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INTRODUCTION

Tn 1957 J. R. Jackson [1] presented the solution for the equilibrium state
probabilities for open networks of queues models with one class of cus-
tomers and exponential service time distributions. These results exhibited
an interesting property. A state S of each a model is given by the

)

number of customers in each service center so that S = (nl,nz,...,nN
where n, is the number of customers in service center i and N is

the number of service centers in the network. The arrival process to
service center i from outside the network is Poisson with mean rate ng
By a conservation of flow argument the mean total arrival rate to each
service center can be found. Let Ai be the mean total arrival rate to
service center i and let Pi(ni) be the equilibrium probability that
there are n, customers in the ith service center when the service

center has a Poisson arrivél process with mean rate Ai. Jackson's result
was that the equilibrium state probabilities for the network are given

by

P(S = (nllnza"*an-N))': Pl(nl)Pz(nz)...PN(nN)

Thus the states of the component service centers are independent random
variables and the state probabilities for the component service centers
are the same as when the arrival processes to the service centers are

Poisson. This result is rather surprising as Burke points out [2] since

the arrival process to a service center is not Poisson in general.



More results on networks of queues are now available [3,4,5,6,7].

Some of the more recent results allow for different classes of customers
(transition probabilities and in some cases service time distributions
may depend on the class of customer). As with Jackson's early results
the network equilibrium state probabilities are always very simply
related to the product of the equilibrium state probabilities for the
component service centers when the service centers have Poisson arrival
processes with appropriately chosen mean rates. 1In general a state S
of a queueing network can be expressed as S=Sl,52,...,5N where Si

is the state of the ith service center. Let Air be the total mean arrival
rate of class r customers to the ith service center (the calculation
of the Kir will be detailed later). Let {Pi(si)} be the equilibrium
state probabilities for service center i when removed from the network
and the arrival process for each class of customers is Poisson. The
mean arrival rate for class r customers is xir' In terms of the

{Pi(Si)] we can describe the forms of the solutions found so far for

queueing networks,

For closed networks the known solutions have the form
P(S = 81’52""’SN) = CPl(Sl)Pz(SZ)...PN(SN)
where C 1is a normalizing constant chosen so that the state

probabilities for the network sum to one.

For open networks with homogeneous Poisson arrival processes

B(S = 8),8,,000,8) = By (8;)P,(S,) .. B (S,).



Whether or not the equilibrium state probabilities for a network model
have such a product form is related to the departure processes of the
component service centers when their arrival processes are Poisson. A
sufficient condition for the departure processes of the different classes
of customers to be Poisson when the arrival process for each class of
customers is Poisson is given in Section 2. Queueing models which
satisfy this condition will be said to have the M=>M property. It

is shown in Section 3 that a sufficient condition for a network of queues
model to have a product form solution as described above is that each

service center has the M=>M property.

POISSON DEPARTURE PROCESSES

An M/M/n queueing system has long been known to have a Poisson departure
process [2]. One of the interesting (and sometimes confusing) aspects

of this result concerns the dependency of the departure process on the
state of the system. When the system is empty then the departure rate

is zero while if the system is not empty then the departure rate is
greater than zero. Thus at any time the future departure process depends
on the current state of the system. However it can be shown that the

past departure process is independent of the current state of the system

[2]. In particular, it can be shown that

Pr[departure in (t-At,t)/S(t) = S] _ \
At

V states, § lim
at~0

where A is the mean arrival rate and S(t) 1s the state of the



system at time t.

The departure rate with time reversed is therefore independent of the
state of the system and thus is independent of time. This together with
the observation that the rate of multiple departures is zero shows that

the departure process is Poisson.

We now explore this property (i.e. the independence of the departure rate
with time reversed and the state of the system) more formally and for
more general models. Consider a queueing model with different classes

of customers. Let.ef be the set of states of the model. The transition
rate from state SiEJEIto state S?Cdewill be denoted by R(Si+si).

