project
is actually an IoT project and if the later steps are applicable at all. If so, the following six
steps can be used to design an IoT system architecture based largely on the IoT pattern
language. Thus, this step mainly addresses functional suitability and time behavior of the
system, as well as capacity on a data level.

In the Devices step, the capabilities and functionality of the devices are detailed, using
the IoT patterns for energy supply, operation mode, and sensing [27, 28]. It addresses
questions of functional suitability, performance e�ciency, compatibility, and reliability
on a device level.

Based on the capabilities of the devices, the Processing step defines where, when,
and how the data they collect should be processed. In some cases this requires the
introduction of new components into the architecture, which is, thus, crucial in shaping

6

the component landscape of the planned IoT system. This step addresses functional
suitability, performance e�ciency, and partly usability of processing components.

In the next step, Communication between all these components is specified in more
detail. This involves estimating the required communication bandwidth, and thinking
about how and when communication should happen and how reliable it should be. Thus,
this step addresses functional suitability, performance e�ciency, compatibility, and
reliability of communication.

Once all communication paths are defined, there is one more step to make the system
operational. All devices and other components have to be initially configured to be able
to integrate into the system and start communicating with others. How this is done is
defined during the Bootstrapping step. Here, IoT patterns are used to describe i) how to
initially place bootstrap information onto devices, ii) how to register devices in the system,
and iii) how to define and store the registration information. Thus, this step is mainly
concerned with portability and its sub-characteristics of adaptability and installability of
the devices in the system.

The system is now functional, but there are two more steps in the method. In the
Management step, processes for updating software and firmware on devices, and how to
organize and scale this for large numbers of devices, are described. This is crucial to
ensure the longevity of the system, as it allows practitioners to keep components up to
date and in line with changing requirements. Thus, this step is concerned with questions
of maintainability, mainly its sub-characteristic modifiability, of the system components.

Underlying all of the previous steps is Security, where methods for securing devices,
processing, communication, bootstrapping, and management are described. It is executed
in parallel with the previous steps in order to ensure that security concerns are considered
at the right times during the method, as some security decision might also influence
decisions in other steps. This is again a crucial step, as it hardens the system against
potential security risks. Thus, this step is concerned with questions of security and its
sub-characteristics of confidentiality, integrity, and authenticity, of the entire system.

After completing these seven steps, a practitioner now has an architecture diagram
that specifies all major components of the systems, as well as their functionalities and
their communication paths. These are annotated with patterns that describe some of their
aspects in more detail. At this state, the practitioner can use this diagram in several ways.

First, he can use the component descriptions to take a look at existing solutions that
he might want to use in his system. Since the diagram defines i) required functionality,
ii) behavior, iii) communication, and iv) bandwidth requirements, he now has a solid
understanding of what a particular solution has to o�er to fit into the system. This
should enable him to compare available o�erings more easily and to communicate his
requirements more e�ectively to vendors.

But he might not be able to find existing solutions for all components. This leaves
him with some components of the system that have to be implemented from scratch. He
can use the architecture diagram as a starting point for a more detailed specification
process for these components. The information in the diagram should give him a good
idea of the requirements of those components, and the annotated patterns o�er ways to
implement their functionality.

7

The practitioner can also use the architecture diagram when communicating with other
stakeholders. As IoT systems often span multiple locations and areas of responsibilities,
the diagram can be helpful in i) finding out what exactly these areas are in order to
find the right people to talk to, and for ii) showing di�erent stakeholders what and why
something is required from them.

4.1 Functionality

The whole point of an IoT system is to support a certain functionality that is routed in data
collected and processed by devices and other components. Thus, you should first define
the goals of the system and what data is needed to reach those goals. In this method, this
is done be answering the following questions, which will point to appropriate patterns
and other tools where applicable. Figure 3 shows an exemplary result of applying the
Functionality step of the method. It is explained in more detail by the application example
at the end of this section.

Questions

Main Functionality - What do you want to accomplish? First, you need to be aware
of your main functionality. These are the things that your system should ultimately
accomplish if it has access to the right data. An example would be “display the average
temperature of locations A, B, and C”, or “automatically turn on the light if someone
enters the room”. We draw these as StructuredActivityNodes at the top of our canvas.
This allows us to fill in detailed actions, decisions, splits, and joints later on if required.

Prerequisite Functionality - What has to be done before? Usually there is some
prerequisite functionality that needs to happen before the main functionality. This can
be worked out by planning in reverse starting from the main functionality nodes. First,
for each main functionality, note its parameters. For each parameter, ask yourself what
prerequisite functionality delivers this parameter. Draw the prerequisit functionality under
their corresponding main functionality, put an ObjectNode representing the corresponding
parameter between them, and connect everything through ObjectFlows. Then, for each
newly added functionality, repeat the above process to get its prerequisite functionality,
until no more prerequisite functionality can be found. This results in a graph, where the
vertices that generate data or where commands terminate represent the root functionality.
Vertices in between the root functionality represent intermediary functionality that
combines, splits, or decides on its incoming data through some form of processing (see
Section 4.3). The ObjectNodes passed between the functionality nodes represent the data
that is required to ultimately execute the main functionality.

Postrequisite Functionality - What has to be done after? Usually there is also some
postrequisite functionality that is triggered by the main functionality. Repeat the process for
prerequisite functionality, but think about what has to happen after the main functionality.
Iterate until no more postrequisite functionality can be found. Again, you might get
intermediary functionality that, in this case, splits the results of previous functionality
through some form of processing (see Section 4.3).

8

Origin and Target - Where does functionality originate and terminate? For each root
functionality, ask yourself which entity would execute it. This can be a person, a workflow,
an API, a device, etc. Add the origin for each root functionality as a PartitionName
in parentheses above the functionality. If you are left with a set of root functionality
nodes that do not include a device partition, then you do not have an IoT project and the
remainder of this method may be of little value to you.

Physical Location - Where does functionality happen? For each functionality, ask
yourself where it will be executed physically. If you end up with more than one
physical location, use ActivityPartitions in the form of vertical swimlanes to organize all
functionality. Use the «external» ActivityPartition for functionality outside your control.

Functionality Timing - How often is functionality executed? Depending on how time
critical your main functionality is, you might need to run the pre- and postrequisite
functionality in shorter or longer intervals. It might also be necessary to execute this
functionality whenever a certain event occurs. Traverse the graph breadth-firsts, starting
with the main functionality nodes, and think about how frequently you need each of
them executed. Add a TimeEvent (in seconds) or a ReceiveSignal to the respective nodes.
Then, for each pre- and postrequisite functionality, add the smallest TimeEvent of all
direct parents as this functionality’s TimeEvent. If the parents have ReceiveSignals, add
corresponding SendSignals. Continue this process for each functionality until you have
reached the bottom layer of root functionality.

Object Size - How big are the parameter objects? The size of the parameter objects
that are passed between the functionality nodes can vary. Together with the functionality
timing, the object size is useful to estimate the communication and processing bandwidth
required in later steps. Traverse the graph breadth-first, starting from the root functionality
nodes, and estimate the upper bound of the size of all the parameter objects they produce.
Annotate each ObjectNode with its estimated size in bits.

Application Example

We now come back to Patrick, the IoT system architect tasked with building a smart
home system for one of his clients. Patrick starts with our method by working through the
questions of the first step, the result of which is shown in Figure 3. The main functionality
of this system is Turn on Light If Sunset and Motion is detected, Turn On Light If Button
Pressed, and Log Events. The prerequisite functionality that has to happen before them
are Sense Press, Sense Sunset, and Detect Motion. Sense Press originates from a devices
placed inside the house, while Sense Sunset comes from an external weather API. Detect
Motion has itself two prerequisite functionality nodes, Sense Motion, since the driveway
is too large to be observed by one motion sensor. These also originate from devices that
have to be located on the driveway. There is only one postrequisite functionality, Turn
On, which happens after either Turn on Light If Sunset and Motion or Turn On Light If
Button Pressed. This functionality targets a device on the driveway. The ObjectFlows
between these functionality nodes show the messages that have to be passed around.

9

House Driveway <<external>>

(Device)

Sense Press

Log Events

(API)
Sense
Sunset

(Device)

Turn On

(Device)
Sense
Mo�on

(Device)
Sense
Mo�on

Detect Mo�on

Turn on Light if
Sunset and Mo�on

Turn on Light if
Bu�on Pressed

pressed turn on mo�on

mo�on

mo�on

mo�on

sunset
100b

100b

100b

100b 100b 100b 100b

60s

(...)

Annota�on
Proc. Bandw.xb

Ac�vityPar��on
Par��onName

ReceiveSignal
SendSignal

S.Ac�vityNode

TimeEvent

ObjectFlow
ObjectNode

Legend

Fig. 3. Exemplary IoT system architecture after Functionality step.

Each one is annotated with a functionality timing - a 60 seconds TimeEvent for Sense
Sunset and SendSignals for all others. The size of the objects passed around is estimated
at 100 bits for a JSON object with an ID, payload, and timestamp. This first step provides
a rough overview of the systems functionality and how it is connected.

4.2 Devices

Devices are usually the main data sources in IoT systems and can vary significantly in
size, capabilities, energy supply, or mobility, depending on the use case. In this step, the
number of devices in the system and their capabilities are defined in more detail. Figure 4
shows an exemplary result of applying the Devices step of the method. It is explained in
more detail by the application example at the end of this section.

Questions

Device Reuse - Do you have existing devices you could use? For each device partition,
ask yourself if you already have existing devices that support the required functionality.
It might be possible that you can cover all or some of your root functionality with devices
that you already operate or own. Change the corresponding PartitionNames to known
devices where applicable.

10

Device Amount - How many devices do you need? In some situations you might need
a separate device for every root functionality node. But often, one device can support
multiple root functionality. For example, if your root functionality includes measure
temperature and measure humidity, you can find many devices that o�er both in one
package. Combining devices where possible decreases costs and complexity. If possible,
combine device partitions and merge their update intervals by selecting the smallest
TimeEvent and combining all SendSignals and ReceiveSignals.

Energy Supply - How will you power the devices? How you power the devices depends
on their functionality timing and physical location. Use a M����-P������ D����� [28]
if mains power is readily available at the device’s physical location or if its functionality
timing is very short. Otherwise, especially if the device is mobile, select one of the
following power supply types: If the device’s functionality timing is still pretty short, a
P����� E�����-L������ D����� [27] might make sense. If the device has to be rugged
or will be operated in a hard to reach physical location, and if its functionality timing is
rather long, use a L������� E�����-L������ D����� [28]. If the device’s functionality
timing is rather low and its physical location is suitable, use an E�����-H���������
D����� [27]. Annotate all devices with the appropriate energy supply patterns.

Operation Mode - How will the devices operate? A device’s operation mode is largely
dictated by its functionality timing and energy supply. M����-P������ D������ [28]
or devices with very short functionality timing are usually A�����-O� D������ [28].
P����� E�����-L������ D����� [27], L������� E�����-L������ D����� [28], E�����-
H��������� D����� [27], or devices with long functionality timing are usually N�������-
S������� D������ [27]. Annotate all devices with the appropriate operation mode
patterns.

Sensing - How will the devices gather data? The kind of sensing that is needed on a
particular device is a result of its functionality and functionality timing. If it only uses
TimeEvents, S�������-B���� S������ [28] makes sense. If it only uses SendSignals,
E����-B���� S������ [28] makes more sense. If both are required, a combination of
both sensing paradigms is appropriate. Annotate all devices with the appropriate sensing
patterns.

Secure Devices - How will you secure devices? Consider Section 4.7 in regards to
securing devices. Make sure that the previous decisions support the required security
measurements and adjust if necessary.

Application Example

Based on the results of the first step, Patrick is now able to continue with the second
step of our method, concentrating on the Devices shown at the bottom of Figure 4. The
client actually owns two devices that can be reused for this system, a Flic button for the
Sense Press functionality, and a Philips Hue light bulb for the Turn On functionality. The
devices for the Sense Motion functionality have to be added to the system. Combining

11

House Driveway <<external>>

Z
Z
Z !

(Flic)
Sense Press

Log Events

(API)
Sense
Sunset

(Hue)
Turn On

!

(Device)
Sense Mo�on

!

(Device)
Sense Mo�on

Detect Mo�on

Turn on Light if
Sunset and Mo�on

Turn on Light if
Bu�on Pressed

pressed turn on mo�on

mo�on

mo�on

mo�on

sunset
100b

100b

100b

100b 100b 100b 100b

60s

(...)

Annota�on
Proc. Bandw.xb

Ac�vityPar��on
Par��onName

Pa�ern

ReceiveSignal
SendSignal

S.Ac�vityNode

TimeEvent

ObjectFlow
ObjectNode

Legend

Fig. 4. Exemplary IoT system architecture after Devices step.

devices is not possible in this scenario. For each device, Patrick now specifies its energy
supply, operation mode, and sensing capabilities, based on our IoT patterns. So, for
example, the Philips Hue light bulb is a M����-P������ D����� and a A�����-O�
D�����. Regarding device security, as most device are located on the driveway, where
they may be prone to theft, Patrick adds the R����� L��� ��� W��� pattern to them
where possible. The following table lists all patterns that have been applied in this step.

Entity Patterns

Sense Press

StructuredActivityNode
L������� E�����-L������ D�����, N�������-S������� D�����,
E����-B���� S������

Turn On

StructuredActivityNode
M����-P������ D�����, A�����-O� D�����

Sense Motion

StructuredActivityNode
P����� E�����-L������ D�����, N�������-S������� D�����,
E����-B���� S������, R����� L��� ��� W���

4.3 Processing

Once the functionality of the system and the required data is defined, the next question
is what has to happen to the data so that the functionality can be implemented. An IoT
system usually includes some processing components, since the data is rarely in exactly

12

the form that it needs to be in. Figure 5 shows an exemplary result of applying the
Processing step of the method. It is explained in more detail by the application example
at the end of this section.

Questions

Processing Bandwidth - How much data has to be processed? Starting from the device
partitions, for each parent functionality, calculate the sum of all of its ObjectNode inputs
in bits per second. This number is how much data has to be processed per second
to perform the functionality. Annotate this number to each StructuredActivityNode as
processing bandwidth. Continue upwards until all StructuredActivityNodes are annotated.

Processing Location - Where should the processing be done? Certain functionality
might be computed through L���� P��������� right on or near the devices. If a
functionality that is not already part of a device requires only input data from a single
device, and if the processing bandwidth needed to execute this functionality is su�ciently
small, then L���� P��������� right on the device is an option. In this case, move
the functionality into the StructuredActivityNode of the device. Place this device into
a horizontal swimlane called Local and add the L���� P��������� pattern to it. If a
functionality requires input data from multiple devices and if the required processing
bandwidth is reasonable, then L���� P��������� on a component physically near the
device can o�er lower latencies. In this case, add a new StructuredActivityNode with
the component’s name as PartitionName and move this functionality into it. Place this
StructuredActivityNode into a horizontal swimlane called Edge, which is located above the
Local swimlane, and add the L���� P��������� pattern to it. Otherwise, if the required
processing bandwidth is too high, use R����� P��������� to execute this functionality
in the cloud or on a backend server. Add a PartitionName with the corresponding cloud
service or backend server. Place this functionality in a horizontal swimlane called Remote,
which is located above the Edge swimlane, and add the R����� P��������� pattern to it.
Also check, if this functionality is still in the right physical location swimlane, or if it
has to be moved.

Processing Time - When should the processing be done? For each functionality, look
at its functionality timing. If there are only ReceiveSignals, use E����-B���� P���������.
If there are only TimeEvents, use S�������-B���� P���������. If both are present,
it might be necessary to use two separate processing pipelines, one for E����-B����
P��������� and one for S�������-B���� P���������. It might also be possible to use
E����-B���� P��������� to emulate S�������-B���� P���������. B���� P���������
can be useful to optimize resource utilization if low latency is not required. Annotate all
functionality nodes with the appropriate pattern.

Processing Implementation - How do you implement processing steps? If you require
the flexibility that processing can be changed and adjusted on the fly, even by non-
programmers, a R���� E����� [25] can be helpful. For each functionality, ask yourself
if this functionality is needed here. If so, annotate this functionality with the R����
E����� [25] pattern.

13

House

Lo
ca

l
Re

m
ot

e
Ed

ge

Driveway <<external>>

Z
Z
Z !

(Flic)
Sense Press

(Server)

!

Log Events

(API)
Sense
Sunset

(Hue)
Turn On

!

(Sensor)
Sense Mo�on

!

(Sensor)
Sense Mo�on

!

Detect Mo�on

!

Sunset and Mo�on...
!

Bu�on Pressed...

(Processing Component)

pressed turn on mo�on

mo�on

mo�on

mo�on

sunset
100b

100b

100b

100b 100b 100b 100b

100b 200b200b

200b

60s

(...)

Annota�on

Proc. Bandw.
Proc. Bandw.

xb
xb

Ac�vityPar��on
Par��onName

Pa�ern

ReceiveSignal
SendSignal

S.Ac�vityNode

TimeEvent

ObjectFlow
ObjectNode

Legend

Fig. 5. Exemplary IoT system architecture after Processing step.

Combined Processing - Can processing functionality be combined? After the previous
steps you might end up with multiple processing components in the Edge or Remote
swimlane. For each swimlane, think about if any of these components can be physically
combined. Maybe some of them do very similar processing, or maybe multiple processing
functionality nodes can be executed by one shared R���� E����� [25]. If so, merge the
StructuredActivityNodes of the involved functionality and give the new node a suitable
PartitionName. Merge their update intervals by selecting the smallest TimeEvent and
combining all SendSignals and ReceiveSignals.

Secure Processing - How will you secure processing? Consider Section 4.3 in regards
to secure processing. Make sure that the previous decisions support the required security
measurements and adjust if necessary.

Additional Resources

Often, processing functionality can be resource intensive and has to be executed remotely.
The cloud is a natural fit for such tasks. When designing components in the Remote layer,
the Cloud Computing Patterns can be helpful [11]. The pattern-based design method for
cloud applications [9, 10] can also be used in this step.

14

Application Example

In this step, Patrick is now able to concentrate on Processing. The estimated processing
bandwidth of each intermediary functionality is calculated based on the previously
estimated functionality timings and object sizes. Based on these figures, Patrick decides
that L���� P��������� is feasible. But because the existing devices do not have
processing capabilities, the intermediary functionality has to be processed on separate
components, which places them in the Edge swimlane. E����-B���� P��������� is
chosen, as communication is largely event-based. No special processing implementation
is required. But Patrick decides that all intermediary functionality except Log Events can
be combined on one edge device to save costs and, thus, combines them in a Processing
Component that will be placed on the driveway near the sensors to reduce latency. Log
Events will be executed on a small server in the house, where more storage space for the
logs is available. He does not add extra security measures for processing, as no critical
data or processing is part of the system. The result of this step is shown in Figure 5. The
following table lists all patterns that have been applied in this step.

Entity Patterns

Log Events

StructuredActivityNode
L���� P���������, E����-B���� P���������

Button Pressed...

StructuredActivityNode
L���� P���������, E����-B���� P���������

Sunset and Motion...

StructuredActivityNode
L���� P���������, E����-B���� P���������

Detect Motion

StructuredActivityNode
L���� P���������, E����-B���� P���������

4.4 Communication

In the previous steps, we introduced several StructuredActivityNodes that represent
separate components. These components are further separated into several physical
locations, as well as the Local, Edge, and Remote layers. Once the physical separation of
these components is clear, it is necessary to think about communication between these
components. Figure 6 shows an exemplary result of applying the Communication step of
the method. It is explained in more detail by the application example at the end of this
section.

Questions

Communication Partners - Who has to communicate? The graph now consists of three
di�erent kinds of larger nodes that inform all communication. You have local devices,
some of them with integrated L���� P���������. There might be some additional L����
P��������� nodes in the Edge layer. The remainder are the R����� P��������� nodes
in the Remote layer. Their communication paths are indicated by the ObjectFlow edges

15

between these nodes. If some of these nodes do not support the same communication
technology as their communication partners, a D����� G������ [25] between them might
be necessary. If so, add a new StructuredActivityNode between them in the Edge layer
and annotate the D����� G������ [25] pattern to it. Check if any L���� P���������
in the Edge layer can be done on this D����� G������ [25] to reduce the number of
components in the system.

Communication Bandwidth - How much bandwidth is required to communicate? For
each intermediary functionality, the required communication bandwidth can be calculated
from its incoming and outgoing ObjectFlows. Its required download bandwidth equals
the sum of all its incoming ObjectFlows in bits per second. Its required upload bandwidth
equals the sum of all its outgoing ObjectFlows in bits per second. Check if these numbers
are reasonable or if you might have to split up nodes. D���� U������ [29] can also be
used if communication bandwidth is limited.

Communication Type - How should be communicated? For P����� E�����-L������
D������ [27], L������� E�����-L������ D������ [28], or E�����-H��������� D�-
����� [27], L��-P���� S����-R���� C������������ or L��-P���� L���-R����
C������������ might be used, depending on the distance to their next communica-
tion partner. E�����-H��������� D������ [27] or devices with a really small energy
supply might also be able to use P������ C������������. If devices have to com-
municate between themselves, a M��� N������ might make sense. M����-P������
D������ [28] can use P�������� C������������ to reduce infrastructure costs. If
wireless communication is di�cult and wired communication is not possible, V������
L���� C������������ [29] can be an alternative. Annotate all ObjectFlows with suitable
communication type patterns.

Communication Time - When should be communicated? For each ObjectFlow, the
communication time is informed by the functionality timing of the sender. For TimeEvents,
use S�������-T�������� C������������. For SendSignals, use E����-T��������
C������������. In some case, C������-T�������� C������������ can be an
alternative. If TimeEvents are very short, or if SendSignals tend to happen very close to
each other, B������ C������������ can be helpful to avoid overwhelming devices and
networks. In some cases, it might make sense to send newly connected communication
partners parts of previous communication exchanges as P��-S����������� N�����������
to get them initialized. Annotate all ObjectFlows with suitable communication time
patterns.

Communication Reliability - How reliable should communication be? A D�����
S����� [25] decouples communication between N�������-S������� D������ [27]
and other components. A D����� W����� T������ can be used to wake up N�������-
S������� D������ [27] when necessary. F���-���-F����� T�������� can be used
to send data where high reliability is not required. R������� T���������� is better
suited for messages, like commands, that should reach their intended recipient. Q�����
M������� can be used to store messages for communication partners that are currently
o�ine or busy. Once they reconnect, it is possible to S��� A�� P������ message or

16

House

Lo
ca

l
Re

m
ot

e
Ed

ge

Driveway <<external>>

Z
Z
Z !

! ✓(Flic)
Sense Press

(Server)

!

Log Events

(API)
Sense
Sunset

(Hue)
Turn On

(Sensor)
Sense Mo�on

!

! ✓(Sensor)
Sense Mo�on

!

! ✓

!

!

!

Detect Mo�on
!

!

!

Sunset and Mo�on...
!

!

Bu�on Pressed...

(Device Gateway)

pressed turn on mo�on

mo�on

mo�on

mo�on

sunset

! ✓

100b

100b

100b

100b 100b 100b 100b

200b
0b
200b

200b
100b
200b

100b
100b
100b

200b
100b
200b

60s

(...)

Annota�on

Proc. Bandw.
Proc. Bandw.

xb
xb

xb
xb

Upload Bandw.
Downl. Bandw.

Ac�vityPar��on
Par��onName

Pa�ern

ReceiveSignal
SendSignal

S.Ac�vityNode

TimeEvent

ObjectFlow
ObjectNode

Legend

Fig. 6. Exemplary IoT system architecture after Communication step.

only S��� L�����. Use R��� L������� to prevent large numbers of messages from
overwhelming the network and devices. Use a R������� to ensure reliable communication
over larger distances. Annotate all ObjectFlows and StructuredActivityNodes with suitable
communication reliability patterns.

Secure Communication - How will you secure communication? Consider Section 4.7
in regards to securing communication. Make sure that the previous decisions support the
required security measurements and adjust if necessary.

Additional Resources

In addition to the patterns mentioned above, the Enterprise Integration Patterns [16] are
useful when using messaging-based communication.