Thus

PrS(t+at) = Si/S(t) = Si]
At

R(§,»S!) = 1lim
A At=>0

The inverse transition rate from Si to S, will be denoted by

S
Q(S£+Si). Thus

Pr[S(t-At) = Si/S(t) =8, ]

‘ i -
Q(Si+Si) = lim At

At>0

It is easy to show that

P(S,) R(Si S%)
P(S))

Q(s}+s,) =

where P(Si) is the equilibrium probability of the system being

in state §S,.
8 3



Let [S denote the number of class r customers in the system in

iIr
state Si' Tt S(t)=Si then a departure of a class r customer in
(t-At, t) corresponds to a transition (with time reversed) from Si
at time t to a state S! at time t-At where |S'| =|S | +1. The
i e o B o
departure rate for class r customers in inverse time is therefore

the sum of state transition rates from the current state to a state

with one more class r customer.

Let

/s.. €

B, (8;) =18 e 185,

e =8, |+ 1, R(S4y 8) > 0}

i+r

The condition for the departure process of class r customers to be

Poisson becomes

Pr[s(tﬂatjzs' /s(t)=S§,]

) i+r 1
Vs Lef E ; At+0 At B Ar

1&! +r 1

where kr is the mean arrival rate of class r customers.

This is clearly

Vs £, E G, T

i+r +I(Si)

P, ) R(S,, ~S.)
itr i+r i
Vs €, E ) -

8468, (5y)



In establishing this condition for Poisson departure processes no assump-
tion has been made about the arrival process. However in the remainder

of the paper we will always deal with queueing models with Poisson arrival
processes. A queueing model which satisfies the above condition when

the arrival process for each class of customers is Poisson will be said

to have the M»M (Markov implies Markov) property.

Note:

It has been implicitly assumed that all departures are associated with

a change of state. Another type of departure is possible in some systems.
An example is an M/M/n  queueing system with finite waiting room. TIf
customers which arrive when the waiting room is full (and therefore do
not join the system) are considered departures then these departures

are not associated with a state change but the departure process is
Poisson. To account for this type of departure we can generalize the
requirement for a Poisson departure process. Let Gr(Si) be the proba-
bility that a customer of class r which arrives when the system isg

in state Si will instantaneously depart. Then a sufficient condition
for the departure process for class r customers to be Poisson when

the arrival process is Poisson with rate Ar is

P(S,, ) R(S., =+8.)
i+r i+r i
Vsieei E P(Si) +oa (si)ar = :\r
S 2.

1458 (54

In the case of the M/M/n queueing system with finite waiting room and



one class of customers a(Si)=0 if the waiting room is not full in

state Si and a(Si)=l if the waiting room is full in state Si'

For convenience we will assume in the remainder of the paper that depar-
tures are always associated with state transitions. However, all of the
results of this paper can be shown to apply in this more general case.
We note in passing that departures of the type just described corres-

ponding to Jackson's "service deletion" [3] in queueing networks.

2.1 Queueing Models with the M=>M Property

2.1.1 Reich [8] has shown that any reversible queuing system with a Poisson
arrival process has a Poisson departure process. For a reversible system
Ty — ! '
Q(_Si->Si) _R(Si+si) Vsi,sicsz
Our condition for a Poisson departure process is

Vsi E Q(stﬂr) = Ar .

S+ £B.(5y)

For a reversible system this is equivalent to

‘Vsi : : R(Si_}siﬂ:) - lr

Si+rCB+r (Si)

This condition is satisfied since the left-hand side is just the sum of
the transition rates from Si to a state with one more class r customer.

This is clearly equal to the mean arrival rate of class r customers.



2.1.2

It follows that the MM property is at least as general as the revers-
ibility requirement. The following three examples are non-reversable
systems which satisfy the MM condition and therefore show that the
M>»M condition is a less restrictive sufficient condition for the

departure process to be Poisson.

The M/G/«= queueing model with different classes of customers has the
M=>M property. The arrival process for each class of customer is
Poisson and the mean arrival rate for class r customers is denoted by
kr. Let R be the number of different classes of customers. Classes
of customers are assumed to be labeled by the integers 1 through R.