Application Example

Now that Patrick has a clear idea where data is generated, used, and processed, he can
continue with the Communication step. The communication partners are already clear
from the previous steps, but the Philips Hue light bulb requires a D����� G������
to be able to communicate with other components. Patrick adds a D����� G������

17

and decides that it should also handle the L���� P��������� in the driveway. He
estimates and annotates the communication bandwidth required between these components
based on the previous estimates for functionality timings and object sizes. He uses IoT
patterns to describe the communication type and time of the components. For example,
the Flic button uses L��-P���� S����-R���� C������������ and E����-B����
C������������. All messages should reach their intended target eventually, so he decides
to also use R������� T����������. He also wants to secure communication with
T������ C������������ P������ and O�������-O��� C��������� on the devices,
a W�������� on the server and D����� G������, and A��������� E��������� [13] on
all communication channels. The result of this step is shown in Figure 6. The following
table lists all patterns that have been applied in this step.

Entity Patterns

Server

PartitionName
W��������

Device Gateway

PartitionName
D����� G������, W��������

sunset

ObjectFlow
S�������-T�������� C������������, F���-���-F�����
T��������, A��������� E���������

motion from Detect Motion

ObjectFlow
E����-T�������� C������������, R������� T����������,
A��������� E���������

pressed

ObjectFlow
L��-P���� S����-R���� C������������, E����-T��������
C������������, R������� T����������, T������ C������-
������ P������, O�������-O��� C���������, A���������
E���������

turn on

ObjectFlow
L��-P���� S����-R���� C������������, E����-T��������
C������������, R������� T����������, P��-S�����������
N�����������, T������ C������������ P������, O�������-
O��� C���������, A��������� E���������

motion from Sense Motion

ObjectFlow
L��-P���� S����-R���� C������������, E����-T��������
C������������, R������� T����������, T������ C������-
������ P������, O�������-O��� C���������, A���������
E���������

4.5 Bootstrapping

Bootstrapping is the process of putting all information that a device needs to initiate
communication with another component, such as IP addresses and authentication data,
onto the device. Figure 7 shows an exemplary result of applying the Bootstrapping step
of the method. It is explained in more detail by the application example at the end of this
section.

Bootstrapping Information - What information do you need to make a device oper-
ational? For every device and component in your system, you need to know what
information it requires to be able to communicate. List all required pieces of information

18

for every ObjectFlow, such as IP addresses, DNS, ports, IDs, usernames, passwords,
certificates, cryptographic keys, API Tokens, etc. Also, think about where you would get
that information from. Which people, departments, or vendors do you have to contact?
Are there paper work, regulations, lead times or deadlines involved?

Bootstrapping Process - How do you deliver bootstrapping information? Once you
have the bootstrapping information, you have to get it onto your devices and components. If
you have only a small number of devices, you can set them up manually during deployment
with M�����-B���� B�������� [26]. If a larger number of devices are involved, it
may be better to do a F������-B�������� [26] during production. Both methods can
be combined with R����� B�������� [26] to allow you to change the bootstrapping
information dynamically. Annotate each device with a suitable bootstrapping pattern.
For other components, delivering the bootstrapping information usually boils down to
specifying it in a configuration file or as environment variables during deployment.

Registration Process - How do you connect a device to your backend? After you set
up all devices with the information they require, you have to register them in your system.
For a small number of devices, M����� U���-D����� R����������� [26] is doable
and easy to implement. For larger numbers of devices, A�������� C�����-D�����
R����������� [26] or A�������� S�����-D����� R����������� [26] are more scalable.
Annotate each device with a suitable registration pattern.

Information Storage - How do you store information about known devices? By regis-
tering a device in your system, you are adding some general information about the device,
a so called device model, which contains attributes such as type, name, vendor, firmware
version, capabilities, etc. This information is useful for managing your devices and for
other components to interact with your devices. A device can provide this information
itself with a D�����-D����� M���� [26]. It could also just chose one P��-D������
D�����-D����� M���� [26] from a selection o�ered by the backend. If a device does
not support one of these modes, a S�����-D����� M���� [26] can be assigned to it by
the backend. All device models can be stored in a D����� R������� [26], where they can
be managed centrally and are accessible to other components, even if devices are o�ine.
Add a StructuredActivityNode for a D����� R������� [26] if necessary and specify all
the ObjectFlows to and from it where required. Think about if you can combine the
D����� R������� [26] with another component, for example a D����� G������ [25].

Secure Bootstrapping - How will you secure bootstrapping? Consider Section 4.7 in
regards to securing bootstrapping. Make sure that the previous decisions support the
required security measurements and adjust if necessary.

Application Example

To get all components up and running, Patrick now has to specify how the initial
Bootstrapping of communication settings should happen. But first, he lists all the
required bootstrapping information, like an API key for the Sense Sunset functionality,

19

House

Lo
ca

l
Re

m
ot

e
Ed

ge

Driveway <<external>>

Z
Z
Z !

(Flic)
Sense Press

(Server)

!

Log Events

(API)
Sense
Sunset

(Hue)
Turn On

(Sensor)
Sense Mo�on

!

! ✓(Sensor)
Sense Mo�on

!

!

!

! !

Detect Mo�on
! !

!

!

Sunset and Mo�on...
!

!

Bu�on Pressed...

(Device Gateway)

pressed turn on mo�on

mo�on

mo�on

mo�on

sunset

! ✓ ! ✓! ! ✓

100b

100b

100b

100b 100b 100b 100b

200b
0b
200b

200b
100b
200b

100b
100b
100b

200b
100b
200b

60s

(...)

Annota�on

Proc. Bandw.
Proc. Bandw.

xb
xb

xb
xb

Upload Bandw.
Downl. Bandw.

Ac�vityPar��on
Par��onName

Pa�ern

ReceiveSignal
SendSignal

S.Ac�vityNode

TimeEvent

ObjectFlow
ObjectNode

Legend

Fig. 7. Exemplary IoT system architecture after Bootstrapping step.

or an IP address for the D����� G������. For the devices, he decides to use R�����
B������������ for the initial configuration. As there are only a few devices in the
system, he chooses M����� U���-D����� R����������� to keep things simple. The
information should be stored as S�����-D����� M����� in a D����� R������� on the
D����� G������. To secure bootstrapping, Patrick wants to use D������ S��������
���� H������ [13]. The result of this step is shown in Figure 7. The following table lists
all patterns that have been applied in this step.

Entity Patterns

Device Gateway

Partition Name
D����� R�������, S�����-D����� M����

Sense Press

StructuredActivityNode
R����� B��������, M����� U���-D����� R�����������

Turn On

StructuredActivityNode
R����� B��������, M����� U���-D����� R�����������

Sense Motion

StructuredActivityNode
R����� B��������, M����� U���-D����� R�����������

20

4.6 Management

At this stage, the IoT system is functional. But to be able to ensure a properly working
system well into the future, it will be necessary to manage the system components,
for example, to update software. Figure 8 shows an exemplary result of applying the
Management step of the method. It is explained in more detail by the application example
at the end of this section.

Questions

Managing Configuration - How will you change device configuration? From time to
time it might be necessary to change device configurations to accommodate changes in
the system. This might include switching on or o� features, changing communication
partners, restarting the device, etc. You can use R����� D����� M��������� [29] to
manage device configuration remotely and for large numbers of devices. If so, annotate
each device that should be remotely managed with the R����� D����� M��������� [29]
pattern and add a new StructuredActivityNode for the R����� D����� M���������
server.

Managing Updates - How will you update software on devices? It might also be
necessary to update software on devices that are already deployed, for example to
introduce new features, fix problems, or close security holes. To avoid having to do
this manually, implement O���-���-A�� U������ that allow you to push new software
and firmware onto devices remotely. Annotate each device for which you want to use
O���-���-A�� U������ with the pattern.

Management Organization - How will you organize devices? If you have a large
number of devices, organizing them can help you manage them more e�ciently. Use
O������������� C��������� to group devices by common attributes, such as type,
vendor, location, firmware version, etc. This allows you to introduce filters or automation
based on these attributes into other areas, such as R����� D����� M��������� [29],
O���-���-A�� U������, or security (see Section 4.7) for more fine-grained control. Add
the O������������� C�������� pattern the the R����� D����� M��������� server.

Management Scalability - How will you handle large numbers of devices? Managing
a large number of devices can create its own scalability problems. B���� C��������
allow you to incrementally roll out configuration and software changes with increased
reliability and decreased resource requirements. Add the B���� C������� pattern to the
R����� D����� M��������� [29] pattern where necessary.

Secure Management - How will you secure management? Consider Section 4.7 in
regards to securing management. Make sure that the previous decisions support the
required security measurements and adjust if necessary.

21

House

Lo
ca

l
Re

m
ot

e
Ed

ge

Driveway <<external>>

Z
Z
Z !

(Flic)
Sense Press

(Server)

!

Log Events

(API)
Sense
Sunset

(Hue)
Turn On

(Sensor)
Sense Mo�on

!
v2.0

(Sensor)
Sense Mo�on

!
v2.0

!

!

! !

Detect Mo�on
! !

!

!

Sunset and Mo�on...
!

!

Bu�on Pressed...

(Device Gateway) v2.0

pressed turn on mo�on

mo�on

mo�on

mo�on

sunset

! ✓ ! ✓ ! ✓! ! ✓

100b

100b

100b

100b 100b 100b 100b

200b
0b
200b

200b
100b
200b

100b
100b
100b

200b
100b
200b

60s

(...)

Annota�on

Proc. Bandw.
Proc. Bandw.

xb
xb

xb
xb

Upload Bandw.
Downl. Bandw.

Ac�vityPar��on
Par��onName

Pa�ern

ReceiveSignal
SendSignal

S.Ac�vityNode

TimeEvent

ObjectFlow
ObjectNode

Legend

Fig. 8. Exemplary IoT system architecture after Management step.

Application Example

At this step, Patrick looks at Management. The Flic button and the Philips Hue light
bulb do not support remote management, but for the two motion sensors and the D�����
G������, Patrick wants to implement R����� D����� M���������. He also wants to
use O���-���-A�� U������ for these three devices. So he annotates the devices with
these two patterns. He decides to skip the management organization and scalability step,
as there are only a few devices in the system and that is not about to change soon. To
secure management, Patrick wants to use D������ S�������� ���� H������ [13]. The
result of this step is shown in Figure 8. The following table lists all patterns that have
been applied in this step.

Entity Patterns

Device Gateway

Partition Name
R����� D����� M���������, O���-���-A�� U������, D������
S�������� ���� H������

Sense Motion

StructuredActivityNode
R����� D����� M���������, O���-���-A�� U������, D������
S�������� ���� H������

22

4.7 Security

The overall system and all its components should be secured against possible attacks. This
includes not only software and network attacks, but also physical attacks against exposed
devices. The questions below should already have been answered during the previous
steps of the method. You can check them here again to see if you missed something.

Questions

Secure Devices - How will you secure devices? Think about where your devices will
be located and how accessible they will be to potential malicious attackers. If they
are located somewhere where they could be stolen, a R����� L��� ��� W��� [25]
mechanism can help you prevent an attacker from accessing data or misusing the device.
Add the R����� L��� ��� W��� [25] pattern to devices if necessary.

Secure Processing - How will you secure processing? Use A������������ S����� ��
D��� [31] to ensure that the data you process is clean and accurate. F��� S������� [31]
when an error occurs so that the failure situation does not create more problems. Add
these patterns to processing functionality if necessary.

Secure Communication - How will you secure communication? Communication is
one major attack vector for any IoT system and has to be secured properly to avoid
data theft or tempering and other attacks on the system. Configuring each device to
only accept communication from T������ C������������ P������� [24] that you
know. You can go a step further by limiting connection attempts to O�������-O���
C���������� [24] from devices. You can also use W��������� [24] and B��������� [24]
to control communication. Other patterns from existing literature, like A���������
E��������� [13], are also applicable here (see additional resources). Annotate devices
and other components with these patterns where appropriate.

Secure Bootstrapping - How will you secure the bootstrapping? In addition to securing
the communication during bootstrapping and registration as described above, you can
use D������ S�������� ���� H������ [13] to prove the origin and detect tempering of
bootstrapping and registration data. The patterns for secure processing might also be
helpful here. Add these patterns to bootstrapped components where required.

Secure Management - How will you secure management? In addition to securing the
communication during management as described above, you can use D������ S��������
���� H������ [13] to prove the origin and detect tempering of management data. The
patterns for secure processing might also be helpful here. Add these patterns to managed
components where required.

Additional Resources

In addition to the security patterns mentioned above, there are more security patterns
that can be useful described in [13, 19, 31, 32, 33, 36].

23

Table 1. All patterns that have been applied in the application example.

Entity Patterns

Sense Press

StructuredActivityNode
L������� E�����-L������ D�����, N�������-S������� D�-
����, E����-B���� S������, R����� B��������, M�����
U���-D����� R�����������

Turn On

StructuredActivityNode
M����-P������ D�����, A�����-O� D�����, R����� B���-
�����, M����� U���-D����� R�����������

Sense Motion

StructuredActivityNode
P����� E�����-L������ D�����, N�������-S������� D�����,
E����-B���� S������, R����� L��� ��� W���, R����� B���-
�����, M����� U���-D����� R�����������, R����� D�����
M���������, O���-���-A�� U������, D������ S��������
���� H������

Log Events

StructuredActivityNode
L���� P���������, E����-B���� P���������

Button Pressed...

StructuredActivityNode
L���� P���������, E����-B���� P���������

Sunset and Motion...

StructuredActivityNode
L���� P���������, E����-B���� P���������

Detect Motion

StructuredActivityNode
L���� P���������, E����-B���� P���������

Server

PartitionName
W��������

Device Gateway

PartitionName
D����� G������, W��������, D����� R�������, R����� D�-
���� M���������, O���-���-A�� U������, D������ S��������
���� H������

sunset

ObjectFlow
S�������-T�������� C������������, F���-���-F�����
T��������, A��������� E���������

motion from Detect Motion

ObjectFlow
E����-T�������� C������������, R������� T����������,
A��������� E���������

pressed

ObjectFlow
L��-P���� S����-R���� C������������, E����-T��������
C������������, R������� T����������, T������ C������-
������ P������, O�������-O��� C���������, A���������
E���������

turn on

ObjectFlow
L��-P���� S����-R���� C������������, E����-T��������
C������������, R������� T����������, P��-S�����������
N�����������, T������ C������������ P������, O�������-
O��� C���������, A��������� E���������

motion from Sense Motion

ObjectFlow
L��-P���� S����-R���� C������������, E����-T��������
C������������, R������� T����������, T������ C������-
������ P������, O�������-O��� C���������, A���������
E���������

24

Application Example

Patrick has already considered security in parallel to the previous steps, as depicted by
Figure 2. Thus, after checking for a final time, he decides that there are no additional
security measurements required at this point. Patrick is now finished with the method.
The end result is the high level pattern-annotated architecture diagram shown in Figure 8.
Table 1 lists all patterns that have been applied during the method.

Patrick can now uses this diagram to look for available solutions for the missing parts
in the system. The details and patterns specified in the diagram help him find motion
sensors and a D����� G������ that support the required functionality. He decides to
implement the server component himself. With this plan and the diagram, he can now
talk to the other involved stakeholders, in this case his client. Once the plan is approved,
he uses the pattern-annotated diagram as a basis for further specifying the details of the
server component, as well as the three functionality nodes that he has to implement on
the Device Gateway.

5 Conclusion and Future Work

In this paper, we showed our pattern-based method for designing IoT systems, which can
be used by practitioners to build up an UML-based and pattern-annotated architecture
diagram. This diagram can be used as basis for further architecture refinements, as guide
for finding and selecting existing solutions, and to communicate with other stakeholders.

We see a few areas, where future work could improve this method. In its current
state, there are some steps in our method that are not backed by patterns. Here, it could
be interesting to investigate, if patterns in those areas could be found. We also had little
space to describe additional resources and how they can be applied in detail. Future
work could improve upon this and provide a more detail explanation and integration of
additional resources. Another area for future work is tooling support for this method,
which we think could provide value to practitioners. It could reduce the amount of manual
work required to execute the method and could be integrated with other software tooling
for easier use. It could also be interesting to explore existing approaches for linking
patterns to concrete implementations [5, 6] and to technology specific patterns [7] to
ease the pattern application process for the practitioner. Finally, we plan to evaluate
this method in real world projects, which could give us an idea of its suitability and of
possible improvements.

Bibliography

[1] Secpatt (2019), https://www.secpatt.at/patterns/
[2] Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings,

Construction. Oxford University Press, New York (1977)
[3] Bayuk, J.L., Horowitz, B.M.: An architectural systems engineering methodology

for addressing cyber security. Systems Engineering 14(3), 294–304 (2011)

25

https://www.secpatt.at/patterns/

[4] Eloranta, V.P., Koskinen, J., Leppänen, M., Reijonen, V.: Designing distributed
control systems: A pattern language approach. Wiley series in software design
patterns, Wiley, Hoboken, NJ (2014)

[5] Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F.: E�cient
pattern application: Validating the concept of solution implementations in di�erent
domains. International Journal on Advances in Software 7(3&4), 710–726 (2014)

[6] Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F.: From pattern
languages to solution implementations. In: Proceedings of the Sixth International
Conferences on Pervasive Patterns and Applications (PATTERNS 2014). pp. 12–21.
IARIA, Wilmington, DE (2014)

[7] Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F., Hadjakos,
A., Hentschel, F., Schulze, H.: Leveraging pattern application via pattern refinement.
In: Proceedings of the International Conference on Pursuit of Pattern Languages
for Societal Change (PURPLSOC) (2016)

[8] Falkenthal, M., Breitenbücher, U., Leymann, F.: The nature of pattern languages.
In: Pursuit of Pattern Languages for Societal Change. pp. 130–150. tredition (2018)

[9] Fehling, C.: Cloud Computing Patterns: Identification, Design, and Application.
Dissertation, University of Stuttgart, Stuttgart (2015)

[10] Fehling, C., Leymann, F., Retter, R.: Your co�ee shop uses cloud computing. IEEE
Internet Computing 18(5), 52–59 (2014). https://doi.org/10.1109/MIC.2014.101

[11] Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing
Patterns: Fundamentals to Design, Build, and Manage Cloud Applications. Springer,
Wien (2014). https://doi.org/10.1007/978-3-7091-1568-8

[12] Feldhusen, J., Bungert, F.: Pattern languages to create a holistic methodology for
product development and to derive enterprise-specific engineering guidelines. In:
Industrial Engineering and Ergonomics, pp. 131–141. Springer (2009)

[13] Fernandez, E.B.: Security Patterns in Practice: Designing Secure Architectures
Using Software Patterns. Wiley (2013)

[14] Harrison, N.B., Avgeriou, P., Zdun, U.: Using patterns to capture architectural
decisions. IEEE software 24(4), 38–45 (2007)

[15] Hehenberger, P., Vogel-Heuser, B., Bradley, D., Eynard, B., Tomiyama, T., Achiche,
S.: Design, modelling, simulation and integration of cyber physical systems:
Methods and applications. Computers in Industry 82, 273–289 (2016)

[16] Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, Boston, Massachusetts (2004)

[17] ISO: Iso/iec 25010:2011 (2011), https://www.iso.org/standard/35733.
html

[18] Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical
systems: A survey. IEEE Systems Journal 9(2), 350–365 (2014)

[19] Kienzle, D.M., Elder, M.C., Tyree, D., Edwards-Hewitt, J.: Security pat-
terns repository version 1.0 (2002), http://www.scrypt.net/~celer/
securitypatterns/repository.pdf

[20] Miorandi, D., Sicari, S., Pellegrini, F.d., Chlamtac, I.: Internet of things: Vision,
applications and research challenges. Ad hoc networks 10(7), 1497–1516 (2012)

[21] Object Management Group: Omg unified modeling language (omg uml) (05122017),
https://www.omg.org/spec/UML/2.5.1/PDF

26

https://doi.org/10.1109/MIC.2014.101
https://doi.org/10.1007/978-3-7091-1568-8
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
http://www.scrypt.net/~celer/securitypatterns/repository.pdf
http://www.scrypt.net/~celer/securitypatterns/repository.pdf
https://www.omg.org/spec/UML/2.5.1/PDF

[22] Petroulakis, N.E., Spanoudakis, G., Askoxylakis, I.G., Miaoudakis, A., Traganitis,
A.: A pattern-based approach for designing reliable cyber-physical systems. In:
2015 IEEE Global Communications Conference (GLOBECOM). pp. 1–6 (2015)

[23] Porter, R., Coplien, J.O., Winn, T.: Sequences as a basis for pattern language
composition (2005)

[24] Reinfurt, L., Breitenbücher, U., Falkenthal, M., Fremantle, P., Leymann, F.: Internet
of things security patterns. In: Proceedings of the 24th Conference on Pattern
Languages of Programs (PLoP) (2017)

[25] Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet
of things patterns. In: Proceedings of the 21st European Conference on Pattern
Languages of Programs (EuroPLoP). ACM (2016)

[26] Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet
of things patterns for device bootstrapping and registration. In: Proceedings of
the 22nd European Conference on Pattern Languages of Programs (EuroPLoP).
EuroPLoP ’17, ACM, New York, NY, USA (2017)

[27] Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet of
things patterns for devices. In: Proceedings of the Ninth International Conferences
on Pervasive Patterns and Applications (PATTERNS) 2017. pp. 117–126. Xpert
Publishing Services (2017)

[28] Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet of
things patterns for devices: Powering, operating, and sensing. International Journal
on Advances in Internet Technology 10(3 & 4), 106–123 (2017)

[29] Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet
of things patterns for communication and management. LNCS Transactions on
Pattern Languages of Programming (2019)

[30] Reinfurt, L., Falkenthal, M., Leymann, F.: Where to begin - on pattern language
entry points. SICS Software-Intensive Cyber-Physical Systems 35(in press) (2020)

[31] Romanosky, S.: Security design patterns (2001), http://www.cgisecurity.
com/lib/securityDesignPatterns.html

[32] Schumacher, M.: Firewall patterns. In: Proceedings of the 8th European Conference
on Pattern Languages of Programms (EuroPLoP ’2003) (2003)

[33] Schumacher, M., Fernandez, E.B., Hybertson, D., Buschmann, F., Sommerlad, P.:
Security Patterns: Integrating Security and Systems Engineering. Wiley (2005)

[34] Tidwell, J.: Designing interfaces: Patterns for e�ective interaction design. O’Reilly
Media, Inc (2010)

[35] Uzunov, A.V., Fernandez, E.B., Falkner, K.: Engineering security into distributed
systems: A survey of methodologies. J. UCS 18(20), 2920–3006 (2012)

[36] Yoder, J., Barcalow, J.: Architectural patterns for enabling application security.
https://www.idi.ntnu.no/emner/tdt4237/2007/yoder.pdf

[37] Zimmermann, O., Zdun, U., Gschwind, T., et al.: Combining pattern languages
and reusable architectural decision models into a comprehensive and comprehen-
sible design method. In: Seventh Working IEEE/IFIP Conference on Software
Architecture (WICSA 2008). pp. 157–166 (2008)

All links were last accessed on 08.08.2019

27

http://www.cgisecurity.com/lib/securityDesignPatterns.html
http://www.cgisecurity.com/lib/securityDesignPatterns.html
https://www.idi.ntnu.no/emner/tdt4237/2007/yoder.pdf

Impact of Application Load in
Function as a Service

Johannes Manner and Guido Wirtz

DSG, University Bamberg, An der Weberei 5, 96047 Bamberg, Germany
{johannes.manner,guido.wirtz}@uni-bamberg.de

Abstract. Function as a Service (FaaS) introduces a di↵erent notion of
scaling than related paradigms. The unlimited upscaling and the prop-
erty of downscaling to zero running containers leads to a situation where
the application load influences the number of running containers directly.
We propose a combined simulation and benchmarking process for cloud
functions to provide information on the performance and cost aspect for
developers in an early development stage. Our focus in this paper is on
simulating the concurrently running containers on a FaaS platform based
on di↵erent function configurations. The experiment performed serves as
a proof of concept work and emphasizes the importance for design deci-
sions and system requirements. Especially for self-hosted FaaS platforms
or resources bound to cloud functions like database connections, this
information is crucial for deployment and maintenance.

Keywords: Serverless Computing, Function as a Service, FaaS, Bench-
marking, Simulation, Load Profile

1 Introduction

As in every virtualization technology, a cloud function container faces some

performance challenges when it is created and executed for the first time. To

estimate the quality of serivce a system delivers, benchmarking applications is

crucial. Huppler [1] stated that a benchmark should be relevant, fair, ver-
ifiable, economical and repeatable. There does exist a bunch of experiments,

e.g. [2,3,4,5,6], executed in the FaaS domain to assess this new paradigm in the

cloud stack.

We investigate these benchmarks based on the requirements of Huppler. All

of these benchmarks make a performance evaluation of one or more FaaS plat-

forms compared to each other or related technologies like Virtual Machine (VM)

based solutions. The biggest issue in general is the repeatability of a bench-

mark since the targeted field is highly evolving. Another problem is the lack

of information about the settings and other influential factors of the mentioned

experiment. Results are discussed in detail for every of these publications, but

only a few of them describe all the necessary steps to repeat the experiment

28

and verify the findings, as Kuhlenkamp and Werner [7] ascertained. All the

benchmarks in their literature study are FaaS related and conducted since 2015.

They gave each experiment a score between 0 and 4 to assess quality of the

presented work. Workload generator, function implementation, platform config-

uration and other used services are the categories of their systematic literature

study. The mean average was 2.6, which indicates that a lot of information is

missing in the conducted benchmarks. Only 3 out of 26 experiments supplied

all preconditions and parameters needed to make it possible to reproduce the

presented results. Therefore, results of di↵erent benchmarks are often not com-

parable to each other. The first category, generation of load patterns and their

topology, is the least discussed item. Authors of FaaS benchmarking papers only

write in every third publication about the load pattern aspect.

As the load pattern topology has a major influence on the scaling behavior of

a cloud function platform, we focus on this aspect here. This is also important

for software architects constructing hybrid architectures which need informa-

tion about the incoming request rate in the non-FaaS part of their systems.

Otherwise, the FaaS part of applications can cause Distributed Denial of Ser-

vice (DDos) attack on other parts. Our paper stresses this aspect in particular by

(i) discussing di↵erent ways to specify load patterns, (ii) proposing a workflow

for a combined FaaS simulation and benchmarking process and (iii) presenting a

methodology to compute the number of running instances out of the respective

load trace.

The outline of the paper is as follows. Section 2 discusses related work and

answers the first contribution, which load generation tools are suited to specify

application workloads. Section 3 proposes a generic workflow for a simulation and

benchmarking process of cloud functions and picks a single aspect, the number

of concurrently running functions as a proof of concept. The paper concludes

with a discussion in Section 4 and an outlook in Section 5.

2 Related Work

2.1 Benchmarking FaaS

The open challenges Iosup and others [8] mentioned in their publication for

Infrastructure as a Service (IaaS) benchmarking are partly-open challenges for

FaaS as well. There is currently a lack of methodological approaches to bench-

mark cloud functions consistently. Malawski and others [6,9] conducted scien-

tific workflow benchmarks and built their benchmarking pipeline based on the

serverless framework 1
. They publish their benchmarking results continuously,

but do not include simulations, which would reduce cost and time. Similar to

this approach, Scheuner and Leitner [10] introduced a system, where micro

and application benchmarks are combined. Especially the micro benchmarking

aspect is interesting for a consistent FaaS methodology since typically a single

cloud function is the starting point. Three di↵erent load patterns are part of

1 https://serverless.com/framework/

29

https://serverless.com/framework/

their contribution but hidden in the implementation of their system and there-

fore not directly mentioned, as in many other FaaS publications. These initial

benchmarks focusing on a single aspect in isolation are important steps to un-

derstand the impact on system design and execution, but they are quite di�cult

to setup and need a lot of time for execution, as Iosup already mentioned for

IaaS benchmarking. So, [8] proposes a combination of simulating small sized ar-

tificial workloads and conducting real world experiments as the most promising

approach to get stable results with least e↵ort in time and money.

2.2 Load Patterns in Conducted Experiments

The ”job arrival pattern” [8] is critical for the performance of any System Un-

der Test (SUT). Especially in FaaS, where scaling is determined by the given

input workload. To perform repeatable benchmarks and enable a simulation of

cloud functions under di↵erent external circumstances, the documentation of

load patterns is critical. As mentioned in the introduction, this is the least dis-

cussed aspect, but some authors explained their workload in detail, as discussed

by [7]. These descriptions are not su�cient:

– McGrath and Brenner [11] performed a concurrency test and a backo↵

test. The concurrency test featured 15 test executions. Each of them at 10

seconds intervals with an increasing number of concurrent request. For the

first test execution only 1 request was started and in the last execution

15 concurrent requests were submitted. This was repeated 10 times. The

backo↵ test performed a single invocation from 1 to 30 minutes pausing

time between the invocations to investigate the expiration time of a cloud

function container and the impact of cold start on execution performance.

– Lee and others [4] focused on concurrency tests. First they measured the

function throughput per second by invoking the cloud functions 500, 1,000,

2,000, 3,000 and 10,000 times. The time between invocations was not men-

tioned. Therefore, it is not clear if the second call used the already warm

containers from the first execution. Furthermore, they investigated di↵erent

aspects with 1 request at a time and 100 concurrent requests and a few other

settings, but also not informed the reader about wait time between calls or

the exact distribution.

– Figiela and others [12] conducted two CPU intensive benchmarks. The first

one was executed every 5 minutes and invoked the di↵erent functions once.

The second experiment used a fork-join model and executed the tasks in

parallel for 200, 400 and 800 concurrent tasks. The number of repetitions

and the corresponding wait time between them were not mentioned and

maybe not present.

– Back and Andrikopoulos [2] used fast fourier transformation, matrix ma-
nipulation and sleep use cases for their benchmark. They parameterized each

function and executed each combination once a day on three consecutive

days. It is unclear to the reader, if all of these measurements resulted in a

cold start on the respective providers. Also the results are prone to outliers

since the sample size with 3 executions per combination can distort findings.

30

– Das and others [13] implemented a sequential benchmark of cloud and edge

resources, where the time of two consecutive invocations was between 10 and

15 seconds to avoid concurrent request executions. There is no information

how the authors dealt with the first invocation of a cloud function.

Manner and others [14] focused on the cold start overhead in FaaS. There-

fore, they defined a sequential load pattern to generate pairs of a single cold and

warm start to compare the performance on a container basis. Warm starts were

executed 1 minute after the cold execution returns. After the pair was executed,

the pattern paused for 29 minutes to achieve a shutdown of the container. W.r.t.

the load pattern aspect, the experiments in this publication are reproducible and

all necessary information is described to repeat them.

All the presented workloads are artificial load patterns, where some reduc-

tions are made for simplicity and to assess a single detail or use case in FaaS. It

is often unclear if the authors used an established load generation tool or imple-

mented a proprietary interface for submitting the workload. There is currently

a lack in experiments, which use real world load traces.

2.3 Load Generation Tools

Before discussing load generation tools, the kind of application load is important

for any benchmark or simulation. Schroeder and others [15] defined three of

them: Closed, open and partly-open systems. Closed systems can predict, based

on other parts of the system, how many incoming request will arise. In contrast,

the workload of an open system is not predictable since users access the service

randomly via an interface. Partly-open is a combination of both.

We only focus on open systems since a single cloud function is in focus of our

work and has therefore no other dependencies. There exists a recent study about

workload generators for web-based systems [16], where a comprehensive collection

is presented and a lot of generation tools are compared. For benchmarking FaaS,

an arrival rate of requests is the needed input. Therefore, we picked two tools to

generate workloads as a reference here. Tools like JMeter 2
focus on controlled

workloads with constant, linear or stepwise increasing loads. This behavior is

especially important to generate clean and clear experimental setups to isolate

di↵erent aspects under investigation. Based on these ideas, we also implemented

some benchmarking modes in our prototype
3
to control the execution of requests

based on our needs and added some instrumentation to compare the execution

time on the platform and on a local machine, submitting the requests. On the

other hand, there are tools to model real world load traces based on seasonal,

bursty, noisy and trend parts like LIMBO [17]. LIMBO enables the generation

of a load pattern based on an existing trace or via combination of mathematical

functions. In contrast to JMeter, where the load can be directly submitted,

LIMBO decouples the load generation and the submission via another tool, as

suggested by [16].

2 http://jmeter.apache.org/
3 https://github.com/johannes-manner/SeMoDe

31

http://jmeter.apache.org/
https://github.com/johannes-manner/SeMoDe

3 FaaS Benchmarking and Simulation

3.1 Combined Workflow

Describe
Benchmark

Settings

Describe
Workload

Specification

Perform
Simulation

Deploy Cloud
Function

Submit
Workload

Store Results

Prediction suited
for the use case?

Store Simulation
Result

Analzye
Execution Data

Compare
Platform and

Simulation Data

Yes

No

Page 1 of 1

14.05.2019file:///C:/Users/jmanner/Documents/Privat/03_Paper/2019_SummerSoC/Paper/pipeline.svg

Fig. 1: Generic Pipeline for FaaS Benchmarking

Figure 1 presents a generic pipeline for FaaS benchmarking inspired by Io-

sup [8]. The SUT is not explicitly mentioned since a single cloud function is

the SUT in our approach. Memory setting, the size of the deployment artifact

etc. [14] directly influence the execution time and are therefore relevant, in com-

bination with the load pattern, to assess the concurrently running containers.

After providing the cloud function, the load pattern and the mentioned meta-

data, our prototype starts the simulation. After simulation is done, the user has

to decide, if the simulated values are suited for the use case, e.g. if the number

of concurrently running instances not exceeding a limit, or, if he has to adjust

the values and starts another simulation, e.g. raising the memory setting and

reducing the overall execution time. In the latter case, the prototype stores this

interim result for a later comparison with the next simulation round, where a

developer can assess which setting results in better cost and performance.

If the simulation is satisfying for the user, our prototype deploys the function

using serverless framework and submits the workload based on the load pattern.

Our prototype uses synchronous Representational State Transfer (REST) calls

to generate events on the FaaS platform as introduced in [14]. This behavior

is similar to the direct executor model as proposed by [9]. Subsequently, the

user analyses platform execution data and compares the results with predicted

values of the simulation. Finally, the results are stored for further improving the

simulation framework, proposed in a prior paper [18].

3.2 Simulating Number of Cloud Function Containers

This section focuses on a single piece of the presented pipeline in Figure 1:

Perform Simulation. We investigate only one aspect of this piece: Number of
running containers. An important aspect is execution time w.r.t. to di↵erent

function configurations. Also the input of functions highly influences the runtime

performance, e.g. sorting algorithms. We tackle this problem of varying execution

32

times in future work, when refining the simulation engine. Further aspects are the

associated cost impact, e↵ects on used backend services like cloud databases etc.

If the simulation exposes a high number of concurrently running containers and

the concurrency level is problematic, the developer could throttle the incoming

requests by using a queue etc.

Algorithm 1 is implemented by our prototype. A comparison to used schedul-

ing algorithms in open source FaaS platforms is outstanding. Currently, the sim-

ulation uses the mean average execution time (exec) of the investigated cloud

function, mean cold start time (cold) and idle time for container shutdown (shut-
down). The timeStamps are a list of double values marking the start time of a

request and are created manually. Statistical deviations are not included in this

proposed simulation approach, but planned for future work. The gateway spawns

events and triggers the function under test. Multi-tenancy is not included in our

algorithm, but has an impact on performance and execution time as Heller-

stein and others [19] stated.

Algorithm 1 Basic Simulation - Number of Containers

1: procedure simulate(exec, cold, shutdown, timeStamps))
2: for time in timeStamps do
3: checkF inishedContainers(time)
4: shutdownIdleContainers(time, shutdown)
5: if idleContainerAvailable() then
6: pickIdleAndExecute(exec)
7: else
8: spinUpAndExecute(cold, exec)
9: end if
10: end for
11: shutdownAllContainers()
12: generateContainerDistribution()
13: end procedure

In line 3, the program checks, if some of the containers have finished their

execution at time and sets these containers in an idle state. The next function

shuts all idle containers down, which exceed the shutdown time. At this point,

the internal state of the simulation is clean and the next request can be executed

either from an already warm container (line 5, 6) or a new instance (line 8), which

is a↵ected by a cold start. If all request are served, the prototype produces a

distribution, how many containers are running on the basis of seconds.

4 Discussion

Figure 2 depicts an initial load trace and two corresponding simulations. The

colored numbers are counts on a second basis and show the number of incoming

requests (orange) and the number of concurrently running containers (yellow

33

and gray). The input trace is artificially created and the values
4
for these two

simulations are chosen w.r.t. a prior investigation [14]
5
.

Timestamp Initial Distribution SimulationInput [10.0,0.3,1800.0] SimulationInput [5.1,0.25,1800.0]
0 3 3 3
1 3 6 6
2 4 10 10
3 7 17 17
4 6 23 23
5 4 27 25
6 3 30 25
7 3 33 25
8 3 36 25
9 3 39 25

10 6 43 25
11 6 46 25
12 6 49 25
13 4 49 26
14 4 49 27
15 4 48 28
16 0 43 25
17 0 40 18
18 0 37 12
19 0 34 8
20 0 31 4
21 0 25 0
22 0 19 0
23 0 12 0
24 0 8 0
25 0 0 0

3 3 4
7 6 4 3 3 3 3

6 6 6 4 4 4
0 0 0 0 0 0 0 0 0 0

3
6

10

17
23

27
30

33
36

39
43

46
49 49 49 48

43
40

37
34

31
25

19

12
8

0
3

6
10

17
23 25 25 25 25 25 25 25 25 26 27 28

25

18
12

8
4

0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Initial Distribution SimulationInput [10.0,0.3,1800.0] SimulationInput [5.1,0.25,1800.0]

Fig. 2: Example Distribution for an Artificial Load Trace

The execution time of the gray run (5.1) is roughly twice the execution time

of the yellow run (10.0). As for many FaaS platforms, like AWS Lambda
6

and Google Cloud Functions
7
, the CPU resources are directly coupled with

the memory setting. We suppose, that for example the yellow cloud function is

deployed with a memory limit of 256 MB RAM, whereas the gray cloud function

is restricted to 128 MB RAM. Assumed, that the two functions are implemented

in Java, the cold start time is not a↵ected in the same way since the JVM startup

is resource intensive in both cases. The shutdown time (1800.0) has no e↵ect in

this example since the considered interval is too short.

Gray and yellow graphs show a start-up, an execution and a tear-down phase.

Our artificial distribution simulates a moderate load with a few invocations per

second. The start-up phase is similar for the first 5 seconds since after 5 seconds

the first containers are reused in the yellow simulation. Our execution phase is

only five seconds for the gray (second 11 to 16) compared to ten seconds for

the yellow simulation (second 6 to 16), but shows the impact of the supposed

runtime configuration on the number of running containers. For self-hosted FaaS

platforms or resources bound to cloud functions like database connections, the

di↵erence between 28 or 49 concurrently running containers influence system

requirements and design decisions. The tear-down in the yellow case happens

faster due to the shorter execution time. The output load trace is missing in this

simulation.

4 Compare the input values to Algorithm 1 - SimulationInput[exec,cold,shutdown].
5 Source code, parameters and input trace are available on GitHub: https://github.
com/johannes-manner/SeMoDe/releases/tag/summersoc13

6 https://aws.amazon.com/lambda
7 https://cloud.google.com/functions/

34

https://github.com/johannes-manner/SeMoDe/releases/tag/summersoc13
https://github.com/johannes-manner/SeMoDe/releases/tag/summersoc13
https://aws.amazon.com/lambda
https://cloud.google.com/functions/

5 Future Work

The aim is to implement the suggested simulation and benchmarking pipeline in

our prototype. Therefore, the next step is to include an automated data picking

facility as Malawski and others [9] already implemented.

Our simulation model is based on a few parameters without statistical devi-

ation to keep the system deterministic. We want to extend the simulation in this

directions and also include the output load pattern of our simulation since this

output is maybe the input for another component of the overall (hybrid) appli-

cation. Furthermore, we want to conduct a few benchmarks on constant, linear

and bursty workloads to refine our simulation model and perform a realistic

proof-of-concept of our work and include the multi tenancy aspect.

To conclude, the topology of load pattern has a major influence on the num-

ber of running containers on the FaaS platforms. Our paper stresses this aspect

in particular and puts emphasis on the lack of documentation in conducted ex-

periments from the literature. The presented simulation is a first step in our

overall simulation approach towards predictability of platform behavior.

References

1. K. Huppler. The art of building a good benchmark. In Raghunath Nambiar and
Meikel Poess, editors, Performance Evaluation and Benchmarking, pages 18–30.
Springer, 2009.

2. T. Back and V. Andrikopoulos. Using a Microbenchmark to Compare Function as
a Service Solutions. In Service-Oriented and Cloud Computing. Springer, 2018.

3. D. Jackson and G. Clynch. An investigation of the impact of language runtime on
the performance and cost of serverless functions. In Proc. WoSC, 2018.

4. H. Lee et al. Evaluation of Production Serverless Computing Environments. In
Proc. WoSC, 2018.

5. W. Lloyd et al. Improving Application Migration to Serverless Computing Plat-
forms: Latency Mitigation with Keep-Alive Workloads. In Proc. WoSC, 2018.

6. M. Malawski et al. Benchmarking Heterogeneous Cloud Functions. In Dora B.
Heras and Luc Bougé, editors, Euro-Par 2017: Parallel Processing Workshops,
pages 415–426. Springer International Publishing, 2018.

7. J. Kuhlenkamp and S. Werner. Benchmarking FaaS Platforms: Call for Community
Participation. In Proc. WoSC, 2018.

8. A. Iosup et al. IaaS Cloud Benchmarking: Approaches, Challenges, and Experience.
In Proc. MTAGS, 2012.

9. M. Malawski. Towards Serverless Execution of Scientific Workflows HyperFlow
Case Study. In Proc. WORKS, 2016.

10. J. Scheuner and P. Leitner. A Cloud Benchmark Suite Combining Micro and
Applications Benchmarks. In Proc. ICPE, 2018.

11. G. McGrath and P. R. Brenner. Serverless computing: Design, implementation,
and performance. In Proc. ICDCSW, 2017.

12. K. Figiela et al. Performance evaluation of heterogeneous cloud functions. Con-

currency and Computation: Practice and Experience, 2018.
13. A. Das et al. EdgeBench: Benchmarking edge computing platforms. In Proc.

WoSC, 2018.

35

14. J. Manner et al. Cold Start Influencing Factors in Function as a Service. In Proc.

WoSC, 2018.
15. B. Schroeder et al. Open Versus Closed: A Cautionary Tale. In Proc. NSDI, 2006.
16. M. Curiel and A. Pont. Workload generators for web-based systems: Characteris-

tics, current status, and challenges. IEEE Communications Surveys & Tutorials,
20(2):1526–1546, 2018.

17. J. von Kistowski et al. Modeling and extracting load intensity profiles. ACM

Transactions on Autonomous and Adaptive Systems, 11(4):1–28, 2017.
18. J. Manner. Towards Performance and Cost Simulation in Function as a Service.

In Proc. ZEUS (accepted), 2019.
19. J. M. Hellerstein et al. Serverless Computing: One Step Forward, Two Steps Back.

In Proc. CIDR, 2019.

36

Coverage criteria for integration testing of
serverless applications

Stefan Winzinger and Guido Wirtz

DSG, University Bamberg, An der Weberei 5, 96047 Bamberg, Germany
{stefan.winzinger,guido.wirtz}@uni-bamberg.de

Abstract. Serverless computing is a popular computing model o↵ered
by many cloud providers. Because of the statelessness of the functions
used, applications can be scaled up dynamically. This is particularly in-
teresting for applications expecting irregularly heavy peak loads. The
combination of many serverless functions with other services builds a
complex system. By using integration tests, the behavior of the complex
system can be tested. However, it is hard to determine the relevant test
cases and to check if the current set of test cases is good enough. There-
fore, we discuss how approaches checking the adequacy of a test case set
can be applied for serverless applications during integration testing and
how characteristics of a serverless application can support the assessment
of test cases.

Keywords: serverless computing FaaS coverage criteria integration
testing model-driven testing

1 Introduction

After the introduction of Amazon’s “AWS Lambda” [1] in 2014, serverless com-
puting became quite popular. Also other big IT companies like Google [2], IBM
[3], Microsoft [4] o↵er serverless computing. But there are also more and more
open source projects (like OpenFaaS [5] and OpenLambda [6]) available indicat-
ing the demand for serverless computing.

Stateless serverless functions are the basis for serverless applications. The
statelessness of the functions enables a dynamic scaling of the application [7]
which is particularly interesting for applications with heavy peak loads. Since
there are no costs if a function is idle and not used, serverless computing is also
interesting for applications with an irregular work load. The scaling of the func-
tions is done by the cloud platform provider who executes small code snippets,
usually written in languages like Java, JavaScript, C# or Python, whereas the
developer has no control over the resources on which the code runs [8]. Therefore,
both costs and performance can be improved by using serverless computing [9],
[10].

Serverless applications consists of numerous, short-lived, stateless functions
[11] which requires tools for the development of complex serverless applications.
Single serverless functions can be tested easily in isolation by using unit tests.

37

However, the behavior emerging from the interaction of many serverless functions
with each other and other services is hard to predict and test in isolation. The
potential parallel execution of services makes it even harder. In order to reduce
the complexity of the system and apply a systematic testing approach, a model of
the system that concentrates on the relevant parts of the system can be helpful.

However, there is not much work available yet which describes the informa-
tion needed for modeling a serverless application for integration testing.

Chang et al. [12] present a tool using the execution log of a serverless ap-
plication to visualize its structure and runtime behavior. Using a graph for the
analysis of a system is also used in many areas (e.g, [13], [14], [15]) which is not
directly applicable to complex serverless applications since they focus on dif-
ferent aspects. General approaches for testing the adequacy of integration test
cases are discussed by [16].

In [17], we introduced a model for the representation of serverless applica-
tions based on a call graph that presents and evaluates the basic benefits of using
such a structure for the representation. This model shows some possibilities for
the representation of the specific characteristics of a serverless application. Addi-
tionally, in [18] we discussed which approaches and characteristics of a serverless
application can be used as coverage criteria.

In this paper, we extend our previous work by discussing how flow-based
approaches and serverless characteristics can be applied for testing the adequacy
of integration test cases and how this can be supported by a model representing
a serverless application.

The paper is structured as follows. We describe flow-based coverage and
propose how it can be applied for serverless applications in Section 2. Section 3
demonstrates how certain characteristics of a serverless application can be used
for integration testing. An outlook on future work is given in Section 4, whereas
Section 5 draws a conclusion.

2 Flow-based adequacy

This section discusses how classical approaches like control flow and data flow
can be used for the evaluation of integration test cases of a serverless application.
By modeling the control flow or the data flow of the system, test case criteria
can be created. This helps verify existing test cases and determine if additional
test cases are needed. Additionally, it can support the creation of missing test
cases by evaluating the model and help map missing test cases to the system
under test.

In the following, we discuss how these techniques can be applied for a server-
less application during integration testing and suggest how it can be supported
by a model.

2.1 Control flow

A classical testing approach as shown in [19] is the examination of an appli-
cation where the control flow is considered as a graph. By building blocks of

38

statements being mapped to single nodes and edges representing calls to follow-
ing statements, a graph can be created. Based on this graph, coverage criteria
can be applied requiring the execution of all nodes, all edges or all paths of the
graph. If this approach is applied on code level for a serverless application, not
only the integration of the di↵erent services, but also the structure within a func-
tion is tested which has to be known. Thus, code has to be covered which should
be tested explicitly in isolation but is not required in the integration. Since these
parts are tested additionally, the size of a test case set increases tremendously
for a complex system, in particular if certain combinations of nodes have to be
tested like for the coverage of all paths.

Therefore, building a graph on this fine-granular level produces a graph which
is too complex and focuses not only on the relations between its components but
also on the relations within its single components which is the job of unit testing.

We suggest to use a model of the application where only the relations be-
tween the resources are considered in order to concentrate on the communication
between the resources. The test criteria are adapted and applied for this abstrac-
tion level.

The model introduced in [17] represents a serverless application as a call
graph and is well-adaptable for the requirements needed. The model focuses on
the abstract call hierarchy between its resources and is therefore an ideal mean
for the application of control flow coverage criteria. By using the call graph as
a basis for the coverage, a model is available which is applicable for an existing
system and can easily be adapted.