The service time distribution for class r customers will be represented

using the method of stages [9] as illustrated in Figure 1,

The states of this model are given by the number n_ o of class r
customers in stage k of service for 1<r<R, l:kgpr. We use the

Is

notation S={n
rk

The equilibrium state probabilities for this model are

m

R Ar R r ArArk rk 1
Feing) e (-7 F)nm | E L
r=1 'r /r=1 k=1 rk rk °

where

1 ,
— 1is the mean service time of class r customers
u
r
k

A, =1 a
rk 4=1 2k



><“_;<;}—— = By —"-—)Qii
b

@_\

T \‘J o y
where AL is the mean service time in stage 1,
Hir
a, . is the probability that a customer proceeds to the next

stage when stage 1 1is completed,

bir is the probability that a customer departs when stage 1

is completed (bir =1 - air)'

m is the number of stages for class r customers.

Figure 1.
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It is a tedious but routine task to check that the above solution

satisfies the balance equations for the model and also the M3>M condition.

It is easy to see that an M/G/= system 1is not in general reversible.

A necessary condition for a process to be reversible is that for any

two states Si and Si if R(Si+S£)#O then R(S£481)¢0. In an M}Ezfm
system (a special case) there is a non-zero transition rate from the
state with one customer in his second stage of service to the idle state
while the transition rate from the idle state to the state with one

customer in his second stage of service is clearly zero. Thus the system

1s non-reversible.

The M/G/1 queueing model with LCFS-preemptive scheduling has the M3 M
property. We will use the same notation for arrival rates, service time

distribution parameters, etc. as for example 2,

The states of such a system are gilven by an ordered list of the customers
in the queue in LCFS order and the stage of service they have achieved.
We will use the notation S=((rl,kl)(rz,kz)...,(rn,kn)) where (ri,ki)
indicates that the ith customer in LCFS order is a class r, customer
and is in stage ki of service. Actually, the equilibrium probabilities
for two states which are identical except for a permutation of the LCFS

ordering are identical. Let n be the number of customer of class

rk

r which are in the kth stage of service.



o 5

4

1

= ((rl ’kl) ] (rz :kz) s ey (rn skn)))

o
©m
|

Again it is a routine task to check that these solutions satisfy the

balance equations for the model and that the model has the

This example and the next are models which have not previously been shown

to have Poisson departure processes. A proof that the M/G/~» system

has a Poisson departure process can be found in [10].

The last example is the M/G/1 queueing model with the processor-sharing

scheduling discipline. With the processor-sharing discipline each

customer in the system shares equally the service capacity of the

server. Thus if there are n customers in the system at a given time

then each is served at the rate of seconds of work/second. This

service discipline is an approximation to the round-robin service disci-
pline which is common in computer system scheduling.

As in the case of the M/G/» model the state of the system is given
by the number of customers in each class in each stage of service,
}o

i.e., S={n The equilibrium state probabilities are given by

rk

M=> M property.
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R A R "r /a4 \'rk 5
P(S=1{_hH=(1-V ==hl @ @ =
r=1 "r/ =1 k=1 \ "k rk’
where n is thentotal number of customers in the system in state
R r
S, 1.e., n="" E: 0
r=1 k=1 *

This solution can be validated from the balance equations for the model

and the model can be shown to have the MM property.

2.1.5 State Dependent Service Rates

In this section, we consider various types of state dependent service

rates.

Consider a queueing model with the M2M property and state transition
rates denoted by {R(Si+8£)]. Now, consider a new model which is the
same as the original model except that the state transition rates which
do not correspond to arrivals are state dependent. The arrival rates

are not state dependent. We denote the new state transition rates by

{R'(Si+8£)}.

We consider two types of state dependency.

(a) R'(Si+5£) = R(S;+S]) X (Isil)
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where the transition Si—>Sj'_. does not correspond to an arrival and
X (]Si|) is an arbitrary but strictly positive function of the number
of customers in the system in state Si'

(b) R"(S;>S)) = R(S;78)) X_ (lsilr)

where the transition Si+5i does not correspond to an arrival and

Xr (|Si|r) is an arbitrary function of the number of class r customers
in the system in state Si' Here we assume that any change of state (not
by an arrival) can be associated with a customer either leaving the
system or moving to the next stage of service. r is the class of the

customer associated with the transition Si+S£.