Inspired by [20] where criteria are defined on module level, we suggest the
following coverage criteria for serverless applications which can be applied by
using the previous model:

– All-resources requires that every resource is executed at least once. A re-
source is the instance of a service like a serverless function or a data storage.

– All-resource-relations requires that every call between resources is executed
(e.g., all edges between the nodes are covered).

– All-resource-sequences requires that every sequence of resources is executed
(e.g., all paths of the graph are called).

By demanding the coverage of all resources, it is guaranteed that each resource
was called at least once. This can be used for continuous deployment to see
if a instance which was added recently was deployed correctly and fulfills its
basic functionality. The size of coverage units depends directly on the deployed
resource and thus a complicated instrumentation and adaption of the system is
not required.

A coverage of all edges in the graph supports the testing of the communication
of resources with their neighbors. Thus, not only the local isolated behavior of
the resources is tested but also the integrated behavior of a resource.

By using the model described, all potential workflows can be detected and
demanded to be covered. Consequently, it covers not only technical aspects but
also the global context of the resource. Often it is hard to calculate all feasible
passes or even impossible if e.g., circles are present.

39

Therefore, the model must contain at least all resources of the application. If
all relations have to be covered, all relations have to be modeled too. However, if
all sequences of the resources shall be covered, more information is useful in order
to prevent the creation of too many infeasible paths. By adding information like
the call order of resources, constraints for calls, asynchronous or synchronous
invocation types, write or read data access or the number of potential calls of
resources, the number of paths can be reduced. As already shown in [17], such
a model can be supported by a tool.

2.2 Data flow coverage

The control flow considered in the previous section ignores the data used and
passed. By considering the data being used by di↵erent resources, a direct influ-
ence between the resources can be tested. Usually, data needed by a serverless
function are passed by its parameters as input. However, if a serverless applica-
tion gets more complicated and more data are needed, these data are transferred
by using data storages where the values are temporarily stored.

Similar to the control flow of coverage criteria, we suggest to consider the
data flow between the resources used in a serverless application. The graph used
in the previous section can be used to support the identification of data flows
by annotating edges with the data being transmitted.

Similar to the control flow, we only consider data flows where several re-
sources are involved. Thus, inspired by [20], we suggest the following criteria
where x is a definition of a value within a serverless function which is used by
another resource:

– All-resource-defs: requires that every x is at least used once in another re-
source without being redefined before its usage.

– All-resource-uses requires that every x is used by all other usages of x in
other resources without being redefined before its usage.

These coverage criteria can be applied for a serverless application and are rele-
vant since a lot of data are transferred within a serverless application because
of the statelessness of the serverless functions. Tracking these data flows can be
supported by the model representing the system but needs further support.

However, the identification of def-use-pairs is di�cult since it requires insights
into the code structure of the functions and the transmission of its values. Not
only tracking the data over many resources is di�cult, but also an analysis might
be hard for functions being deployed in a running system since dependencies
over many resources might have to be recalculated or tracking data have to be
adapted.

3 Adequacy of characteristics

This section shows how characteristics of a serverless application can be used to
check the adequacy of test cases and how this can be supported by the model.

40

3.1 Parallelism

Having the possibility to run serverless functions in parallel is a characteristic of
a serverless application. Parallelism can cause errors which have to be detected.
The parallelism is enabled by the scalability of the serverless functions. But
also a parallel access of the same application can cause parallel workflows being
responsible for errors.

If at least two workflows access the same data in parallel where at least one
workflow writes data, race conditions may occur. The detection of these hot spots
can be supported on integration level by modelling data storages with resources
accessing them by either writing or reading data.

In order to test the criticality of the hot spots, we suggest to test read and
write accesses to the data storage in all possible orders. Additionally, if the
workflow is modelled like suggested in the previous section, the accesses to the
data base should be tested in di↵erent contexts for all possible orders.

However, testing the hot spots for all possible orders not only requires an
identification of all these situations but also a framework which enables the
execution in di↵erent orders.

3.2 Execution time

There are several factors influencing the execution time of a serverless appli-
cation which can be considered for testing. The cold start time needed for the
containerization of a serverless function if this function is not already loaded
[21] is characteristic for serverless applications. Therefore, some executions of
serverless functions take longer.

But the execution time is also influenced by the infrastructure assigned to a
serverless function. Even if there are not many resources assigned to a serverless
function, the platform provider can decide to load the container of the serverless
function to a faster machine [22]. This results in unpredictable execution times.
Therefore, if the application is tested on a faster or slower platform than is actu-
ally used in production, potential failures can be obfuscated. These failures are
either time out errors resulting from a longer execution time or race conditions.
The ordering of the workflow might be disturbed by di↵erent execution times.
Thus, race conditions can occur where data are used by several workflows where
at least one writes data.

In order to cover the application, profiles for the functions have to be created
giving information about the distribution of the execution times of the serverless
functions.

Therefore, we suggest the following coverage criteria for testing a serverless
application.

– All-min-time requires that every serverless function has to be executed with
its minimum time at least once.

– All-max-time requires that every serverless function has to be executed with
its maximum time at least once.

41

– All-max-min-time requires that every serverless function has to be executed
with its minimum and maximum time at least once.

In order to apply the criteria, a dynamic measurement of the time behavior
of the functions is necessary after the deployment. Additionally, time profiles are
needed in order to categorize the times measured.

Since the di↵erent execution times might also be influenced by the contexts
in which the functions were triggered, the functions can also be tested on a
finer level by measuring the time profile for a certain context (e.g., a certain
workflow).

3.3 Access rights

Security is a relevant aspect in a serverless application. Access rights are assigned
to the serverless functions regulating that only resources are accessed and used
which are actually needed. Thus, security breaches shall be prevented by only
assigning these rights which are actually needed by a function. However, this is
not always easy to fulfill since it is easier to give a function more rights than
necessary if the system should work.

Thus, a simple test for the adequacy of test cases requires that each right
assigned to a serverless function is at least used once. However, this requires a
fine-granular hierarchy of potential access rights assignable to a function. Oth-
erwise, if there is the possibility to grant a serverless function all rights being
available, this single right can easily be covered by just calling the function once.
Therefore, a hierarchy of assignable access rights has to be modelled, which is
as coarse as needed but as fine-grained as possible.

This coverage criterion does not test functionality of a serverless application
but the security. Missing access roles can be discovered while creating test cases
for the fulfillment of the criterion, but the criterion indicates only if there are
unused access rights.

In order to test the access right, the possibility to track the usage of the
access rights is needed. This has either to be supported by the cloud platform
provider or implemented manually. However, the latter one requires a deeper
modification of the cloud platform and serverless application in order to observe
the exact usage of resources.

3.4 Error handling

By moving the execution of the application to a cloud platform provider, the
responsibility of handling errors moves to the platform provider, too. If an error
occurs, the cloud platform provider usually tries to reexecute the function several
times. However, the reexecution of a serverless function can be problematic if
this function is not idempotent.

Not only errors caused by the logic of the function but also errors thrown
by the cloud platform provider can occur. Two specific kinds of errors for a
serverless function are the shortage of a resource (e.g., memory) used by the

42

function and exceeding the time limit assigned to the serverless function. Since
it cannot be guaranteed that these errors never occur for a function, it makes
sense to test its behavior.

Therefore, we suggest the following coverage criteria:

– All-restored requires that each function fails at least once and is successfully
reexecuted. Thus, the idempotency is tested.

– All-failed requires that every function fails at least once in each reexecution.
Thus, the graceful degradation is tested.

– All-failed-and-restored requires both all-restored and all-failed to be fulfilled.

Only the serverless functions of the application need to be known for this criteria.
However, the criteria can be extended if serverless functions are used in di↵erent
contexts. By testing di↵erent contexts, a model displaying the relation or the
workflow of the resources can support the coverage.

4 Future work

Based on our initial model and prototype tool, the model and its tool support will
be extended to integrate and evaluate the di↵erent criteria discussed here in order
to generate suitable sets of test cases for applications consisting of serverless
functions. Additionally, the usage of mutation tests shall be investigated and
applied for serverless applications.

5 Conclusion

This paper showed how the adequacy of integration test cases for serverless
application can be tested. Classical approaches like control flow and data flow
can be applied but also criteria focusing on certain characteristics of a serverless
application by revealing certain classes of errors.

By applying the approaches suggested in this paper, test cases for serverless
applications can be developed being less redundant and more focused on relevant
error-prone characteristics. Thus, serverless applications with a better quality
can be created more e�ciently.

References

1. AWS Lambda. accessed March 11, 2019. URL: https://aws.amazon.com/lambda/.
2. Google Cloud Functions. accessed March 11, 2019. URL: https://cloud.google.

com/functions/.
3. IBM Cloud Functions. accessed March 11, 2019. URL: https://www.ibm.com/

cloud/functions/.
4. Azure Functions. accessed March 11, 2019. URL: https://azure.microsoft.com/

en-us/services/functions/.
5. OpenFaaS. accessed March 11, 2019. URL: https://github.com/openfaas.

43

https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://www.ibm.com/cloud/functions/
https://www.ibm.com/cloud/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://github.com/openfaas

6. OpenLambda. accessed March 11, 2019. URL: https://github.com/open-lambda.
7. Ioana Baldini, Perry Cheng, Stephen J. Fink, Nick Mitchell, Vinod Muthusamy,

Rodric Rabbah, Philippe Suter, and Olivier Tardieu. The serverless trilemma:
function composition for serverless computing. In Proceedings of the 2017 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software - Onward! 2017. ACM Press, 2017.

8. Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slominski,
and Philippe Suter. Serverless computing: Current trends and open problems. In
Research Advances in Cloud Computing, pages 1–20. Springer Singapore, 2017.

9. Gojko Adzic and Robert Chatley. Serverless computing: economic and architectural
impact. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering - ESEC/FSE 2017. ACM Press, 2017.

10. Garrett McGrath and Paul R. Brenner. Serverless computing: Design, implementa-
tion, and performance. In 2017 IEEE 37th International Conference on Distributed
Computing Systems Workshops (ICDCSW). IEEE, 2017.

11. Wei-Tsung Lin, Chandra Krintz, and Rich Wolski. Tracing function dependencies
across clouds. In 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). IEEE, 2018.

12. Kerry Shih-Ping Chang and Stephen J. Fink. Visualizing serverless cloud ap-
plication logs for program understanding. In 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 2017.

13. Shang-Pin Ma, Chen-Yuan Fan, Yen Chuang, Wen-Tin Lee, Shin-Jie Lee, and
Nien-Lin Hsueh. Using service dependency graph to analyze and test microser-
vices. In 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC). IEEE, 2018.

14. Pamela Bhattacharya, Marios Iliofotou, Iulian Neamtiu, and Michalis Faloutsos.
Graph-based analysis and prediction for software evolution. In 2012 34th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2012.

15. Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static analysis of event-driven
node.js JavaScript applications. In Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications - OOPSLA 2015. ACM Press, 2015.

16. M.E. Delamaro, J.C. Maidonado, and A.P. Mathur. Interface mutation: an ap-
proach for integration testing. IEEE Transactions on Software Engineering,
27(3):228–247, 2001.

17. Stefan Winzinger and Guido Wirtz. Model-based analysis of serverless applica-
tions. In Proceedings of the 11th International Workshop on Modelling in Software
Engineering - MiSE 19, 2019.

18. Stefan Winzinger. Towards coverage criteria for serverless applications. In 11th
Central European Workshop on Services and their Composition (ZEUS), 2019.

19. J. C. Huang. An approach to program testing. ACM Computing Surveys, 7(3):113–
128, 1975.

20. U. Linnenkugel and M. Mullerburg. Test data selection criteria for (software) inte-
gration testing. In Systems Integration ’90. Proceedings of the First International
Conference on Systems Integration. IEEE Comput. Soc. Press, 1990.

21. Johannes Manner, Martin Endreß, Tobias Heckel, and Guido Wirtz. Cold start
influencing factors in function as a service. In Fourth International Workshop on
Serverless Computing (WoSC4), Zurich, Switzerland, 2018.

44

https://github.com/open-lambda

22. Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth,
Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Stoica, and David A.
Patterson. Cloud programming simplified: A berkeley view on serverless com-
puting. Technical Report UCB/EECS-2019-3, EECS Department, University of
California, Berkeley, 2019.

45

ProxiTour: A Smart Platform for Personalized
Touring?

Aris Chronarakis1, Stelios Gkouskos2, Konstantinos Kalampokis2, Gerasimos
Papaioannou2, Xenia Agalliadou2, Ilias Chaldeakis2 and Kostas Magoutis1

1 Department of Computer Science and Engineering
University of Ioannina, Ioannina 45110, Greece

{achronarakis,magoutis}@cse.uoi.gr
2 Terracom Informatics Ltd

79 Ethnikis Antistasis, Katsikas, Ioannina 45221, Greece
{sgous,kokalabo,ger.papaioannou,xagalliadou,ihaldeakis}@terracom.gr

Abstract. We describe a smart IoT-driven platform for personalized
tours in indoor and outdoor spaces of cultural, touristic, or environmental
interest. The platform is unique in its use of scalable data processing
systems to process real-time IoT events coming from a commercial IoT
platform, aiming to enhance user experience by intelligently interacting
in a context-sensitive manner, within a personalized tour. In this paper
we provide a preliminary evaluation of the stream processing component
of the ProxiTour platform.

Keywords: Internet of Things · Context-awareness · Stream processing.

1 Introduction

We describe the ProxiTour platform, whose aim is to combine novel Internet-
of-Things (IoT) and scalable data processing technologies to improve end-user
experience when touring spaces of cultural, touristic and environmental interest.
ProxiTour enhances user experience by taking into account the visitor’s location
in real time (a location based information platform) and enabling the concept
of a personalized storyboard, while also taking into account personal user data
such as age, interests, and dynamic behavior within the site. ProxiTour leverages
historical information from past visits to detect patterns and deviations from
usual behavior, and provide timely response to changes in user location.

The IoT devices being used in ProxiTour are Bluetooth beacons, wireless
transducers detected by the Bluetooth stack of most mobile devices such as
phones and tablets. These transmitters are placed in various places of interest
(e.g., museums). Visitors that stay within the range of specific beacons for a
certain period of time, receive information (visual and acoustic) on their mobile

? Supported by the Greek Research Technology Development and Innovation Action
“RESEARCH - CREATE - INNOVATE”, Operational Programme on Competitive-
ness, Entrepreneurship and Innovation (E⇧A⌫EK) 2014-2020, Grant T1E�K-04819

46

device related to the standing position and nearby exhibits. In outdoor spaces,
ProxiTour can leverage location-tracking through GPS on mobile phones. The
visitor’s context, as well as that of the entire visitor population (historical in-
formation, as well as recent activity) is used to enrich the provided information
through suggestions based on the visitor’s profile, real-time position, and dy-
namic interaction with digital content provided by a mobile application.

The paper proceeds as follows. In Section 2 we discuss related work. In Sec-
tion 3 we describe the architecture and implementation of ProxiTour, and in
Section 4 a preliminary evaluation and current deployments of key ProxiTour
components. Finally, in Section 5 we conclude and discuss future work.

2 Related work

Raw IoT sensor data become useful when we develop ways to collect, model, rea-
son, and distribute its context information. Context-aware computing [1] refers
to software, middleware, or service with the ability to gather and analyze infor-
mation from its environment, and to provide this information to another service
or to end users. Context information can be accessed according to the pub-
lish/subscribe communication pattern [2], where one or more users (subcribers)
register their interest for specific information or condition (e.g. the value of an
entity attribute exceeds a threshold), creating a group of interest. When such a
condition is satisfied, information is published to the group.

Recent research has looked into leveraging IoT data and context-aware man-
agement technologies to build mobile-based solutions for customizing visits [3] or
for analyzing collected data to learn how visitors choose to enter and spend time
in the di↵erent rooms of a curated exhibition [4]. Previous works have focused on
IoT-enabled mobile applications and on collecting and analyzing IoT data in an
o✏ine fashion. The ProxiTour platform di↵erentiates from such works in that col-
lected data can be analyzed in an online fashion as well, using stream-processing
technologies, providing up-to-date statistics and near-real-time activity reports.
Earlier work also proposed the use of stream-processing technologies for analyz-
ing visitor positions tracked through cameras [5]. The present work extends prior
work by leveraging Bluetooth beacons and by describing streaming analytics for
determining, in near-real-time, the engagement of visitors with digital content
served by a mobile application in a context-sensitive manner.

A popular context-aware computing platform is FIWARE [6], a EU joint
venture with technology and telecommunications companies, aiming to improve
know-how on Future Internet [7] applications and services. The FIWARE plat-
form supports a range of Generic Enablers (GEs) [8], open-source general pur-
pose software components that can be used as services through a user-friendly
API. In FIWARE, the representation of information is based on the entity/attribute
model. Each entity has a set of attributes, and a feature can have a set of meta-
data. The Orion Context Broker (CB) [9, 10] is a pub/sub style Context Broker
available as a generic enabler within the FIWARE platform. Given the hetero-
geneity of sensor and other IoT device technologies, a bridging layer is needed

47

between IoT devices and NGSI Context Brokers such as Orion. Such a function-
ality is typically implemented by IoT agents o↵ering lightweight communication
protocols, such as Ultralight 2.0 [11]. The transport protocols supported by IoT
Agent UL2.0 between IoT devices and IoT Agent are HTTP and MQTT. Given
that higher-level middleware such as stream- and data-processing platforms in-
gest data though systems such as Apache Kafka [12], a bridging layer between
MQTT and Kafka is also needed for interoperability.

Processing high-volume streaming data is an important driver for creating
business value in popular social networking and Internet services in general and
has recently resulted into robust scalable systems (such as LinkedIn Samza [13],
Twitter Heron [14], and Google Millwheel [15]) used in production. Computing
click-through rates, evolving trends in social activity, and important operational
metrics can increase service responsiveness, user engagement, and rapid response
to operational issues. Stream processing systems have demonstrated high scala-
bility and availability and the ability to rapidly adapt to higher load due to the
need to re-process past data in addition to live tra�c. In this paper we exhibit the
use of a scalable stream processing engine in detecting events of interest within
a personalized tour setting. Previous work in benchmarking stream-processing
systems includes [16–18]. An evaluation of the fault-tolerance characteristics of
the stream-processing platform used in ProxiTour was recently carried out [19].

3 Architecture and implementation

The ProxiTour architecture is modular and consists of a set of five subsystems
whose structure and inter-communication (information flow) are depicted in
Figure 1. The subsystems are the IoT platform, Content Management System
(CMS), Mobile Application, Stream Processing Engine (SPE), and Storage and
Big Data Analytics. Due to space constraints, in this paper we focus specifically
on the IoT platform and the Stream Processing Engine (SPE).

Functionality of the ProxiTour system is driven by the continuous determi-
nation of the location of each visitor in space. In interior spaces where mobile de-
vices cannot be detected by GPS, beacons are used to determine the approximate
location of users (Figure 2). Beacons are small-sized devices and signal trans-
mitters detectable by portable electronic devices (smartphones, tablets) within
range (typically up to 70m). Beacons use the Bluetooth low energy (BLE) pro-
tocol to transport small amounts of data at low power consumption, maximizing
their life (battery life of up to 2-3 years). The signal strength and the transmit
interval between signals are adjustable to determine the desired coverage in each
case (e.g., 1-2m radius). Entry of a visitor with a mobile device (smartphone,
tablet) within the range of the beacon and for a certain period of time (ad-
justable parameter) triggers the transmission of information corresponding to
that location (exhibit content) from the Content Management System (M2) to
the visitor application (M3). This happens as follows: Detection of a beacon, in
conjunction with its signal strength, by a mobile device gives an indication of
the distance of the user (smartphone) from the beacon (proximity beacons). For

48

Fig. 1. ProxiTour Architecture

greater accuracy there is also the possibility of triangulation of signals from more
beacons (location beacons). In order to properly cover spaces with beacons, an
autopsy is typically carried out to decide the exact number of beacons required.

Information in the ProxiTour architecture flows as follows: The IoT platform
(M1) periodically receives the approximate location (with an accuracy of about
1-1.5m) of a visitor inside the space (internal or external) from his mobile de-
vice (M3). Given up-to-date knowledge of users (visitors), their location in the
exhibit space, and exhibits that they currently digitally interact with, the IoT
platform decides to serve appropriate exhibit content from the content manage-
ment system (CMS) (M2) to users’ mobile applications (M1). Simple behavior
(such as what content to serve the first time a user is near an exhibit, when to
refresh content, or how to respond to user interaction, such as clicking on specific
fields) is specified within a simple rule base, part of M1. Additionally, the IoT
platform forwards all information (user, location, interaction with exhibit(s))
to the M4 and M5 subsystems to feed into online and o✏ine analytics and to
obtain personalized information (e.g. exhibits that other visitors with similar
interests spent significant time with), leading to personalized proposals for the
visitor from the CMS (M2) (thematic routes, interest-based exhibits, etc.) to be
displayed in the mobile application (M3). In Section 3.1 we describe streaming
analytics determining which users are more engaged with the digital content, as
well as popular exhibits in the recent past (e.g., last few minutes or hours).

49

Fig. 2. Beacons

The IoT platform used in ProxiTour is Zastel3, developed by Terracom In-
formatics Ltd to support the development of several commercial products, such
as QR-Patrol4, which is among the top real-time guard-tour security monitoring
platforms worldwide with customers in 77 countries, and funded by the Hori-
zon 2020 framework (SME Instrument Phase 2); and Spotypal5, an anti-loss
Bluetooth tracker and personal SOS system. With special emphasis placed on
the interoperability features of Zastel with third platforms and systems, the past
two years Zastel became compliant with two large European IoT platforms (sym-
bIoTe and BIG IoT) and tested in pilot tests in providing a complete security
solution for Universities and in monitoring tra�c conditions in the city of Turin.

The basic functions of the IoT platform in ProxiTour are:

– Managing location services both internally (beacons) and externally (GPS)
– Dynamic data sharing and decision-making based on rules that have been

set by site (e.g., museum) administrators and users
– Managing indoor beacons (battery levels, health, functionality, etc.) and

administrative users
– Connecting with third-party systems and applications through an API

The IoT platform is managed by an administrator and a number of regular
users. The administrator distributes user roles and sets simple rules governing
system behavior (e.g. what content and when to serve when a user is first within
(or re-enters) the range of an exhibit). Users receive online and o✏ine analytics
on visitor behavior, gaining a global view of how visitors interact with exhibits
through the mobile application and digital content. Platform users are also able
to manage IoT devices and to perform maintenance actions (such as tend to
faulty beacons) when necessary.

The IoT platform (M1) runs on nodejs using RabbitMQ for interoperability
with the rest of the system and MySQL as a backend database, as well as for the

3 www.zastel.com
4 www.qrpatrol.com
5 www.spotypal.com

50

CMS (M2). ProxiTour solicits the explicit consent of users to collect data that
they produce, respecting the privacy of such data when collected and stored (for
example, through anonymization and/or encryption).

ProxiTour components M4 and M5 are implemented on top of the Apache
Samza [13] platform. Samza is a lambda-less architecture, able to perform the
processing of both real-time as well as batch data using the same dataflow struc-
ture. ProxiTour also includes a bridging layer between the MQTT protocol (Rab-
bitMQ broker) used by the IoT platform and the Kafka [12] ingest engine used
by the Apache Samza platform. The bridging layer acts as a MQTT consumer
and a Kafka producer, relaying information between the two brokers.

3.1 Applications

We describe representative applications using stream analytics to derive knowl-
edge about the degree of user engagement with museum exhibits and the exhibits
that engage users most. These are important analytics for museum profession-
als, typically hard to compute in near-real-time as they require cross-correlation
across information drawn from all visitors within specific time periods.

We assume that user devices are reporting contextual information about vis-
itors (UserID), the location their devices are in (LocationID, e.g., coordinates
in a grid mapping the museum floor), and exhibits that users are interacting
with in their mobile platform (e.g., clicking on digital material) (ExhibitID).
These tuples may contain null entries for the ExhibitID field, if a user is not
currently interacting with digital material in its device. The tuples may contain
null in the location field, if the device cannot localize itself (i.e., if it is out of
range of beacons or GPS). A timestamp (indicating the time the information
was produced) is also implicitly added by the mobile device as part of the tuple.