For the type of state dependent service rates described in (a) it can be
shown that if the equilibrium state probabilities [P‘(Si)} exist for

the new model, they are given by

; I
PIy) = ¢C 5,11
I x@3)
31

where C' 1is a normalization constant.

Moreover, the new model has the M=M property.

For the type of state dependent service rates described in (b) it can be
shown that the equilibrium state probabilities [P"(Si)] exist for the

new model, they are given by
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P(Si)
BBy = g 5, [_-1
0 1 Xr(j)
r=1 j=1

where C" is a normalization constant.

Moreover the new model has the M=3M property.

3. NETWORKS OF SERVICE CENTERS WITH THE M M PROPERTY

3.1 Introduction

The network models treated in this paper contain an arbitrary but
finite number of service centers. A service center is described by the
usual characteristics of a queueing model, i.e., number of servers,
queueing discipline, etc. There is an arbitrary but finite number of
different classes of customers. Customers travel through the network
according to transition probabilities. We permit customers to change
their class membership. Thus a customer of class r which completes
service at service center i will next require service at service
center j and enter class g with probability pi,r;j,s' Customers
in different classes may have different service time distributions at

the various service centers.

Two types of queueing networks are generally distinguished: (1) closed



3.2
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networks in which customers neither enter or leave the network and (2)
open networks in which there are external arrivals to the network and

departures from the network. For closed networks

Vi,r . . =1

while for open networks 1 - E:
.8

class r customer leaves the network after completing service at

pi,r;j,s is the probability that a

service center 1.

We assume that service time distributions are represented using the
method of stages so that the state space of the model is discrete. Any
service time distribution with a rational Laplace Transform has a stages

representation (Cox [9]).

Mean Arrival Rates in Closed Networks

Let Air denote the mean arrival rate of class r customers to service

1.

center 1 in a queueing network with transition matrix P=[pi &
3

33,8
The {Air} must satisfy the following simultaneous linear equations:
Aol = 2 Al Py . Vi,r
1F j& *§aute
J,s
The kir are not uniquely determined by these equations. The transition

matrix P=[pi # ] may be thought of as defining a Markov chain
3

iJs



3.3
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consisting of several ergodic subchains in general. The states of the
Markov chain are the pairs (1,r). The Air corresponding to a given
ergodic subchain are determined within a multiplicative constant. Thus
these equations define the relative mean arrival rates for the service

centers of the network. This will be enough. The multiplicative con-

stants are assumed to be chosen so that no service center is saturated.

Mean Arrival Rates in Open Networks

3.4

An open network has arrivals to the network and departures from the
network. The exogenous arrival process of class r customers to service
center i is assumed to be a homogeneous Poisson process with mean
rate Nyt The total mean arrival rate of class r customers to service

center i is denoted by kir' The '{Air} are the solution to the

following simultaneous linear equations.

X =

- Y
& Nir jE; 1js pj,s;i,r 4,7
L]

These equations will be assumed to have a unique solution.

Product Solutions for Networks of Queues

The following theorem is the main result of Section 3.

Theorem: Let N be a network of queues model as defined earlier where
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there are R classes of customers and N service centers. Let Air
be the mean arrival rate of class r customers to service center 1
(for closed networks the multiplicative constants are arbitrary except
that no service station should be saturated). Let '{Pi(Si)} be the
equilibrium state probabilities for service center i when the arrival
process for class r customers is Poisson with mean rate lir’ 1<r<R.
(a) If N is a closed network then the equilibrium state probabilities
for the network are given by
P(S=Si,32,...,SN) = C‘Pl(sl) PZ(SZ)"'PN(SN)
where C 1s a normalizing constant chosen so that the net-
work state probabilities sum to one.
(b) If N is an open network then the equilibrium state probabilities

for the network are given by

P(S=Si’s2""’SN) = Pl(sl) P2(52)...PN(5N)

Proof: Only the proof of part (a) is given since the proof of part

(b) follows along the same lines.