Degree of user engagement: This application takes as input the global stream
of updates from all mobile devices and performs the following transformations:

– Select only tuples that have all fields set (i.e., drop nulls) and where de-
vice location is near (in a geometric sense) to the exhibit the user interacts
digitally with

– Group tuples by UserID over window of time T. When windows close, com-
pute number of exhibits each user interacted with in that period

– Collect previous tuples into another window operator, ranking (sorting) users
according to their degree of interaction with exhibits

– The periodic output of this window is the list of top-k users and number
(fraction) of engaged users over the total number of users

Exhbits that engage users most: This application takes as input the global
stream of updates from mobile devices and performs the following transforma-
tions:

51

– Select only tuples that have all fields set (i.e., drop nulls) and where de-
vice location is near (in a geometric sense) to the exhibit the user interacts
digitally with

– Group tuples by ExhibitID over window of time T. When windows close,
count number of users that digitally interacted with each exhibit

– Collect previous tuples into another window operator, ranking (sorting) ex-
hibits according to the degree of interaction with them

– Periodic output is the top-k exhibits over the chosen time period

Fig. 3. Find out exhibits that engage users most on their mobile app (left part)

Fig. 4. Find out exhibits that engage users most on their mobile app (right part)

Implementation details Figures 3 (left part) and 4 (right part) depict the im-
plementation of the second continuous (streaming) query described in Section 3.1
in Apache Samza. The input stream comprises events from all user mobile devices
carrying information in the form (UserID, LocationID, ExhibitID), repre-
sented as (key=user1, value={user1, location1, exhibit1}) in key-value form.
The application partitions the input stream by the ExhibitID field (Figure 3)
and writes it back to a Kafka topic with a single partition (PartitionCount:
1). An alternative implementation could increase the number of partitions to
support a higher level of parallelism in the deployed application.

The partitioned information is read into a window operator grouping events
by ExhibitID (Figure 4) counting interactions (event occurences) coming from
all users with each specific exhibit within 5 sec time periods. Each time a win-
dow closes, the output tuple emitted has the form (exhibitID=exhbit1, interac-
tions=6), etc. Sorting these outputs on the number of interactions in a subse-
quent operator yields the top-k currently most popular museum exhibits.

52

4 Evaluation

The ProxiTour platform is currently in an advanced development stage. The
current evaluation focuses on individual components of the architecture using
synthetic workloads. In Section 4.1 we provide information on a representative
deployment of the IoT platform in a large factory and on the bridging layer
between the IoT and data-processing subsystems. In Section 4.2 we evaluate
the performance of the stream-processing module (M4) on synthetic sensor data
modeled out of the information we anticipate to have as inputs in a museum
pilot site.

4.1 IoT Platform

Fig. 5. Live map from indoor location platform (large factory pilot)

In the past few months the ProxiTour core IoT platform was trialed in a
factory of more than 70 employees. With the use of a wearable BLE tag (trans-
mitting every 100ms) and a dense matrix of 20 BLE gateways (transmitting
every 2 sec) it was made possible to monitor the location and movements of
workers with a precision of about 1-1.5m (Figure 5), which is satisfactory when
projected to the ProxiTour targeted site of a medium to large-size museum.
Since the installation of the IoT platform, more than 1GB of raw data are being
collected on a daily basis. Their real-time processing o↵ers upper management
with an accurate view of operations as well as historical data. Zastel’s storage
structure supports di↵erent use-cases and has been proven to be a reliable and
high performance platform under real-world conditions.

Our evaluation of the bridging layer between the MQTT protocol (Rab-
bitMQ broker) used by the IoT platform and the Kafka ingest engine used by

53

the SPE and big-data processing platform, indicates that we can comfortably
transfer about 6,000 messages/sec between the two middleware layers over stan-
dard server/network infrastructure, considered su�cient for current ProxiTour
requirements; further scalability is possible by setting up multiple broker paths
between the two middleware layers.

4.2 Performance of the stream-processing system

In this evaluation we provide early results from the operation of the SPE mod-
ule (M4), which is based on Apache Samza, under a representative load. In our
evaluation we use the streaming analytics application of Figures 3 and 4 (Sec-
tion 3.1) gauging the popularity of exhibits. Our experiments evaluate through-
put in terms of number of input tuples processed for the application. Our experi-
mental testbed consists of a cluster of servers each equipped with a Intel R� Xeon
Bronze R� 3106 8-core CPU clocked at 1.70GHz, 16GB DDR4 2666MHz DIMMs,
and a 256GB Intel SSD, running Ubuntu Linux 16.04.6 LTS. The nodes are in-
terconnected through a 10Gb/s Dell N4032 switch. The software versions used
are Samza version 1.1.0 (latest stable version at the time of this work), Kafka
version 0.10.1.1, Zookeeper 3.4.3, and Yarn version 2.6.1.

The streaming application uses the Samza high level API. In these experi-
ments, each input stream maps to a single partition of a Kafka topic. We use a
single Samza instance within a container deployed in a single-node Yarn imple-
mentation. The benchmark setup is deployed on two servers. One server (node01)
hosts the Kafka broker and Kafka producers feeding the input topic with tuples,
and the ZooKeeper service used by Kafka. The second server (node02) hosts the
single-node Samza container. We measure CPU usage and throughput on both
machines. The workload generator consists of 3 concurrent tasks producing a
3 million (M) tuples each, for a total of 9M tuples. The tuple keys are drawn
uniformly at random from a set of 10 distinct keys. Since the continuous query
writes an intermediate topic (9M tuples), Samza reports to read a total of 18M
tuples from Kafka.

Each topic partition has an o↵set which indicates the tuple from input topics
that should be consumed next. In case of many partitions of a topic, each par-
tition has a separate o↵set. We use periodic readings of this o↵set to compute
our throughput metric, measuring how many tuples are consumed at specific
intervals by the stream processor. Tables 1 and 2 summarize our results over
two runs. A general observation is that workloads are more resource-demanding
at the workload generator (spending 50% of the CPU on average) while Samza
easily achieves tuple processing rates of about 30K/sec.

node01 (workload generator) node02 (Samza stream processor)
CPU busy (%) 50 15

Table 1. Average CPU spent under the popular-exhibits application

54

Messages actually processed (tuples/sec)
Experiment 1 (avg) 29,364
Experiment 2 (avg) 29,460
Table 2. Throughput under the popular-exhibits application

5 Conclusions and future work

In this paper we introduced the architecture and selected key components of
ProxiTour, a smart IoT-driven platform for personalized tours in indoor and
outdoor spaces of cultural, touristic, or environmental interest. We provided a
high level view and information from a representative deployment of the Proxi-
Tour IoT platform in an industrial environment. We described a use-case based
on a continuous query evaluating the digital interaction of visitors with exhibits.
Our preliminary evaluation of the stream-processing engine shows that it can
easily support su�ciently high event rates. These first results indicate that the
ProxiTour architecture has the potential to collect and analyze a wealth of in-
formation about visitors and their digital interaction with exhibits in an online,
near-real-time fashion. Our future work will focus in further integrating the
components of the ProxiTour platform, in extending our range of analytics, and
in enhancing user experience through personalized recommendations taking into
account a timely global view of visitor profiles, personal interests, and up-to-date
statistics of visitor interaction with exhibits.

6 Acknowledgements

The work reported in this paper was performed in the context of the project
“ProxiTour: A Platform for Personalized Touring”. The authors thankfully ac-
knowledge funding by the Greek Research Technology Development and Inno-
vation (RTDI) Action “RESEARCH - CREATE - INNOVATE”, Operational
Programme on Competitiveness, Entrepreneurship and Innovation (E⇧A⌫EK)
2014-2020; Grant ID: T1E�K-04819.

References

1. C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Context Aware
Computing for The Internet of Things: A Survey. IEEE Communications Surveys

and Tutorials, 16(1):414–454, 2014.
2. P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of

publish/subscribe. ACM Comput. Surv., 35(2):114–131, June 2003.
3. I. Ayala, M. Amor, M. Pinto, L. Fuentes, and N. Gámez. iMuseumA: an agent-

based context-aware intelligent museum system. Sensors (Basel, Switzerland),
14(11):21213–21246, 2014.

4. R. Pierdicca, M. Marques-Pita, M. Paolanti, and E. S Malinverni. IoT and En-
gagement in the Ubiquitous Museum. Sensors (Basel, Switzerland), 19(6):1387,
2019.

55

5. D. Stamatakis, D. Grammenos, and K. Magoutis. Real-Time Analysis of Local-
ization Data Streams for Ambient Intelligence Environments. In Proc. of 2nd Int.

Conf. on Ambient Intelligence (AmI’11), pages 92–97, Amsterdam, The Nether-
lands, 2011.

6. FIWARE Platform. https://www.fiware.org.
7. Future Internet. https://www.ict-fire.eu/.
8. FIWARE Generic Enablers Catalogue. https://catalogue.fiware.org/enablers.
9. Orion Context Broker. https://github.com/telefonicaid/fiware-orion.

10. Orion Context Broker Documentation. https://fiware-orion.readthedocs.io.
11. IoT Agent UL2.0. https://github.com/telefonicaid/iotagent-ul.
12. J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed messaging system for log

processing. In Proc. NetDB, page 1–7, Athens, Greece, June 12, 2011.
13. S. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst, I. Gupta, and

R. H. Campbell. Samza: Stateful Scalable Stream Processing at LinkedIn. In
Proceedings of the VLDB Endowment, Vol. 10, No. 12, 2017.

14. S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. Patel,
K. Ramasamy, and S. Tanej. Twitter Heron: Stream processing at scale. In In

Proceedings of SIGMOD, 2015.
15. T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, et al. Mill-

wheel: fault-tolerant stream processing at internet scale. In Proc. VLDB, pages

1033–1044, 2013.
16. J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and V. Markl.

Benchmarking distributed stream processing engines. CoRR, abs/1802.08496,
2018.

17. S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu,
K. Nusbaum, K. Patil, B. Peng, and P. Poulosky. Benchmarking Streaming Compu-
tation Engines: Storm, Flink and Spark Streaming. In Proc. of IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW 2016), pages
1789–1792, Los Alamitos, CA, USA, may 2016. IEEE Computer Society.

18. Z. Zhuang, T. Feng, Y. Pan, H. Ramachandra, and B. Sridharan. E↵ective multi-
stream joining in apache samza framework. In Calton Pu, Geo↵rey C. Fox, and
Ernesto Damiani, editors, BigData Congress, pages 267–274. IEEE Computer So-
ciety, 2016.

19. A. Chronarakis, A. Papaioannou, and K. Magoutis. On the impact of log com-
paction on incrementally checkpointing stateful stream-processing operators. In
Proc. of 1st Workshop on Distributed and Reliable Storage Systems (DRSS’19),

held in conjunction with SRDS’19, Lyon, France, Oct. 1, 2019.

56

A Survey on Cloud Migration Strategies for

High Performance Computing

Stefan Kehrer and Wolfgang Blochinger

Parallel and Distributed Computing Group, Reutlingen University, Alteburgstr. 150,
72762 Reutlingen, Germany

[firstname.lastname]@reutlingen-university.de

Abstract. The cloud evolved into an attractive execution environment
for parallel applications from the High Performance Computing (HPC)
domain. Existing research recognized that parallel applications require
architectural refactoring to benefit from cloud-specific properties (most
importantly elasticity). However, architectural refactoring comes with
many challenges and cannot be applied to all applications due to funda-
mental performance issues. Thus, during the last years, di↵erent cloud
migration strategies have been considered for di↵erent classes of parallel
applications. In this paper, we provide a survey on HPC cloud migra-
tion research. We investigate on the approaches applied and the parallel
applications considered. Based on our findings, we identify and describe
three cloud migration strategies.

Keywords: Cloud Computing · High Performance Computing · Parallel
Application · Cloud Migration · Cloud-aware Refactoring ·

1 Introduction

Traditionally, many parallel applications have been designed and developed for
HPC clusters. However, more recently, the cloud evolved into an attractive ex-
ecution environment for HPC workloads [26, 38]. Former research on this topic
mainly investigates how to make cloud environments HPC-aware [25]. In par-
ticular, resource pooling and virtualization leading to heterogeneous processing
speeds as well as low network throughput and high network latency have been
addressed [8, 41]. During the last years great progress has been made with respect
to HPC-aware cloud environments. As of today, many cloud providers, including
Amazon Web Services (AWS)1 and Microsoft Azure2, o↵er cloud environments
optimized for HPC workloads [44, 1].

On the other hand, there is a growing interest to make parallel applica-
tions cloud-aware [12, 13, 34, 30]. However, this requires architectural refactor-
ing, which comes with many challenges and cannot be applied to all applications
due to performance issues [19, 5]. As a result, di↵erent cloud migration strategies
have been applied to di↵erent parallel applications.

1 https://aws.amazon.com.
2 https://azure.microsoft.com.

57

As more and more research considers the migration of parallel applications to
the cloud, we argue that a survey on HPC cloud migration research is required to
understand current research issues. In this paper, we investigate on HPC cloud
migration and describe three cloud migration strategies identified in existing
research. The remainder of this paper is structured as follows. In Section 2,
we describe two di↵erent types of cloud environments that can be employed to
operate parallel applications. In Section 3, we present the research method and
search strategy underlying our survey. Based on existing research, we describe
the HPC cloud migration strategies identified in Section 4. Moreover, we discuss
the key findings of our survey. In Section 5, we conclude our work and describe
future research opportunities.

2 Cloud Environments for HPC

Two di↵erent types of cloud environments can be employed to operate paral-
lel applications: Standard and HPC-aware cloud environments. Standard cloud
environments often su↵er from CPU time sharing leading to heterogeneous pro-
cessing speeds as well as low network throughput and high network latency,
which are well-known e↵ects of resource pooling and virtualization [8, 41]. On
the other hand, HPC-aware cloud environments limit these negative side-e↵ects
by means of the following concepts:

– CPU a�nity: HPC-aware cloud environments ensure CPU a�nity both at
the application and at the hypervisor level. As a result, vCPUs are mapped
to physical CPU cores leading to improved cache locality and higher cache
hit rates [13]. This concept is also referred to as CPU pinning.

– HPC-aware virtual machine (VM) placement policies: Standard cloud sched-
ulers do not ensure co-location of VMs. Existing work has shown that HPC-
aware VM placement e↵ectively resolves this issue and leads to significant
performance gains [14].

– Guaranteed network performance: HPC-aware cloud environments are based
on novel concepts such as single root input/output virtualization (SR-IOV)
to ensure guaranteed network bandwidth and latency with constant quality
of service while supporting resource pooling and network virtualization [25].

– Disabled VM migration: Typically, VM migration is disabled to avoid envi-
ronmental overhead.

– Disabled memory overcommitment: Memory overcommitment leads to pre-
emption and paging and is typically disabled [7].

– Lightweight virtualization: Container-based virtualization (OS-level virtual-
ization) ensures lower overheads compared to hypervisor-based virtualization
[43].

3 Research Method and Search Strategy

Our survey is based on a literature review to identify existing research on HPC
cloud migration. We followed the steps of a literature review process described

58

in [3]. For the search process, we employed the ACM Digital Library3, IEEE
Xplore4, and Google Scholar5. The following search query was used for the
search: (”cloud” OR ”elastic” OR ”elasticity”) AND (”migrat*” OR ”trans-

form” OR ”convert” OR ”refactor*” OR ”adapt*” OR ”modification”) AND

(”hpc” OR ”parallel application”).
We selected relevant articles based on a manual selection process: Only peer-

reviewed articles (published in English) have been included. Moreover, only arti-
cles that discuss in detail how to migrate parallel applications to the cloud were
selected. Additional literature has been identified (1) by reviewing the references
of selected articles and (2) by analyzing the citations of these articles [40].

4 Cloud Migration Strategies for HPC

In this section, we review existing work on HPC cloud migration. This section
is structured according to the three cloud migration strategies that we have
identified: (1) Copy & Paste, (2) Cloud-aware Refactoring, and (3) Cloud-aware
Refactoring & Elasticity Control. Table 1 summarizes our classification of ex-
isting work. For each cloud migration strategy, we describe the key findings in
detail.

4.1 Copy & Paste

This migration strategy proposes the migration of existing parallel applications
without modifications. Both standard and HPC-aware cloud environments have
been evaluated by following this migration strategy. For instance, the authors of
[6] evaluate an existing application based on the Message Passing Interface (MPI)
[10] deployed to a standard cloud environment. Moreover, serial versions of the
NAS Parallel Benchmarks (NPB) [2] have been employed to assess the compu-
tational performance of di↵erent instance types. The results obtained show that
the lower performance measured is mainly related to the high network latencies
and low network bandwidths in standard cloud environments. The authors of
[33] also evaluate existing MPI-based applications from the NPB in standard
cloud environments. On the other hand, the authors of [23] investigate MPI-
based applications in HPC-aware cloud environments and measure low variance
in network bandwidth. Moreover, the raw computation performance has been
shown to be comparable to HPC clusters, even if virtualization overhead exists.
The authors of [42] consider HPC-aware cloud environments more cost-e↵ective
compared to traditional HPC clusters if a cluster does not achieve high uti-
lization. The authors of [12] evaluate di↵erent parallel applications based on
MPI and CHARM++ deployed to both standard and HPC-aware cloud envi-
ronments. Whereas specifically tightly-coupled applications su↵er from the low
network bandwidth and high network latency in standard cloud environments,

3 https://dl.acm.org.
4 https://ieeexplore.ieee.org.
5 https://scholar.google.com.

59

Table 1. This table shows our classification of existing work on HPC cloud migration.

Selected
Article

Cloud
Environment

Elasticity
Control

Cloud Migration
Strategy

Evangelinos et al. [6] Standard None Copy & Paste

Rolo↵ et al. [33] Standard None Copy & Paste

Marathe et al. [23] HPC-aware None Copy & Paste

Zhai et al. [42] HPC-aware None Copy & Paste

Gupta et al. [12]
Standard /
HPC-aware

None Copy & Paste

Rajan et al. [28] HPC-aware None Copy & Paste

Gupta et al. [15] Standard None Cloud-aware Refactoring

Rajan et al. [30] Standard None Cloud-aware Refactoring

Vu et al. [39] Standard None Cloud-aware Refactoring

Kehrer et al. [20] Standard None Cloud-aware Refactoring

Da Rosa Righi et al. [34] Standard Reactive
Cloud-aware Refactoring
& Elasticity Control

Da Rosa Righi et al. [35] Standard Reactive
Cloud-aware Refactoring
& Elasticity Control

Rodrigues et al. [32] Standard Hybrid
Cloud-aware Refactoring
& Elasticity Control

Da Rosa Righi et al. [36] Standard Hybrid
Cloud-aware Refactoring
& Elasticity Control

Raveendran et al. [31] Standard Reactive
Cloud-aware Refactoring
& Elasticity Control

Rajan et al. [28] Standard Reactive
Cloud-aware Refactoring
& Elasticity Control

Haussmann et al. [16] Standard Reactive
Cloud-aware Refactoring
& Elasticity Control

60

HPC-aware cloud o↵erings have been shown to e↵ectively overcome these issues.
Thus, tightly-coupled applications benefit from on-demand access to compute
resources and the freedom to select the number of processing units. Having the
freedom to select the number of processing units per application run is new to
HPC users as traditionally the number of processing units is limited by resource
quotas or one tries to optimize the number of processing units to get a job
scheduled faster (e.g., in HPC clusters with job schedulers).

Whereas most approaches require the manual selection of the number of
processing units, recent work also shows how to automatically select the number
of processing units in an HPC-aware cloud environment when the computational
steps and communication patterns of the application can be captured in form of
an application model. Based on the application model, one is able to calculate how
the number of processing units e↵ects execution time, speedup, e�ciency, and
monetary costs thus allowing versatile optimizations per application run. The
authors of [28] specifically address applications based on the split-map-merge
paradigm and consider the cost-time product as objective function to statically
select the optimal number of processing units per application run. Therefore, the
automated selection process considers (1) information on the input problem, (2)
an application model built for split-map-merge applications, (3) a user-defined
objective function (in this case the cost-time product as a function of the number
of processing units), and (4) information on the execution environment (e.g.,
processing speed, network bandwidth) obtained by measuring sample workloads.

By following this approach, parallel applications benefit from on-demand
access to compute resources and pay-per-use, which enables fine-grained cost
control per application run. Because the number of processing units does not
have to be adapted at runtime, an existing parallel application can be deployed
to an HPC-aware cloud environment without modifications.

P1

SPMD-based parallel application

P2 P3 P4

Computation

Communication

Point-to-point

Broadcast

Iteration

… … … …

Fig. 1. Many parallel applications are developed based on the Single Program Multiple
Data (SPMD) application model and rely on synchronous communication in globally
defined communication phases.

61

Findings: In general, many existing parallel applications are implemented
based on the Single Program Multiple Data (SPMD) application model [22, 24,
25] (especially supported by MPI) and rely on frequent synchronous communi-
cation. A prototypical SPMD-based MPI application is given in Fig. 1. In each
iteration, every MPI process executes local computations. Thereafter, a pair of
MPI processes exchanges application-specific data via point to point commu-
nication. After all process pairs finished their data transfers, updates required
globally are sent to other processes by means of an MPI broadcast primitive
(cf. Fig. 1). For tightly-coupled SPMD-based parallel applications, HPC-aware
cloud o↵erings provide an execution environment that can be used analogously
to an HPC cluster but allows individual configuration of compute resources (by
means of virtualization techniques). In existing work, elasticity is not employed
and thus the number of processing units has to be statically selected. However,
by following the Copy & Paste migration strategy, parallel applications benefit
from an on-demand provisioned execution environment that can be payed on a
per-use basis and individual configuration of compute resources.

4.2 Cloud-aware Refactoring

This cloud migration strategy proposes architectural refactoring to make existing
parallel applications cloud-aware [27, 19]. We discuss several examples for cloud-
aware refactoring in the following.

The authors of [15] introduce a dynamic load balancing mechanism to address
the challenges of tightly-coupled iterative MPI-based applications in standard
cloud environments caused by virtualization and resource pooling. Therefore,
a dynamic load balancer continuously monitors the load of each vCPU and
reacts to a measured imbalance by adapting the task distribution to virtual
machines. Task overdecomposition is used to enable dynamic load balancing,
which e↵ectively reduces idle time.

The authors of [30] employ the Work Queue framework [4] to develop par-
allel applications for standard cloud environments. The Work Queue framework
is designed for scientific ensemble applications and provides a master/worker ar-
chitecture with an elastic pool of workers. The application employed in the pre-
sented case study is designed for replica exchange molecular dynamics (REMD)
and can be considered as iterative-parallel. Similar applications are discussed by
the authors in [29].

The authors of [39] employ standard cloud environments to operate irregu-
lar task-parallel applications and present a work stealing algorithm that selects
victims (other processing units) based on the measured network link latency.
Processing units with a lower latency are preferred for stealing operations. The
presented algorithm is self-adaptive and has been shown to outperform other
load balancing mechanisms that do not consider network link latency.

The authors of [20] specifically address applications with dynamic task paral-
lelism and discuss how these applications can benefit from elastic scaling. They
argue that, in cloud environments, parallel applications have to dynamically
adapt the degree of logical parallelism based on a dynamically changing physical

62

parallelism, given by the number of processing units (e.g., number of vCPUs,
VMs). Based on their findings, the authors describe the design and implementa-
tion of a cloud-aware runtime system for elastic task-parallel processing in the
cloud. The presented runtime system transparently controls the parallelism of an
application to ensure elastic scaling. Therefore, developers mark parallelism in
the program and the runtime system automatically adapts the logical parallelism
by generating tasks whenever required. The runtime system exploits available
processing units with maximum e�ciency by mapping the logical parallelism
(tasks) to the physical parallelism (processing units). An application based on
this cloud-aware runtime system is elastically scalable because newly provisioned
processing units (VMs) automatically receive tasks by means of load balancing
and a task migration mechanism releases processing units that have been se-
lected for decommissioning. To decouple task generation and task processing,
the runtime system is based on the distributed task pool execution model and
solves parallel coordination problems based on Apache ZooKeeper6. The authors
state that the runtime system is not limited to any specific cloud management
approach or tooling: Cloud management may comprise any kind of external de-
cision making logic that finally adapts the number of processing units (i.e., the
physical parallelism).