The first part of the proof shows that the equilibrium state proba-
bilities of service center with the M&M property satisfy a
simplified balance equation. This result is used in the second part
of the proof which is to show that the proposed solution satisfies

the balance equations for the network.
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Balance Equations for a Service Center with the M2 M Property

Given that a service center has the MM property the balance equations
can be shown to reduce to a simplified form. Since we are making no
assumptions about the service center other than the M3 M property it
will be necessary to introduce some general notation in order to express
the balance equations. For the readers convenience we repeat the defin-

ition of B+r(Si)'

Let Sﬁfzi.
i g

= = |
By (5y) = {Si+r/5i+f:xﬁ;’ fS:H-r[r - 'Si’r Ty R(Si+r+si) > 0}

i.e., the set of nearest neighbor states of Si which contain

one more class r customer and such that the transition rate

into Si is nonzero.

B__(5,) = {si_r/si_gzgi, E

i i—r[

= s,

r ilr 7 L, R(Si-):_"si) * Ny

ir

i.e., the set of nearest neighbor states of § with one less

i

class r customer and such that an arrival of a class r customer
causes a transition into Si'

Bo(Sy) = 5, o/5, £, Vel ol = 1841, RGS,_578,) # 0

i.e., the set of nearest neighbor states of 5 with the same

i

number of each class of customer and there is a non-zero transition

rate into Si' Thus these are the states from which it is possible
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to move into Si (with one transition) without an arrival or

departure,

A—r(si) = {Si—rlsi- €;Eé) [Si—rl

r = [si[r -1, R(5,»5; ) # 0}

T i

i.e., the set of nearest neighbor states of Si which can be

reached from Si in one transition by a departure of a class r

customer.

/s 6‘{1’ Vrlsiole = 1840, RGSS,0) # 0

Ay(s;) = {s 1+0

i+0
i.e., the set of nearest neighbor states of Si with the same
number of each class of customer and which can be reached from
Si in one transition.

Now we can express the balance equation for the ith service center

with poisson arrivals.

E P(S,) R(SS,, ) + E E P(S;) R(S,>8!

Si+6£AO(Si) t Si—;EA—r(Si)

+ E ;"ir RSy = Z : z : P(Sy ) Mgy
T 5, €B__(5,)

r

® E : § : P(Syy,) R(S;, 28y)

r 5y EB..(5y)

% E P(S, o) R(S, ¢S,
84-0-P0 4/

The three terms on the left hand side of the the balance equation

)
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correspond respectively to flow out of Si due to (1) change of state
without an arrival or departure (2) change of state due to a departure
and (3) change of state due to an arrival. Similarly the three terms on
the right hand side of the balance equation correspond respectively

to (1) transition into § due to an arrival (2) transition into S

i i

due to a change of state without an arrival or departure. However,

from the M=2>M property we have

z : QS840 = L

RSB (B
P(Si+r) R(Si+'r'+s:f.) _
or z : B(S,) T Mr
Si+r€B+r(Si)
o P8y 4p) RIS 8,) = 24, B(S,)
S3‘_+1:€B-!-r(si)
o E : z : P(SJL+r) R(Si+r+si) = E :lir P(Si)
r Si+r€B+r(Si) £

Thus these terms always cancel in the balance equations so that each

P(Si) satisfies the following equation.

E P(S,) R(S;78 . ) + E : :): P(S,) R(S;*S] )

Si+C§A0 (Si) T Si—reA—r (Si)

= E E P(Si-r) )Li_r -+ E P(S:L-O) R(Si_0+Si)
k si—reB—r(Si) Si—OeBO(Si)
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Verifying the Solution P(S) = _g_ ) P (52)...P”(S”)

In writing the general form of a balance equation for a network we shall
use the previously defined notation, i.e., B—r(si)’B+r(Si)’ etc., with
the understanding that the terms corresponding to states which are not

possible in the network are to be deleted.