Findings: Cloud-aware refactoring has been specifically employed in the con-
text of standard cloud environments. Typically, heterogeneous processing speeds
and varying network latencies negatively e↵ect parallel applications that em-
ploy synchronous communication and / or barrier synchronization. Cloud-aware
refactoring can be employed to make these applications less a↵ected by the char-
acteristics of standard cloud environments. By following this migration strategy,
one is able to exploit (low cost) standard cloud resources while still maximiz-
ing parallel performance. However, it has also been recognized that such an
approach cannot be applied to all applications. Specifically, in the context of
parallel applications with frequent communication and synchronization, archi-
tectural refactoring leads to fundamental performance issues and thus cannot be
applied.

4.3 Cloud-aware Refactoring & Elasticity Control

This cloud migration strategy proposes the use of elasticity to process HPC work-
loads in the cloud. Therefore, architectural refactoring of parallel applications is
fundamentally required to deal with a varying number of processing units. In the
following, we discuss several examples for this migration strategy and describe
the elasticity control mechanisms considered.

The authors of [34] describe a reactive elasticity control mechanism for iterative-
parallel applications. The presented concept called AutoElastic supports the au-
tomated transformation (source-to-source translation) of existing MPMD7-based

6 https://zookeeper.apache.org.
7 Multiple Program Multiple Data.

63

MPI-2 applications with a master/worker architecture into elastic parallel ap-
plications. MPI-2 features dynamic process management and thus supports a
varying number of MPI processes [11]. The presented concepts are evaluated
by using a numerical integration application which simulates di↵erent dynamic
workload patterns (e.g., ascending, descending, and wave workload). Similar con-
cepts are discussed in [35].

The authors of [32] present a hybrid elasticity controller based on a tech-
nique called live thresholding, which has also been used in [36]. Live threshold-
ing dynamically adapts the thresholds of a reactive elasticity controller, which
is implemented as a closed feedback-loop architecture. Workload patterns are
detected by comparing the last two average load values calculated based on
monitored time series data and simple exponential smoothing. Similar concepts
are discussed in [36]. Both approaches address iterative-parallel applications.

The authors of [31] propose a concept to transform MPI-based iterative-
parallel applications into elastic applications. They describe how to adapt ex-
isting MPI-based applications to deal with a dynamically changing number of
processing units. The presented approach basically terminates a running appli-
cation and restarts the application with a di↵erent number of processing units.
Termination can only be applied at certain points in the program, e.g., at the
end of an iteration. The described elasticity controller is designed to optimize
the desired execution time, which is estimated based on the number of iterations
and the average iteration time. The underlying assumption is that the amount
of work per iteration is constant. Scaling decisions are made by comparing the
measured average iteration time with the required iteration time to complete
within the user-defined execution time: If the average iteration time is below the
required iteration time, processing units are added. Otherwise, processing units
are removed.

The authors of [28] (we already discussed this work in Section 4.1) also de-
scribe a second approach to use their application model: Whenever the charac-
teristics of the cloud environment (e.g., processing speed, network bandwidth)
are expected to change at runtime, an elasticity controller monitors the envi-
ronment and continuously evaluates the objective function based on monitoring
data. When the optimal (with respect to the user-defined objective function)
number of processing units changes, the elasticity controller dynamically adapts
the resource configuration. A cloud-aware application architecture is required to
support such adaptations at runtime.

The authors of [16] discuss elasticity-related opportunities and challenges for
irregular task-parallel applications. Their computation and communication pat-
terns are input-dependent, unstructured, and evolving during the computation
and thus their runtime and scaling behavior cannot be determined upfront [9, 37].
As a result, the total number of essential basic computational steps per time unit
is unknown a priori and cannot be predicted. These applications comprise an un-
predictable workload pattern. The authors discuss the two conflicting objectives
of fast processing and low monetary costs finally leading to a multi-objective
optimization problem and Pareto optimal solutions, which prevents automated

64

decision making with respect to the number of processing units. To deal with
this problem, the authors employ the concept of opportunity costs to convert the
underlying objective functions into a single aggregated objective function, thus
allowing cost-based selection of the number of processing units. Because one can-
not reason about the e↵ects on execution time, speedup, e�ciency, and monetary
costs in absolute terms, the authors present a reactive elasticity controller for
heuristic cost optimization: The cost function is approximated based on metrics
monitored at runtime. Therefore, the elasticity controller continuously monitors
the application and evaluates the defined objective function (minimize the mon-
etary costs based on the presented cost model). The authors empirically evaluate
their elasticity controller by comparing the results of their heuristic cost opti-
mization approach with the minimum monetary costs (which can be obtained
by measuring the scalability of the application with exemplary input problems).

Findings: This migration strategy proposes the use of elasticity to deal with
dynamic and unpredictable workload patterns and / or environmental changes
in standard cloud environments. Either proactive, reactive, or hybrid elasticity
control mechanisms can be employed (depending on the characteristics of the ap-
plication). Additionally, a cloud-aware application architecture is fundamentally
required to ensure that a parallel application dynamically adapts to a changing
number of processing units (selected by an elasticity controller). By following
this migration strategy, parallel applications benefit from elasticity in form of
more e�ciently employed compute resources.

4.4 Summary and Discussion

Specifically for the Copy & Paste migration strategy, the ongoing evolution of
HPC-aware cloud environments provides attractive benefits when compared to
traditional HPC cluster environments. Existing work following this migration
strategy does not make use of elasticity. Because mainly tightly-coupled data-
parallel applications have been considered, this can be explained by considerable
repartitioning e↵orts (when processing units are added or removed). With the
technology available today, it is not possible for tightly-coupled SPMD-based
applications to make use of elasticity to optimize costs and e�ciency by adding
or removing processing units during the computation due to the high overheads
that would result from repartitioning.

The Cloud-aware Refactoring migration strategy proposes architectural refac-
toring of existing parallel applications. Architectural refactoring, in general and
specifically in the context of parallel applications, is a comparatively new con-
cept. The authors of [45] applied architectural refactoring to develop cloud-native
applications. In [19], we present an approach to assess the cloud readiness of par-
allel applications that can be used to gain insights into the architectural changes
required. In this context, we also recognized that many parallel applications
provide several degrees of freedom with respect to their architecture.

Finally, we identified a third migration strategy: Cloud-aware Refactoring &

Elasticity Control. Existing work following this migration strategy focuses on
the benefits that can be obtained by means of elasticity. Specifically, in [28] and

65

[16], monetary costs and time are explicitly considered. The di↵erent approaches
described basically result from the di↵erent characteristics of the applications
addressed: Whereas the scaling behavior of applications based on the split-map-
merge paradigm can be predicted based on an application model [28], the scaling
behavior of irregular task-parallel applications is unknown upfront and unpre-
dictable by nature, which requires reactive elasticity control [16]. On the other
hand, both approaches convert the underlying multi-objective optimization prob-
lem into a single-objective optimization problem to enable automated decision
making with respect to the optimal number of processing units. The authors of
[28] use the cost-time product to create a single-objective optimization problem.
The authors of [16] employ the concept of opportunity costs, which can be used
to express time in terms of costs, thus enabling a purely cost-driven optimization.

5 Conclusion

With the aim of providing contributions to practitioners and researchers alike,
we present a classification of HPC cloud migration research and describe the
key findings. Most importantly, we recognized that elasticity, which is often
considered to be the fundamental property of cloud environments, can only be
beneficially employed under certain circumstances. More research is required
to understand elasticity-related opportunities and challenges in the context of
HPC. Whereas HPC users traditionally had no visibility of the monetary costs
of compute resources in cluster environments, the pay-per-use property requires
users to consider costs in cloud environments. Related work shows how to exploit
on-demand compute resources and elasticity to control the monetary costs of
parallel computations in the cloud. These approaches dynamically adapt the
number of processing units under consideration of scare resources such as time
and money. However, as of today, a clear and generally applicable understanding
of elasticity in the context of HPC does not exist.

Our long-term goal is to understand how to design, develop, and manage
cloud-aware parallel applications, i.e., applications that leverage cloud-specific
properties such as on-demand access to compute resources, pay-per-use, and
elasticity. Therefore, we follow a multi-faceted approach by investigating design-
level, programming-level, and system-level aspects [19, 20] as well as delivery and
deployment automation [18, 17, 21].

Acknowledgements. This research was partially funded by the Ministry of
Science of Baden-Württemberg, Germany, for the Doctoral Program Services

Computing.

References

1. Aljamal, R., El-Mousa, A., Jubair, F.: A comparative review of high-performance
computing major cloud service providers. In: 2018 9th International Conference on
Information and Communication Systems (ICICS). pp. 181–186 (April 2018)

66

2. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum,
L., Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon,
H.D., Venkatakrishnan, V., Weeratunga, S.K.: The nas parallel benchmarks sum-
mary and preliminary results. In: Supercomputing ’91:Proceedings of the 1991
ACM/IEEE Conference on Supercomputing. pp. 158–165 (Nov 1991)

3. Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from
applying the systematic literature review process within the software engineering
domain. Journal of Systems and Software 80(4), 571 – 583 (2007)

4. Bui, P., Rajan, D., Abdul-Wahid, B., Izaguirre, J., Thain, D.: Work queue+python:
A framework for scalable scientific ensemble applications. In: Workshop on Python
for High-Performance and Scientific Computing (2011)

5. Ekanayake, J., Fox, G.: High performance parallel computing with clouds and
cloud technologies. In: Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E.
(eds.) Cloud Computing. pp. 20–38. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010)

6. Evangelinos, C., Hill, C.N.: Cloud computing for parallel scientific hpc applications:
Feasibility of running coupled atmosphere-ocean climate models on amazons ec2.
In: In The 1st Workshop on Cloud Computing and its Applications (CCA (2008)

7. Ferreira, K.B., Bridges, P., Brightwell, R.: Characterizing application sensitivity
to os interference using kernel-level noise injection. In: 2008 SC - International
Conference for High Performance Computing, Networking, Storage and Analysis.
pp. 1–12 (Nov 2008)

8. Galante, G., Erpen De Bona, L.C., Mury, A.R., Schulze, B., da Rosa Righi, R.:
An analysis of public clouds elasticity in the execution of scientific applications: a
survey. Journal of Grid Computing 14(2), 193–216 (Jun 2016)

9. Gautier, T., Roch, J.L., Villard, G.: Regular versus irregular problems and algo-
rithms. In: Ferreira, A., Rolim, J. (eds.) Parallel Algorithms for Irregularly Struc-
tured Problems. pp. 1–25. Springer Berlin Heidelberg, Berlin, Heidelberg (1995)

10. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: portable parallel programming with
the message-passing interface. MIT press, third edn. (2014)

11. Gropp, W., Thakur, R., Lusk, E.: Using MPI-2: Advanced features of the message
passing interface. MIT press (1999)

12. Gupta, A., Faraboschi, P., Gioachin, F., Kale, L.V., Kaufmann, R., Lee, B., March,
V., Milojicic, D., Suen, C.H.: Evaluating and improving the performance and
scheduling of hpc applications in cloud. IEEE Transactions on Cloud Computing
4(3), 307–321 (July 2016)

13. Gupta, A., Kale, L.V., Gioachin, F., March, V., Suen, C.H., Lee, B.S., Faraboschi,
P., Kaufmann, R., Milojicic, D.: The who, what, why, and how of high perfor-
mance computing in the cloud. In: IEEE 5th International Conference on Cloud
Computing Technology and Science. vol. 1, pp. 306–314 (Dec 2013)

14. Gupta, A., Kal, L.V., Milojicic, D., Faraboschi, P., Balle, S.M.: Hpc-aware vm
placement in infrastructure clouds. In: 2013 IEEE International Conference on
Cloud Engineering (IC2E). pp. 11–20 (March 2013)

15. Gupta, A., Sarood, O., Kale, L.V., Milojicic, D.: Improving hpc application perfor-
mance in cloud through dynamic load balancing. In: 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing. pp. 402–409 (May 2013)

16. Haussmann, J., Blochinger, W., Kuechlin, W.: Cost-e�cient parallel processing of
irregularly structured problems in cloud computing environments. Cluster Com-
puting (Dec 2018)

67

17. Kehrer, S., Blochinger, W.: Autogenic: Automated generation of self-configuring
microservices. In: Proceedings of the 8th International Conference on Cloud Com-
puting and Services Science. pp. 35–46. SciTePress (2018)

18. Kehrer, S., Blochinger, W.: Tosca-based container orchestration on mesos. Com-
puter Science - Research and Development 33(3), 305–316 (Aug 2018)

19. Kehrer, S., Blochinger, W.: Migrating parallel applications to the cloud: assessing
cloud readiness based on parallel design decisions. SICS Software-Intensive Cyber-
Physical Systems 34(2), 73–84 (Jun 2019)

20. Kehrer, S., Blochinger, W.: Taskwork: A cloud-aware runtime system for elastic
task-parallel hpc applications. In: Proceedings of the 9th International Conference
on Cloud Computing and Services Science. pp. 198–209. SciTePress (2019)

21. Kehrer, S., Riebandt, F., Blochinger, W.: Container-based module isolation for
cloud services. In: 2019 IEEE International Conference on Service-Oriented System
Engineering (SOSE). pp. 177–186 (2019)

22. Keutzer, K., Massingill, B.L., Mattson, T.G., Sanders, B.A.: A design pattern
language for engineering (parallel) software: merging the plpp and opl projects.
In: Proceedings of the 2010 Workshop on Parallel Programming Patterns. ACM
(2010)

23. Marathe, A., Harris, R., Lowenthal, D.K., de Supinski, B.R., Rountree, B., Schulz,
M., Yuan, X.: A comparative study of high-performance computing on the cloud.
In: Proceedings of the 22Nd International Symposium on High-performance Par-
allel and Distributed Computing. pp. 239–250. HPDC ’13, ACM, New York, NY,
USA (2013)

24. Massingill, B.L., Mattson, T.G., Sanders, B.A.: Reengineering for parallelism: an
entry point into plpp for legacy applications. Concurrency and Computation: Prac-
tice and Experience 19(4), 503–529 (2007)

25. Mauch, V., Kunze, M., Hillenbrand, M.: High performance cloud computing. Fu-
ture Generation Computer Systems 29(6), 1408 – 1416 (2013)

26. Netto, M.A.S., Calheiros, R.N., Rodrigues, E.R., Cunha, R.L.F., Buyya, R.: Hpc
cloud for scientific and business applications: Taxonomy, vision, and research chal-
lenges. ACM Computing Surveys (CSUR) 51(1), 8:1–8:29 (Jan 2018)

27. Parashar, M., AbdelBaky, M., Rodero, I., Devarakonda, A.: Cloud paradigms and
practices for computational and data-enabled science and engineering. Computing
in Science Engineering 15(4), 10–18 (July 2013)

28. Rajan, D., Thain, D.: Designing self-tuning split-map-merge applications for high
cost-e�ciency in the cloud. IEEE Transactions on Cloud Computing 5(2), 303–316
(April 2017)

29. Rajan, D., Thrasher, A., Abdul-Wahid, B., Izaguirre, J.A., Emrich, S., Thain, D.:
Case studies in designing elastic applications. In: 2013 13th IEEE/ACM Inter-
national Symposium on Cluster, Cloud, and Grid Computing. pp. 466–473 (May
2013)

30. Rajan, D., Canino, A., Izaguirre, J.A., Thain, D.: Converting a high performance
application to an elastic cloud application. In: IEEE Third International Con-
ference on Cloud Computing Technology and Science (CloudCom). pp. 383–390.
IEEE (2011)

31. Raveendran, A., Bicer, T., Agrawal, G.: A framework for elastic execution of ex-
isting mpi programs. In: 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum. pp. 940–947 (May 2011)

32. Rodrigues, V.F., da Rosa Righi, R., da Costa, C.A., Singh, D., Munoz, V.M.,
Chang, V.: Towards combining reactive and proactive cloud elasticity on running

68

hpc applications. In: Proceedings of the 3rd International Conference on Internet
of Things, Big Data and Security - Volume 1: IoTBDS. pp. 261–268. INSTICC,
SciTePress (2018)

33. Rolo↵, E., Diener, M., Carissimi, A., Navaux, P.O.A.: High performance computing
in the cloud: Deployment, performance and cost e�ciency. In: 4th IEEE Interna-
tional Conference on Cloud Computing Technology and Science Proceedings. pp.
371–378 (Dec 2012)

34. da Rosa Righi, R., Rodrigues, V.F., da Costa, C.A., Galante, G., de Bona, L.C.E.,
Ferreto, T.: Autoelastic: Automatic resource elasticity for high performance ap-
plications in the cloud. IEEE Transactions on Cloud Computing 4(1), 6–19 (Jan
2016)

35. da Rosa Righi, R., Rodrigues, V.F., da Costa, C.A., Kreutz, D., Heiss, H.U.: To-
wards cloud-based asynchronous elasticity for iterative HPC applications. Journal
of Physics: Conference Series 649, 012006 (oct 2015)

36. da Rosa Righi, R., Rodrigues, V.F., Rostirolla, G., da Costa, C.A., Rolo↵, E.,
Navaux, P.O.A.: A lightweight plug-and-play elasticity service for self-organizing
resource provisioning on parallel applications. Future Generation Computer Sys-
tems 78, 176 – 190 (2018)

37. Sun, Y., Wang, C.L.: Solving irregularly structured problems based on distributed
object model. Parallel Computing 29(11-12), 1539–1562 (Nov 2003)

38. Vecchiola, C., Pandey, S., Buyya, R.: High-performance cloud computing: A view
of scientific applications. In: 10th International Symposium on Pervasive Systems,
Algorithms, and Networks (ISPAN). pp. 4–16. IEEE (2009)

39. Vu, T.T., Derbel, B.: Link-heterogeneous work stealing. In: 2014 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. pp. 354–363
(May 2014)

40. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: Writing
a literature review. MIS Quarterly 26(2), xiii–xxiii (2002)

41. Yang, X., Wallom, D., Waddington, S., Wang, J., Shaon, A., Matthews, B., Wil-
son, M., Guo, Y., Guo, L., Blower, J.D., Vasilakos, A.V., Liu, K., Kershaw, P.:
Cloud computing in e-science: research challenges and opportunities. The Journal
of Supercomputing 70(1), 408–464 (Oct 2014)

42. Zhai, Y., Liu, M., Zhai, J., Ma, X., Chen, W.: Cloud versus in-house cluster: Eval-
uating amazon cluster compute instances for running mpi applications. In: SC ’11:
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. pp. 1–10 (Nov 2011)

43. Zhang, J., Lu, X., Panda, D.K.: Performance characterization of hypervisor-and
container-based virtualization for hpc on sr-iov enabled infiniband clusters. In: 2016
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). pp. 1777–1784 (May 2016)

44. Zhang, J., Lu, X., Panda, D.K.D.: Designing locality and numa aware mpi run-
time for nested virtualization based hpc cloud with sr-iov enabled infiniband. In:
Proceedings of the 13th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments. pp. 187–200. VEE ’17, ACM, New York, NY,
USA (2017)

45. Zimmermann, O.: Architectural refactoring for the cloud: a decision-centric view
on cloud migration. Computing 99(2), 129–145 (Feb 2017)

69

Towards a Platform for Sharing Quantum Software

Frank Leymann [0000-0002-9123-259X], Johanna Barzen [0000-0001-8397-7973]

and Michael Falkenthal [0000-0001-7802-1395]

Institute of Architecture of Application Systems, University Stuttgart, Germany
Lastname@informatik.uni-stuttgart.de

Abstract. Quantum computers solving real-world problems are expected to
become general available within the next few years. But software for quantum
computers require very different skills compared to creating software for
traditional computers or networks. Thus, a community-driven approach to
creating software for quantum computers will foster a wide-spread use of this
innovative technology. Also, a platform for quantum software may provide a
business model for several user groups.

Keywords: Quantum computing, software engineering, middleware, platforms,
cloud computing.

1 Introduction

Quantum computing is becoming a reality: the first quantum computers are already
commercially available or are about to be launched [5], [3], [4], [7]. The time at which
quantum computers will solve problems that traditional computers can practically no
longer solve (so-called "Quantum Supremacy" [10]) can be expected in the next few
years [9]. Even earlier, non-ideal quantum computers can be used in practice [11].

Creating algorithms or software for quantum computers is significantly different
from todays practice. Efforts in establishing a discipline of quantum software are
significantly underrepresented [1]. Although there are a large number of algorithms for
quantum computers (e.g. on websites like [6], in textbooks like [8], in scientific
publications like [1]), which algorithm can be used in which situation requires a
comprehensive understanding of the theory and technology, which users typically do
not have. Even if a suitable algorithm is found, its conversion into an executable
program requires deep knowledge of the environment of the respective quantum
computer.

2 Quantum Software Platform

This is where the concept of the proposed Quantum Software Platform (QuSP) comes
in. Components of the QuSP and user groups involved are shown in Fig. 1.

70

2.1 Overview

The algorithms for the QuSP come from many different sources (A) (NB: letters and
numbers refer to labels in Fig. 1) such as the web, published articles or books. These
algorithms are stored in a special database, the quantum algorithm catalog (1).

A public community (analogous to an open source community) or specialists of the
platform operator (B) can access this special database and analyze, clean and unify the
algorithms (2). As a result, each quality-assured algorithm is stored in the Quantum
Algorithm Repository (3).

Based on the quality-assured algorithms, developers (C) can now implement these
algorithms for execution on a quantum computer (4). These programs are also quality-
assured (5) and stored in a quantum program repository (6).

End users (D) of the platform can now search for quality-assured algorithms and
programs in the QuSP (7). If an algorithm for a certain problem is not found or if an
algorithm is not implemented by a program, the end user can make corresponding
requests (7) to the community. For delivery, an algorithm or program is packaged (9)

2.2 Population

Algorithms to be considered are captured by metadata. E.g. its reference is essential so
that it can be retrieved and viewed. If it is available online, this reference is the
corresponding link, otherwise the exact literature reference is given. It is also described
which problems the algorithm is claimed to solve, initial information about the
properties of the algorithm etc. is given.

Candidates for the quantum algorithm catalog can be identified in different ways.
For example, community members can capture algorithms, or crawlers may
automatically detect relevant publications.

2.3 Preparation

Next, the community agrees on the maturity of an algorithm [12]. If mature, it will be
analyzed, unified and stored in the quantum algorithm repository. Analysis determines
which problems the algorithm actually solves and with which properties: e.g.
statements are made about the acceleration an algorithm achieves compared to certain
classical algorithms [13], with how many qubits an algorithm is already useful [9], etc.
During unification, the algorithm is brought into a common format (e.g., represented as
a software pattern). If not mature, the algorithm is cleansed, i.e. its unsuitability is
captured and the catalog is annotated accordingly so that this algorithm is not
considered again.

These tasks can be performed by different user groups, e.g. a public community
(analogous to an open source community), or specialists of the platform operator. For
this purpose, the platform contains corresponding collaboration tools [12].

71

Figure 1 - Architecture of the quantum software platform QuSP.

2.4 Program Development

Quantum algorithms that meet specific requirements (such as the number of qubits
required, fit for a hardware architecture) may be implemented so that they can run on
the quantum computer of certain vendors. These quantum programs are examined for
their quality (functional tests, etc.) before they are transferred to the quantum program
repository. This can be done by an open source community. Also, specialists of the
manufacturer of a certain quantum computer can implement those algorithms.

2.5 Usage

Customers of the QuSP can search for both, quantum algorithms and quantum
programs. If an algorithm for a problem is not found, requirements to provide the
appropriate algorithms can be imposed. If an algorithm is found but no corresponding
implementation as a quantum program is found, an implementation can be requested.
Providing algorithms and programs on request may be charged. If a quantum program
is retrieved, the program is packaged so that it can be provisioned into its target
environment.

3 Roles Involved

3.1 Platform Operators

The platform may be operated as a business, e.g. a fee can be charged for (successful)
searches, for access to the unified representation of the algorithm etc. For programs that
implement an algorithm, an even higher price can be charged. Satisfying requirements
have to be paid.

© Frank Leymann !20

QAlgo 
Repository

QAlgo 
Catalogue

Sources of  
Quantum Algorithms

Analysis  
Cleansing  

Unification

Search

Quantum 
Program 

Repository

Development

Order

Packaging

Developers

Requirements

Specialists,  
Community

Quality Insurance

Ⓐ Ⓑ

Ⓒ

Ⓓ

⓵ ⓶ ⓷

⓸ ⓹

⓺

⓻

⓽

⓼

Users

72

3.2 Users

The search of different sources for suitable quantum algorithms as well as the
assessment of their suitability is not only very time-consuming, but also requires highly
specialized personnel. The use of the QuSP thus represents a significant advantage for
users and often makes the use of quantum computers possible in the first place.

The same applies to the creation of a quantum program: the environment for
developing such a program must be understood, and it is often even specific to a certain
hardware of a supplier. Likewise, quantum algorithms are usually formulated
independently of a specific hardware, so that adaptations to an appropriate target
platform are necessary [14]. The purchase of a program that implements an algorithm
for a specific quantum computer thus represents a considerable savings potential for a
user.

3.3 Software Vendors

Quantum programs can be created by software companies and offered in the platform.
Requirements that customers place on quantum programs and their target environments
can thus be met by software companies. Software companies can specialize in different
hardware platforms or development environments of quantum computers and thus
achieve competitive advantages.

3.4 Hardware Vendors

Hardware vendors can also offer quantum programs: these programs are optimized for
the hardware which becomes more attractive, of the programs must be paid.

3.5 Consulting Companies

Consulting companies are often specialized in industries (pharmaceuticals, finance...)
or cross-sectional topics (optimization, simulation...) that can benefit from quantum
computing. Personnel with knowledge in the field of quantum computing is rare, i.e.
consulting firms can benefit in particular from the quality-assured algorithms of the
QuSP in order to incorporate quantum technologies into their specialized consulting
services. Users thus have access to corresponding consulting services.

4 Conclusion and Outlook

The sketched platform for quantum software will enable a much broader group of
people and companies to take advantage of the benefits of quantum computing. Initial
steps to create a prototype of such a platform is underway at our institute.

73

References

1. Ambainis, A., et. al.: “Quantum Software Manifesto“. (2017), http://www.qusoft.org/wp-
content/uploads/2018/02/Quantum-Software-Manifesto.pdf

2. Coles, P.J., et al: „Quantum Algorithm Implementations for Beginners“.
arXiv:1804.03719v1 (2018).

3. IBM: “Quantum Devices and Simulators”. (2018). https://www.research.ibm.com/ibm-
q/technology/devices/#ibmq-20-tokyo

4. Intel: “Intel’s 49-Qubit quantum processor”. (2018). https://newsroom.intel.com/wp-
content/uploads/sites/11/2018/05/49-qubit-processor-tangle-lake-infographic.jpg

5. Jelly, K.: “A preview of Bristlecone, Google’s new quantum processor”. Google (2018).
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html

6. Jordan, S.: "Quantum Algorithm Zoo“. (2018). https://math.nist.gov/quantum/zoo/
7. Linn, A.: “With new Microsoft breakthroughs, general purpose quantum computing moves

closer to reality”. (2017). https://news.microsoft.com/features/new-microsoft-
breakthroughs-general-purpose-quantum-computing-moves-closer-reality/

8. Lipton, R.J., Regan, K.W.: „Quantum Algorithms via Linear Algebra“. MIT Press 2014.
9. Mohseni, M., et al.: “Commercialize early quantum technologies“. Nature Vol. 543, March

2017.
10. Preskill, J., in „The Theory of the Quantum World“ (eds Gross, D., Henneaux, M. & Sevrin,

A.) 63–80 (World Scientific, 2011).
11. Preskill, J.: “Quantum Computing in the NISQ era and beyond”. Quantum 2, 79 (2018).
12. Reiners, R.: „An Evolving Pattern Library for Collaborative Project Documentation“.

Dissertation RWTH Aachen, 2013.
13. Rønnow, T. F., et al.: „Defining and detecting quantum speedup“. Science Vol. 345(6195)

July 2014.
14. Tannu, S.S., Qureshi, M.K.: “Not All Qubits Are Created Equal - A Case for Variability-

Aware Policies for NISQ-Era Quantum Computers”. arXiv:1805.10224 (2018).

(All links have been followed on June 2019, 2018).

74

How to Reconstruct Musical Experiences from Historical
Texts: Methodological Issues

Claes Neuefeind1 and Brigitte Mathiak2 and Frank Hentschel3
1 University of Cologne, Cologne Center for eHumanities, 50923 Köln, Germany
2 University of Cologne, Institute for Digital Humanities, 50923 Köln, Germany

3 University of Cologne, Department of Musicology, 50923 Köln, Germany
{c.neuefeind,bmathiak,fhentsch}@uni-koeln.de

Abstract. In this paper, we outline an approach to reconstruct musical
experiences from historical texts that makes use of techniques from the field of
Digital Humanities (DH) to support musicological research on musical
expressivity. Based on the assumption that the systematic investigation of
textual evidence of contemporary musical experiences can give insights in the
relation between compositional practice and specific expressive qualities, we
sketch a digitally enhanced workflow to access these experiences. The resulting
tool allows to search for expressive qualities in a corpus of 19th-century music
periodicals and journals to determine which works are mentioned most
frequently in those contexts. This forms the basis for an in-depth musicological
analysis of the characteristics of these works. In this paper, we focus on
methodological issues that arise from combining qualitative musicological
analysis with quantitatively oriented digital methods from the field of DH,
where the ideas and methodological issues discussed in this paper are part of a
broader agenda in musicology that can be coined as historical music

psychology.

Keywords: Musical expressivity, 19th-century music, Digital Humanities.

1 Introduction

The emotional impact of music is a well known fact. When we listen to music, we
recognize or feel emotions or moods. Many studies try to clarify why and how music
elicits or communicates affect; most of them base their research on test persons (see
for overviews [1], [2], [3]). But what about the audiences and listeners in former
times, say, in the 19th century? How did people actually experience music in its
historical context? Did people at that time experience music in the same way as we do
today? Which compositional patterns triggered these experiences? Based on these
questions, we outline a new methodological approach in musicology in this paper,
which is part of a broader agenda that can be coined as historical music psychology.

The key idea of this approach is that access to contemporary musical experiences
can shed some light on the relation between compositional practice and expressive
qualities. To be sure, more recent research has made clear that acoustic features that
cannot be deduced from the score, as well as the performance also influence the way

75

music affects listeners (e.g. [4], [5]). However, since we have no access to
19th-century performances or recordings we focus on compositional features. With
respect to the listening experience of the 19th century, recensions and articles in
music-related magazines and periodicals are the most important sources. To give an
example of textual evidence where the emotional quality of music is explicitly
described, we refer to [6], where among others the following excerpts are described:

Felix Mendelssohn, Symphony No. 3, Scottish (1803)

Anonymous. “The Birmingham Musical Festival.” The Musical World, vol. 24, no. 36 (September 8,
1849), pp. 564–9, here p. 568: “The concert began with the Third symphony of Mendelssohn - that
in A minor. […] the fire and impetuosity imparted to the whole of that movement, and the
magnificent ensemble of the hymn of thanksgiving with which the symphony so nobly concludes,
were such as we have rarely heard, even in London […].”

Pyotr Ilyich Tchaikovsky, Symphony No. 5 (1888)

Rosa Newmarch. Tchaikovsky. His Life and Works . London: William Reeves, 1908, p. 99: “The
introduction to the Finale – Andante maestoso – is penetrated with religious feeling. […] The Finale
itself (Allegro vivace) grows gradually clearer as it proceeds, as though the heart had cast off a load of
suffering and God’s world shone out bright once more.”

As the examples show, there are many different ways to describe musical

experiences. These sum up to a vocabulary of expressive qualities – which in turn are
used to describe musical experiences. In order to make reliable statements about how
a certain music was experienced by its contemporaries, as many sources as possible
must be tracked down. Therefore, a systematic search for such sources is required.
Thus, the question arises how descriptions and work mentions can be formally related
to each other so that they can be systematically accessed.

To reconstruct musical experiences from historical texts we need to find textual
evidence that can be used as a basis for an in-depth musicological analysis. This
implies that these sources do not only use descriptors of musical expression but that
they do so with respect to specific works or, better, work excerpts. We therefore need
to develop a procedure that allows on the one hand to search for particular expressive
qualities (e.g. ‘sad‘ ‘majestic‘ or ‘noble‘) in a corpus of 19th-century music
periodicals and journals and on the other hand to determine which works are
mentioned most frequently in those contexts. On this basis, the characteristics of the
works in question can then be analyzed for similarities by a musicologist.

2 Data

As stated above, the only way to access contemporary musical experiences is through
text. Thus the whole idea ultimately depends on a reliable textual basis that contains
as much material as possible. In previous research ([6], [7]), the Retrospective Index

to Music Periodicals (RIPM, [8]) was used, which to date is by far the largest
collection of music-related periodicals. By the time of writing, the RIPM database
includes about 388 titles from more than 20 different countries in Europe and the
Americas, out of which 299 provide access to the full texts, and covering the time
span between 1760 and 1966. In total, the corpus includes approximately 930,000

76

annotated entries or 1.18 mio pages of text. In addition, based on preliminary work
within the scope of the DFG-funded project “Musikalische Preisausschreiben” [9],
this corpus may be further extended by other freely available music periodicals and
magazines.

3 Methodology

Our starting point is the methodology developed in [7], where the following
procedure is conducted to select historical source texts to find textual evidence for the
reception of music as being ‚uncanny‘ and to subsequently analyze the works
described in these texts:

1. Define a ‘semantic field’
2. Search for all word forms of this field in the RIPM database
3. Manual filtering based on direct contexts (skip obviously irrelevant ones)
4. Select “suitable documents” (containing references to works/pieces)
5. Musicological analysis of the works mentioned in the documents

The question we want to raise here is: how can we do better? To this end, we take

on a “DH perspective,” where our main concern is which parts of this procedure can
be automatized or at least be supported by computational techniques. Except for the
steps 3 and 5, which are explicitly manual operations, we see a thorough potential to
support the musicologist’s work by automatization. Having said that, we can derive
the following steps for a DH-supported procedure:

1. Generate exemplary semantic fields and refine them manually
2. Recognize/annotate work mentions (relevant documents)
3. Search for common contexts of semantic fields and work mentions

These three steps are the prerequisite for an in-depth analysis of the search results

and the musicological analysis of compositions referred to in the texts (extracting
compositional features, defining expression types etc.). The rest of this chapter is
organized alongside these three steps: First, we describe an approach to automatically
generate semantic fields, then we discuss approaches for the identification of work
mentions, and finally we sketch the basic design of an according search functionality.

3.1 Semantic fields

First of all, when we talk about semantic fields in this context, we do not refer to a
specific linguistic concept (like e.g. [10]). Instead, it is a more or less preliminary
term to describe an unordered set of thematically related words. In its simplest form, a
semantic field can be seen as a manually assembled list of words supposed to intersect
in some central aspects of their meaning or to refer to closely related phenomena, as
in the following example for ‘uncanny’, which is taken from [7]:

77

Erschauern, geisterhaft, gespenstig, gespenstisch, Grauen, grauenerregend, grauenhaft, grauenvoll, Graus,
Grausen, grausig, gruselig, horribel, mysteriös, schauderhaft, Schauer, schauerlich, schauervoll, schaurig,
unheimlich; abominable, demoniacal, demonic, dismay, dread, dreadful, eerie, eery, ghastly, ghostly,
gruesome, horrible, horrid, horrific, mysterious, scary, shiver, shudder, spookish, spooky, uneasy, uncanny;
angoissant, épouvante, frémir, frisson, horreur, horrible, inquiétant, lugubre, sinistre, téné breux; misterioso,
orrendo, orribile, orridezza, orrore, sinistro, spaventoso, mistico, inquietante.

In this example, the selection of terms is actually based on the personal language

competence and hermeneutic experience of an individual historian using manually
selected contemporary texts and contemporary dictionaries, encyclopedias, etc. from
different languages (e.g. Grimm’s Deutsches Wörterbuch [11] or Dornseiff [12] for
German). Such an approach is necessarily restricted since the amount of texts an
individual researcher can survey is limited and possibly biased. Another way of
assembling related terms is to rely on resources dedicated to (in our case) emotional
vocabulary like NRC Emolex [13] or to extract the according parts from WordNet [14]
and then adapt them to contemporary orthography, for these resources are not based
on historical (19th-century) language usage.

As an alternative, to introduce a fully automated approach on the basis of
contemporary sources, we propose to use word embeddings to find sets of similar
words. Besides count-based approaches such as SVD-ppmi [15], the most popular
approaches to compute word embeddings are Word2Vec [16] and GloVe [17], both
relying on feature learning techniques based on neuronal networks. The
operationalization can be outlined as follows: first we compute word embeddings
based on a raw text corpus of as much 19th-century language we can find (using
additional contemporary material such as Deutsches Textarchiv [18]). Then we query
these embeddings for similar words. However, in this context “similar” simply means
that a word may replace each other, so that “good” is close to “bad”. As a
consequence, we need additional manual input. This means that beyond
automatization, there still is a great need for manual selection and refinement. This
can again be done with the help of contemporary dictionaries and encyclopedias, as
well as with the help of corpus-based samples.

3.2 Detecting Work Mentions

As for the detection of work mentions, we return to the examples from above:

Felix Mendelssohn, Symphony No. 3, Scottish (1803)

Anonymous. “The Birmingham Musical Festival.” The Musical World, vol. 24, no. 36 (September 8,
1849), pp. 564–9, here p. 568: “The concert began with the Third symphony of Mendelssohn - that
in A minor. […] the fire and impetuosity imparted to the whole of that movement, and the
magnificent ensemble of the hymn of thanksgiving with which the symphony so nobly concludes,
were such as we have rarely heard, even in London […].”

Pyotr Ilyich Tchaikovsky, Symphony No. 5 (1888)

Rosa Newmarch. Tchaikovsky. His Life and Works . London: William Reeves, 1908, p. 99: “The
introduction to the Finale – Andante maestoso – is penetrated with religious feeling. […] The Finale

78

itself (Allegro vivace) grows gradually clearer as it proceeds, as though the heart had cast off a load of
suffering and God’s world shone out bright once more.”

Even though the name Scottish has not been used by the author the explicit

numbering and the mentioning of the key make the identification fairly easy. In
contrast to this, the second example is not at all easy. Since the references are highly
ambiguous, it can only be attributed by collecting clues from a number of sources and
connecting them to make an educated guess.

For this task, we can combine three different approaches to the task of entity
recognition: knowledge-driven (lists of names and pieces), pattern induction (based
on linguistic patterns, [19]), or based on machine learning techniques such as
conditional random fields (CRF, [20]), or – again – by using word embeddings.
Musicologist and linguist will have to work hand in hand, starting with the
knowledge-driven approach and refining it manually, which in turn provides training
data for the more sophisticated machine learning methods. Both patterns and CRFs
work very well with sparse training data and for the word embeddings we can again
use the much larger data set representing the language in question that was used in the
task of generating semantic fields.

3.3 Semantic Search

As a final step, a search functionality has to be provided that allows to find all work
mentions occurring within the context of specific semantic fields. The basic idea is to
make use of the concept of query expansion, where every search term triggers a
search for all words that are members of the same semantic field. This can be realized
with established search technologies like e.g. elasticsearch [21], where the
pre-computed sets of words (i.e. the semantic fields) can be fed into the system as
so-called 'synonym tokens' via an external configuration file. A single search term
will then return all texts that contain any of the elements of the specific semantic field
the search term belongs to.

Since this will increase the recall significantly, a proper ranking of the search
results is crucial. Hereby, the annotations of work mentions can be used to filter and
rank the search results. Weights can be determined by the occurrence and position of
work mentions, so that results in which such annotations occur close(r) to search
terms can be prioritized. To avoid the loss of potentially misclassified work mentions
(e.g. in case work mentions weren’t properly annotated), nothing is sorted out but
only placed at the end of the result list – which in turn calls for a thorough manual
inspection by a musicologist.

4 Musicological Analysis

With the three steps described above, we have a computationally supported
methodology at hand that helps to define a subset of relevant documents from a large
corpus of music-related texts from the 19th century. On this basis, an in-depth

79

analysis can be conducted. The musicologist will not only check whether the results
do actually contain relevant descriptors of specific compositions but also whether they
refer to specific passages within the compositions. The more specific the reference is
the more important will be the source. A qualitative text analysis will help to structure
the sources. The excerpts to which the sources refer can then be analyzed with respect
to common compositional features. We expect to find certain features that recur in
many compositions and allow hypotheses or even conclusions about what musical
features have typically been used to produce a certain expressive effect (cf. [7]).
Moreover, we expect to find expression types, i.e. certain combinations of features
that are regularly used to communicate certain expressive qualities [22]. In the long
run, we hope to contribute to the reconstruction of the expressive vocabulary of
19th-century music.

5 Summary and Outlook

In this paper, we outlined a digitally enhanced workflow to reconstruct musical
experiences from historical texts. After the generation (and manual refinement) of
semantic fields and the identification and annotation of work mentions in a corpus of
19th-century music periodicals, journals and other publications, a corpus search for
expressive qualities returns a list of work mentions that are subject to an in-depth
musicological analysis. Among the benefits of such a digitally enhanced workflow are
better and faster access to the data and the possibility to quantify the results.

A potential extension of this approach could be a kind of ‘heat map’ visualization
to support the selection of ‘good’ semantic fields. The extension is inspired by ideas
from Culturomics [23] and Distant Reading [24], aiming at the reconstruction of the
historical vocabulary of a defined timespan by approximating a significant number of
semantic fields. On this basis, the occurrence and distribution of these fields over time
and space could be visualized. This would allow to investigate the temporal and
geographical distribution of terms that are relevant for the description of musical
perception, where timelines and graphics are intended to visualize changes and
distributions of semantic fields across 19th-century Europe.

As stated in the beginning, the ideas and methodological issues discussed in this
paper are part of a broader agenda in musicology that can be coined as historical

music psychology. By designing a systematic, computationally supported workflow to
reconstruct musical experiences from historical texts, we hope to get better insights in
the relation between compositional patterns and specific expressive qualities - and
thereby contribute to this agenda.

References

1. Gabrielsson, A., Juslin, P. N.: Emotional Expression in Music. In: Davidson, R.J. (ed.):
Handbook of affective sciences, pp. 503–534. (2003). Oxford, New York u.a.: Oxford
Univ. Press (2003).

80

2. Thompson, W. F.: Music and Emotion (pp. 169–206). In: Thompson, W. F.: Music,
Thought, and Feeling: Understanding the Psychology of Music (2 ed.). Oxford: Oxford
University Press (2015).

3. Margulis, E. H.: The Psychology of Music: A Very Short Introduction. Oxford: Oxford
University Press (2019).

4. Lange, E. B., Frieler, K.: Challenges and Opportunities of Predicting Musical Emotions
with Perceptual and Automatized Features. In: MUSIC PERCEPT 36 (2), 217–242 (2018).
DOI: 10.1525/MP.2018.36.2.217.

5. Juslin, P. N.: Emotion in Music Performance. In: Oxford Handbook of Music Psychology
(1 ed.), Edited by Susan Hallam, Ian Cross, and Michael Thaut, Print Publication Date:
Dec 2008, Online Publication Date: Sep 2012, DOI:
10.1093/oxfordhb/9780199298457.013.0035.

6. Hentschel, F.: Expression Types of 19th-Century Symphonic Music: The Cases of the
Glorifying Hymnic and the Majestic Chorale. Open Science Framework (OSF Preprints),
2018 (DOI: 10.31219/osf.io/hgqnt).

7. Hentschel, F.: Musik und das Unheimliche im 19. Jahrhundert. In: Archiv für

Musikwissenschaft 73 (1), pp. 9–50 (2016).
8. RIPM homepage, https://www.ripm.org/, last accessed 2019/06/19.
9. Musikalische Preisausschreiben, https://gepris.dfg.de/gepris/projekt/273448812, last

accessed 2019/06/19.
10. Johnson-Laird, P. N.; Oatley, K.: The language of emotions: An analysis of a semantic

field. In: Cognition & Emotion 3 (2), 81–123 (1989). DOI: 10.1080/02699938908408075.
11. Grimm, J. and W.: Deutsches Wörterbuch. 16 volumes. Leipzig: S. Hirzel (1854-1961).
12. Dornseiff, F.: Der deutsche Wortschatz nach Sachgruppen. Berlin, Leipzig: de Gruyter

(1934).
13. NRC Emolex, http://www.saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm,

last accessed 2019/06/19.
14. WordNet, https://wordnet.princeton.edu/, last accessed 2019/06/19.
15. Levy, O., Goldberg, Y., Dagan, I.: Improving Distributional Similarity with Lessons

Learned from Word Embeddings. In: Transactions of the Association for Computational
Linguistics, v. 3, 211-225 (2015).

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word
Representations in Vector Space (2013). http://arxiv.org/pdf/1301.3781v3, last accessed
2019/06/19.

17. Pennington, J., Socher, R., Manning, C.: GloVe: Global Vectors for Word Representation.
In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Doha, Qatar. Stroudsburg, PA: Association for Computational
Linguistics, 1532–1543 (2014).

18. Deutsches Textarchiv (DTA), http://www.deutschestextarchiv.de/, last accessed
2019/06/19.

19. Boland, K., Ritze, D., Eckert, K., Mathiak, B.: Identifying References to Datasets in
Publications. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mattern, F.,
Mitchell, J. C. (ed.): Theory and Practice of Digital Libraries (7489). Berlin, Heidelberg:
Springer (Lecture Notes in Computer Science), pp. 150–161 (2012).

20. Lafferty, J.; McCallum, A., Pereira, F. C. N.: Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data. In: Brodley, C. E. (ed.): Machine
learning. Proceedings of the eighteenth international conference. San Francisco, CA:
Kaufmann, pp. 282–289 (2001).

21. Elasticsearch homepage, https://www.elastic.co, last accessed 2019/06/19.
22. Barzen, J., Breitenbücher, U., Eusterbrock, L., Falkenthal, M., Hentschel, F., Leymann, F.:

The vision for MUSE4Music. In: Computer Science. Research and Development 32 (3-4),
pp. 323–328 (2017). DOI: 10.1007/s00450-016-0336-1.

81

23. Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K.; Pickett, J. P.: Quantitative
analysis of culture using millions of digitized books. In: Science 331 (6014), 176–182
(2011). DOI: 10.1126/science.1199644.

24. Moretti, F.: Graphs, maps, trees. Abstract models for a literary history. London: Verso
(2005).

82

CO2-e�cient Home Energy Management:
A Service-Oriented Approach ?

Laura Fiorini1

University of Groningen, Department of Distributed Systems, Nijenborgh 9, 9747 AG,
Groningen, The Netherlands

l.fiorini@rug.nl

Abstract

Increasing concerns on climate change have brought the attention to the envi-
ronmental impact of building energy consumptions; in Europe, residential and
commercial building are attributed 36% of CO2 emissions. Increasing di↵usion
and use of appliances have significantly raised the households’ need for electricity,
and controlling the residential energy use has become an important aspect of the
power grid management. With multiple energy sources available, the complexity
of households as energy systems increases, while growing energy consumptions
imply a higher environmental impact that, in the context of decarbonization,
needs to be addressed. Developments in automation are pivotal in the transition
towards multi-energy systems and smart buildings, where the integration of di-
verse energy carriers, such as electricity and gas, has shown potential economic
and energetic benefits. A Home Energy Management System (HEMS) aims at
monitoring and controlling energy consumption and production of a household,
while scheduling the use of available resources. A Service-Oriented Architecture
can simplify the design and management of smart homes by allowing compo-
nents to dynamically find each other and interoperate. Standardized interfaces
and messages allow the home management system to integrate new components
and services as they become available. Among these, Smart Meters are a key
component of energy management systems. These provide for real-time infor-
mation and take decisions related to energy consumptions according to the data
provided by other available services, for instance, the output of the solar panel
service, or the CO2 emission factor provided by the electricity supplier service.

Within the energy transition context, the main research questions of this
work focus on the integration of multiple energy carriers within household energy
systems, how to model them, and how to promote a sustainable management.
We investigate to what extent the environmental impact of households can be
reduced by integrating multiple energy sources, namely, electricity, natural gas,

? Supported by the Netherlands Organization for Scientific Research under the NWO
MERGE project, contract no.647.002.006; and by the European Union’s Horizon
2020 research and innovation programme under the Marie Sk lodowska-Curie grant
agreement no.734599.

83

and solar generation, taking advantage of variations over time of CO2 intensity
of di↵erent energy carriers.

The Smart Home model we propose can be realized as a Service-Oriented
Architecture and designed following Service-Oriented Computing principles. De-
pending on the household size and the season, a Smart Home may have up to
six smart appliance services, a heating and cooling service, and a domestic hot
water service. The energy behavior of each appliance service is modeled as a
series of tasks requiring di↵erent levels of electric and/or thermal power. The
appliance’s status and energy consumptions are controlled by a Smart Meter.
The heating and DHW services are provided by multiple technologies, namely a
gas-fired boiler, an electric heat pump, an electric water heater, and a thermal
store. Depending on the service and the user’s preferences, we define multiple
possible levels of flexibility with respect to allowed delays of individual appli-
ance service, temperature range of thermal services, and energy sources. We also
include a local energy production service provided by a system of photovoltaic
panels and an electricity storage service provided by a battery.

Such a Smart Home is managed by a coordinator service, called HEMS, which
determines the best operation scheduling of the other services and technologies
according to users’ preferences, information coming from the energy supplier
services, e.g., CO2 emission or price signals, and from a weather information
service, e.g., outside temperature and sky conditions. To deal with information
uncertainty, the coordinator service adjusts the scheduling for the following 6
hours every half a hour by means of Model Predictive Control.

Preliminary results show that the proposed HEMS can significantly reduce
CO2 emissions, while satisfying users’ comfort preferences in terms of tempera-
ture and allowed delay of main household appliance services. Considering con-
figurations with increasing levels of load flexibility and integration of energy
carriers, emission savings vary between 2% and 27%, compared to the reference
case with low flexibility and traditional operation modes. The presence of more
technologies allows for the improvement of supply’s e�ciency for space heating
and domestic hot water demand, maintaining the total energy consumptions
mostly unchanged. Further emission and energy consumption savings can be
achieved with the use of batteries coupled with solar panels.

Further works will focus on investigating di↵erent models for assessing the
CO2 intensity of electricity, namely, mix and marginal methods.

References

1. L. Fiorini and M. Aiello, “Household CO2-e�cient energy management,” Energy
Informatics, vol. 1, no. Suppl 1, pp. 21–34, 2018.

2. L. Fiorini and M. Aiello, “Predictive CO2-e�cient Scheduling of Hybrid Electric and
Thermal Loads,” In: Proceedings of 3rd IEEE International Conference on Energy
Internet, pp. 392–297, 2019.

3. L. Fiorini and M. Aiello, “Energy Management for User’s Thermal and Power Needs:
A Survey,” Submitted, 2019.

84

4. M. Aiello, “The Role of Web Services at Home.”, In: IEEE Web Services-based
Systems and Applications (WEBSA at ICIW) IEEE Computer, 2006.

85

Optimising Local Energy Storage for Smart Grid

Connected O�ces

Brian Setz
1[0000�0002�9750�2888]

Department for Service Computing, Institute of Architecture of Application Systems,

University of Stuttgart

brian.setz@iaas.uni-stuttgart.de

The smart grid promises to transform the current electrical grid to one

that functions more cooperatively, responsively, and organically [4]. Energy con-

sumers in a future smart grid can become energy providers, delivering energy

back to the grid. Consumers have the potential to select which energy provider

to purchase electricity from; perhaps a neighbouring building is producing more

power than they consume, and thus sell it to the grid for a favourable price.

As a result, there are many energy providers, selling and purchasing energy at

di↵erent prices. Additionally, the availability of local energy storage enables con-

sumers and producers to store energy when it is most beneficial for them. This

leads to an interesting optimization problem.

In this work we investigate the e↵ect that local energy storage has on op-

timizing the costs for smart o�ces connected to the smart grid, by scheduling

the operation of devices in an optimal manner using a service-based approach.

Optimal refers to minimizing the energy cost to maximize financial savings. Poli-

cies can be used to describe the behaviour of these devices, determining when

and how they should be operated [1]. For example, a fridge needs to operate at

periodic intervals to maintain its temperature, and a laptop charger needs to

operate a total amount of time to fully charge a laptop. We define a scheduling

problem that has as input the available energy providers, the devices to operate

and their policies, the locally produced renewable energy, and the local energy

storage. The output is an optimal device schedule with 15-minute timeslots.

The energy prices are collected from the REST API of the Amsterdam Power

Exchange (APX) Group, an energy exchange operating the spot markets for

electricity in the Netherlands. The energy providers are generated by sampling

a normal distribution with a mean value equal to the APX price, and a small

standard deviation. Each energy provided also has a limited amount of power

it can provide, this is to simulate a smart grid where agents are able to deliver

small amounts of power to the grid, for example when their solar panels are

overproducing. The amount of power that an energy provider can deliver is

sampled from a uniform distribution with a fixed upper and lower bound.

Two additional energy providers are added for locally generated renewable

energy, one for solar panels and one for wind turbines. To define the wind turbine

provider we use a model that determines the power generation based on the wind

speed, cutin wind speed, survival wind speed, and the power curve of a particular

wind turbine [2]. For the solar panels provider, we use a model that is trained

using data from solar panels located in the Netherlands, where the output of

86

the solar panels is correlated to the cloud coverage. We include a local energy

storage model based on the Tesla Power Wall as part of the scheduling problem.

We solve the scheduling problem using a uniform-cost search optimization

algorithm. This algorithm works by first generating all partial solutions for the

first time slot [3]. These partial solutions are stored in a priority queue; the

partial solution with the lowest cost is at the top of the queue. Next, the first

partial solution in the queue is dequeued, the partial solutions for the next time

slot are calculated and stored in the queue. Every time, the partial solution with

the lowest cost is expanded further. Cost is defined as either the total cost of

the consumed energy. In each time slot it is possible to operate the devices, and

change the state of the local storage from charging to discharging, and vice-versa.

The number of devices and timeslots determines the complexity of the search

space. We apply two techniques to limit the search space. First, we ensure that

the partial solutions that are generated are valid solutions. A solution is valid

when the device policies are not violated. For example, if a device is scheduled

more often than a policy demands, the policy is violated. If a policy is violated,

the partial solution is removed. Second, we check that there are no duplicate

partial solutions. A duplicate solution has the same cost after the same number

of timeslots have been expanded, and reaches the same state after execution.

The architecture of the system is as follows: the Database stores the relevant

policies for each device, as well as the energy prices for each energy provider.

The energy data is updated by the Extractor Service, which is responsible for

requesting the latest data from externally located API’s. The Coordinator Ser-
vice queries the database for the latest information and feeds this data to the

Scheduler Service. The scheduler generates a schedule based on the inputs and

returns this schedule to the coordinator. Next, the coordinator translates the

schedule into commands that are understood by the IoT Gateway.
Our preliminary results show that, given the same smart o�ce optimization

infrastructure to react to energy prices, introducing local energy storage allows

us to decrease the energy costs even further. The reasons for the decreased cost

are twofold. First of all, when local renewables overproduce, the excess energy

can be stored for later use. And second, when energy prices are low, the energy

can be purchased and stored at this low price.

References

1. Georgievski, I., Degeler, V., Pagani, G.A., Nguyen, T.A., Lazovik, A., Aiello, M.:

Optimizing energy costs for o�ces connected to the smart grid. IEEE Transactions

on Smart Grid 3(4), 2273–2285 (Dec 2012)

2. Lydia, M., Kumar, S.S., Selvakumar, A.I., Kumar, G.E.P.: A comprehensive re-

view on wind turbine power curve modeling techniques. Renewable and Sustainable

Energy Reviews 30, 452 – 460 (2014)

3. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach. Pearson Ed-

ucation (2010)

4. Tuballa, M.L., Abundo, M.L.: A review of the development of smart grid technolo-

gies. Renewable and Sustainable Energy Reviews 59, 710 – 725 (2016)

87

Smart Lifecycle Management for Devices in the Internet
of Things – A Research Approach

Dominik Grüdl

Coburg University of Applied Sciences and Arts, Friedrich-Streib-Str. 2, 96450 Coburg, Ger-
many

dominik.gruedl@hs-coburg.de

Abstract. The heterogeneity of IoT devices, networks and platforms is identi-
fied as the main problem for feasible device lifecycle management. As a possi-
ble starting point for my dissertation this summary proposes a research ap-
proach for the smart management of device lifecycles for the Internet of Things.

Keywords: Internet of Things, Lifecycle Management, Artificial Intelligence.

1 Relevance and problem definition

The Internet of Things (IoT) consists not only of physical devices that gather infor-
mation about their environment, but also of their digital twins. An IoT platform ena-
bles its users and developers to manage those virtual device copies. Therefore all
states, state changes and gathered information of the IoT devices need to be sent to
the IoT platform via global information and communication networks. Vice versa,
modifications on the digital twins need to be communicated to the physical devices.

Heterogeneity is a main attribute of the IoT. Setup and type of the IoT device de-
pend heavily on its respective purpose and the therefore used technologies [1]. The
scenario also affects the decision of which information and communication network is
used. Accordingly, data from different device types with individual lifecycles and
states may have to be mapped via different networks in the IoT platform.

In addition to various setups and types of devices and networks, there is a vast
number of versatile IoT platforms that are designed to perfectly support any scenario.
The digital twins and the current state of the physical devices are a necessity for each
use case. Because of the arbitrarily high complexity of each IoT scenario it’s not fea-
sible to manually map every possible device lifecycle and state to the IoT platform.

2 Research goals

Lifecycles and states are widely used and constantly refined in computer science, e. g.
as state machines or as session states in distributed systems. The lifecycles and states
of IoT devices vary for each use case and depend on the used hardware as well as
their specific purpose. Therefore it is necessary to define a generic model that is able

88

to represent the lifecycles, states and correlations of any IoT device to any IoT plat-
form.

An IoT platform should be able to provide the current lifecycle and state of any
device to any connected application. To evaluate the previously defined lifecycle
model the model has to be implemented and tested in an IoT platform. Device man-
agement can be used as a starting point for this approach, as it is well-defined part of
the architecture for IoT platforms.

Based on the generic lifecycle model and artificial intelligence (AI) an IoT plat-
form could manage the current lifecycle and state of any device in a smart way, even
without permanent connections to the devices. Lifecycles and states could be aggre-
gated and analyzed to extract patterns about the devices and the use case.

3 Methodology and related work

In order to work on the research questions a proper understanding of the basics of IoT
and AI are required. Based on the fundamentals of IoT and IoT platforms a generic
lifecycle model can be defined [2]. The next step consists of implementing, testing
and evaluating the model in the context of device management in IoT platforms [3].
Finally, suited AI methods for improving the implemented lifecycle management will
be examined [4]. Fig. 1 depicts the approach for the upcoming investigations.

Fig. 1. Approach for the dissertation (RQ = Research Question)

4 References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of
things: A survey on enabling technologies, protocols, and applications. In: IEEE commu-
nications surveys & tutorials, 17(4), pp. 2347–2376 (2015).

2. Soos, G., Kozma, D., Janky, F. N., Varga, P.: IoT Device Lifecycle – a Generic Model and
a Use Case for Cellular Mobile Networks. In: 2018 IEEE 6th International Conference on
Future Internet of Things and Cloud, pp. 176–183, Barcelona (2018).

3. Datta, S. K., Bonnet, C.: A Lightweight Framework for Efficient M2M Device Manage-
ment in oneM2M Architecture. In: 2015 International Conference on Recent Advances in
Internet of Things (RioT), pp. 1–6, Singapore (2015).

4. Mahdavinejad, M. S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth, A. P.:
Machine learning for Internet of Things data analysis: A survey. In: Digital Communica-
tions and Networks, 4(3), pp. 161–175 (2018).

89

Application Modernization: Refactoring to
Microservices

Jonas Fritzsch1, Stefan Wagner1, and Alfred Zimmermann2

1
University of Stuttgart, Stuttgart, Germany

{jonas.fritzsch, stefan.wagner}@informatik.uni-stuttgart.de
2
University of Applied Sciences Reutlingen, Reutlingen, Germany

alfred.zimmermann@reutlingen-university.de

Abstract. While the recently emerged Microservices architectural style

is widely discussed in literature, it is di�cult to find clear guidance on

the process of refactoring monolithic legacy applications. Software archi-

tects facing this challenge are in need of selecting an appropriate strat-

egy and refactoring technique. Our research aims to provide means to

facilitate the migration of monolithic applications to a Microservices ar-

chitecture. In particular, we focus on the decomposition into services and

result evaluation of a refactoring. By investigating existing refactoring

approaches we identified a lack of practically applicable approaches. A

subsequent empirical industry study yielded the decomposition as a main

challenge. Only a fraction of the interviewed participants used a system-

atic approach. We aim to develop a novel decomposition approach that

addresses the shortcomings of existing approaches while equally focusing

on practical applicability.

Keywords: Microservices, Software Architecture, Modernization, Refac-

toring, Decomposition

1 Introduction

In the course of modernizing applications, several companies migrate their legacy
systems towards a Microservices architecture. They primarily aim for better
maintainability, shorter release cycles, scalability, cloud-readiness, or high avail-
ability. The importance of a well planned migration arises from its high cost, long
duration, and involved organizational restructurings next to the architectural
refactoring itself. A recent mapping study confirms a strong industry interest in
migrating legacy systems [2]. The decomposition of a monolith into Microservices
and especially determining the right granularity hereby is described in literature
as being more of an art than a science. Studies also state that industrial state-
of-practice has already reached some degree of maturity, while academia is still
at an early stage. Moreover, Jamshidi et al. note that recently published papers
have had “little if any impact on microservice practice” [4]. Our e↵orts aim to
fill this gap in scientific research as expressed by the following four questions:

90

RQ1: What existing architectural refactoring techniques are applicable in the
context of decomposing a system into Microservices?

RQ2: What are applied strategies and challenges in a migration process?

RQ3: How can a practically applicable decomposition method relying on static
code and dynamic runtime analysis evolve from existing approaches?

RQ4: What metrics, tools, and processes can be used for evaluating the appro-
priateness of service partitioning and service granularity?

2 Contributions and Preliminary Results

To address RQ1, we investigated 10 refactoring approaches for Microservices re-
cently proposed in academic literature [3]. The approaches were classified by the
underlying decomposition technique and visually presented in the form of a deci-
sion guide. As a result, the practical applicability of the investigated approaches
was limited by partly significant amounts of required input data, restriction to
certain types of applications, or missing tool support.

To address RQ2, we contributed a qualitative study on intentions, strategies,
and challenges in the context of a migration to Microservices [1]. We investi-
gated the migration process of 14 systems across di↵erent domains and sizes by
conducting 16 in-depth interviews with software professionals from 10 German-
based companies. Due to the high complexity of their legacy systems, most com-
panies preferred a rewrite using current technologies over splitting up existing
code bases. This was often caused by the absence of a suitable decomposition
approach. As such, finding the right service cut was a major challenge.

In the course of our future research on RQ3 and RQ4 we aim to develop a
novel and practically applicable decomposition approach that combines results
from source code analysis, development history (e.g. coupled change analysis),
and meaningful workload data gathered during typical operation.

References

1. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Microservices in Industry:

Insights into Technologies, Characteristics, and Software Quality. In: 2019 IEEE

International Conference on Software Architecture Companion (ICSA-C). pp. 187–

195. IEEE (2019). https://doi.org/10.1109/ICSA-C.2019.00041

2. Di Francesco, P., Lago, P., Malavolta, I.: Architecting with microservices: A

systematic mapping study. Journal of Systems and Software pp. 77–97 (2019).

https://doi.org/10.1016/j.jss.2019.01.001

3. Fritzsch, J., Bogner, J., Zimmermann, A., Wagner, S.: From Monolith to Mi-

croservices: A Classification of Refactoring Approaches. In: Software Engineering

Aspects of Continuous Development and New Paradigms of Software Production

and Deployment. pp. 128–141. Springer International Publishing, Cham (2019).

https://doi.org/10.1007/978-3-030-06019-0 10

4. Jamshidi, P., Pahl, C., Mendonca, N.C., Lewis, J., Tilkov, S.: Microservices:

The journey so far and challenges ahead. IEEE Software 35(3), 24–35 (2018).

https://doi.org/10.1109/MS.2018.2141039

91

A Formal Security Analysis of Hyperledger Fabric

Mike Simon and Ralf Küsters

Institute of Information Security
University of Stuttgart

Stuttgart, Germany
{mike.simon,ralf.kuesters}@sec.uni-stuttgart.de

� Motivation

As stated recently [�], many blockchain protocols claimed security properties
without formally proving or analyzing their claims. Even in some cases where
researchers carried out formal security proofs, blockchain protocols do not always
achieve expected properties, for example, the case of Monero [�]: the initial privacy
definition was not strong enough to handle several attacks that allow revealing
parties in transactions [��, ��]. This example shows that carrying out security
proofs for blockchain protocols is a challenging task.

Hyperledger Fabric [�] or short Fabric is a permissioned blockchain initially
developed by IBM then donated to the Hyperledger Project [�] and now open-
source. Fabric is maybe one of the most important business blockchains. Several
production systems use Fabric as backbone [�, �, ��].

Fabric introduced many interesting concepts to permissioned blockchain protocols
such as the execute-validate-order paradigm that enables higher throughput at
the cost of a degree of decentralization and a modular approach for consensus
algorithms that allows using several existing and well-known consensus algorithms
from the distributed systems sector such as RAFT [��, ��], PBFT [�, ��], and an
Apache Kafka-based consensus algorithm [��]. Indeed, the Kafka-based consensus
is the most mature implementation and usually recommended for production
usage. Thus, we decided to focus on Fabric using a Kafka-based consensus
algorithm.

Though the construction of Fabric seems to be sound, there is no full-fledged
security analysis of Fabric published so far. Androulaki et al. [�] describe the
properties Fabric should achieve: agreement or consistency (honest participants
should share a common prefix if one compares their chains), hash chain integrity
(a block includes the hash of its predecessor), no skipping (blocks are delivered
in consecutive order), no creation (all transactions are initiated by registered
clients), and validity or liveness (transactions will be eventually part of the chain).
Further, Androulaki et al. argue why Fabric should achieve these properties.

92

� Our Fabric Security Analysis

We modeled Fabric in the IITM model [��] (IITM stands for inexhaustible
interactive Turing machines), a UC model that can be used to prove common
security properties of blockchains such as consistency as introduced by Pass et
al. [��]. We also analyzed the desired Fabric properties according to Androulaki
et al. [�].

The model includes all relevant Fabric roles, a detailed model of Kafka where we
abstracted the underlying Apache ZooKeeper [�] away, and an attacker model
that allows adaptive corruption. Our model includes chaincodes (smart contracts)
and endorsing policies, the rule set that defines who is allowed to call which
chaincode and how many “votes” a transaction needs to be accepted in the
blockchain.

Unfortunately, because Kafka only achieves crash fault-tolerance and not Byzan-
tine fault-tolerance, our analysis did not output satisfying results: we need strong
and unrealistic assumptions to carry out security proofs. Basically, we need
to assume that the whole Kafka cluster works honestly and a majority of the
orderers behaves honestly as well.

We are working on a solution to mitigate the mentioned weakness and to improve
our security proofs.

The poster presents the current state of the security analysis and depicts the
relevant components for the security analysis.

Acknowledgement. This research was partially funded by the Ministry of
Science of Baden-Württemberg, Germany, for the Doctoral Program “Services
Computing”.

Keywords: Hyperledger Fabric, Formal Security Analysis, Blockchain, Smart
Contracts

References

�. Alonso, K.M., Herrera-Joancomartí, J.: Monero - Privacy in the Blockchain. IACR
Cryptology ePrint Archive ����, ��� (����)

�. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., Caro, A.D.,
Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Muralidharan, S., Murthy,
C., Nguyen, B., Sethi, M., Singh, G., Smith, K., Sorniotti, A., Stathakopoulou, C.,
Vukolic, M., Cocco, S.W., Yellick, J.: Hyperledger fabric: a distributed operating
system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys
Conference, EuroSys ����, Porto, Portugal, April ��-��, ����. pp. ��:�–��:��. ACM
(����)

�. Cachin, C., Vukolic, M.: Blockchain Consensus Protocols in the Wild (Keynote
Talk). In: ��st International Symposium on Distributed Computing, DISC ����,
October ��-��, ����, Vienna, Austria. LIPIcs, vol. ��, pp. �:�–�:��. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (����)

93

http://www.services-computing.de/?lang=en
http://www.services-computing.de/?lang=en

�. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. ��(�), ���–��� (����)

�. Group, E.: Erste in Europa zur Gänze auf Blockchain basierende Kapitalmarktemission
erfolgreich auf den Markt gebracht. https://www.erstegroup.com/de/news-media/
presseaussendungen/2018/10/23/papierlose-ssd-blockchain (����), (Accessed on
��/��/����)

�. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: ZooKeeper: Wait-free Coordination
for Internet-scale Systems. In: ���� USENIX Annual Technical Conference, Boston,
MA, USA, June ��-��, ����. USENIX Association (����)

�. Hyperledger: Hyperledger fabric. https://www.hyperledger.org/projects/fabric
(����), (Accessed on ��/��/����)

�. Hyperledger: Hyperledger: Finance. https://www.hyperledger.org/resources/
industries/finance (����), (Accessed on ��/��/����)

�. Hyperledger: Hyperledger: Open source blockchain technologies. https://www.
hyperledger.org/ (����), (Accessed on ��/��/����)

��. Hyperledger: Six Hyperledger Blockchain Projects Now in Production.
https://www.hyperledger.org/blog/2018/11/30/six-hyperledger-
blockchain-projects-now-in-production (����), (Accessed on ��/��/����)

��. Hyperledger: fabricdocs: Introduction. https://hyperledger-fabric.readthedocs.
io/en/release-1.4/whatis.html (����), (Accessed on ��/��/����)

��. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A Traceability Analysis of Monero’s
Blockchain. In: Computer Security - ESORICS ���� - ��nd European Symposium on
Research in Computer Security, Oslo, Norway, September ��-��, ����, Proceedings,
Part II. Lecture Notes in Computer Science, vol. �����, pp. ���–���. Springer (����)

��. Küsters, R.: Simulation-Based Security with Inexhaustible Interactive Turing
Machines. In: Proceedings of the ��th IEEE Computer Security Foundations
Workshop (CSFW-�� ����). pp. ���–���. IEEE Computer Society (����), see
http://eprint.iacr.org/2013/025/ for a full and revised version.

��. Narkhede, N., Shapira, G., Palino, T.: Kafka: The definitive guide (����)
��. Ongaro, D., Ousterhout, J.K.: In Search of an Understandable Consensus Algorithm.

In: ���� USENIX Annual Technical Conference, USENIX ATC ’��, Philadelphia, PA,
USA, June ��-��, ����. pp. ���–���. USENIX Association (����)

��. Pass, R., Seeman, L., Shelat, A.: Analysis of the Blockchain Protocol in Asynchronous
Networks. In: Advances in Cryptology - EUROCRYPT ���� - ��th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April �� - May �, ����, Proceedings, Part II. Lecture Notes in Computer
Science, vol. �����, pp. ���–��� (����)

��. Sukhwani, H., Martínez, J.M., Chang, X., Trivedi, K.S., Rindos, A.: Performance
Modeling of PBFT Consensus Process for Permissioned Blockchain Network (Hyper-
ledger Fabric). In: ��th IEEE Symposium on Reliable Distributed Systems, SRDS
����, Hong Kong, Hong Kong, September ��-��, ����. pp. ���–���. IEEE Computer
Society (����)

��. Yu, J., Au, M.H.A., Veríssimo, P.J.E.: Re-thinking untraceability in the CryptoNote-
style blockchain. IACR Cryptology ePrint Archive ����, ��� (����)

94

https://www.erstegroup.com/de/news-media/presseaussendungen/2018/10/23/papierlose-ssd-blockchain
https://www.erstegroup.com/de/news-media/presseaussendungen/2018/10/23/papierlose-ssd-blockchain
https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/resources/industries/finance
https://www.hyperledger.org/resources/industries/finance
https://www.hyperledger.org/
https://www.hyperledger.org/
https://www.hyperledger.org/blog/2018/11/30/six-hyperledger-blockchain-projects-now-in-production
https://www.hyperledger.org/blog/2018/11/30/six-hyperledger-blockchain-projects-now-in-production
https://hyperledger-fabric.readthedocs.io/en/release-1.4/whatis.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/whatis.html
http://eprint.iacr.org/2013/025/

	RC25685 Cover Sheet.pdf
	TR_2019.pdf