The general form of a balance equation in the network is given by
N

)

P(S=Sl,S 140

1=1 (5540 A6y

2,-.0,SN) R(siﬂ

S ) R(S.,»S8' )

+ E P(S=Sl,52,..., -

- S:;.-rEA—-r (Si)

Z E Z ZN:Z Z | B(S=Sy,0eesS y nnnes

r S, £B (S,)] i=lq Sj_'_q(B_l_q(S)

8. e aeei) g, A8 P
i-r N) (J+q j) Jsqsi,r

+ P(S=S S) R(S

S1-0kBo ¢

120084 greeraSy 1-075¢)

The left hand side of this equation is the sum of flow out terms for
each service center. There are two terms for each service center. The

first corresponds to flow out due to a change in state of a service
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center without a departure. The second term corresponds to flow out
due to a departure from the service center. The right hand side of
the equation is the sum of flow fn terms for each service center. The
first term accounts for all possible ways of moving into the state

. ; ) . th
by a customer departing from some service center and joining the 1
service center. The second term corresponds to transitions into the
state by changes in state of a service center without departures. We

now show that the proposed solution satisfies these equations.

Consider the expression

E P(S=Sl,...,Sj+q,---,5i_rs'--sSN) R(Sj+q‘>sj)

S., €B, (s,
s Paq 55

which appears in the right hand side of the balance equation. Substituting

the proposed solution this can be written

C Pl(sl)'"Pj-l(sj—l)Pj+l(Sj+l)"'Pi(si—r)"'PN(SN) E

S jad-Baq(8y)
Pj(Sj+q) R(sj+q+sj)
But from the M2 M property
F1Bpag) RG 5 28y) = 25
BN
Thus
P(S=Sl"'"Sj+q""'si—r""’s ) R(sj+q+sj)
g Baq 552

=C Pl(Sl)...Pj(Sj)...Pi(Si_r)...PN(SN) Maq
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ZZ z P(S=Sl""’Sj+q""’si—r"°"SN) R(S ;4 85) R

b q Sj+q€B+q(Sj)

]

N € B DB B Ve B YensBy (B Mq Pygsir
i g

=C ]91(51)...?j (Sj)'”Pi(Si—r)"'PN(SN) zj:z_:;\jq Py it

n

SR JLCIIRPE MCIORRS SLCHED I M C I W

Thus the balance equation for the network becomes

N
E P(8=Sy,...550) R(S;78, 0) + Z ' z
ToSiak

£ : (s,)
i=1 si+OCAO(si)

-r 1

P(S=S SN) R(S,»S! )

l,o.-' i ]'_'-]‘_'

N

=EZ Z P(S=51,00038,_seeesSy) Ay

=10 r s, _(B__(5)

+ P(stl’.-.’si‘“o’.'.’sN) R(Si_0+si)
S;_g-Bo(8y)

Both sides of this equation involve a sum over the service centers. We

now show that these sums match term for term. Thus for fixed 1i:

— Ay T
P(S=5),5,,..+,5) R(S,45,, ) + E ' E P(S=S],..,S ) R(S,>S" )
gk (. TS5 kA (5y)
14054051
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= g : P(_stl’oaa,si_r,o-o’sN) /lir

L
i P(5=sl,..,si_0,...,SN) R(Si_dasi)

But substituting P(S=Sl""’SN)=C Pl(Sl)...PN(SN) and dividing by

€ Pl(sl)'"Pihl(si—l)Pi+l(Si+l>' 'PN(SN) this equation becomes:

y L) B ZS. Z: (5.3 P R(ss) )
TP A 5y

™ -~
T x TORTHIND DR
1 5

r'f'\
J’

i-r PLE
Si—r B-rcsi) i 0 O(S )

But this is the equation we showed that the Pi(si) satisfy if the ith

service station has the M$M property. Therefore we know this equation
1s satisfied which is the final step in showing that the network

balance equation is satisfied by the proposed solution.

Q.E.D.
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3.5 Network Hierarchies

We can generalize the definition of the M2 M property. We assume that
the queueing model has certain input classes of customers and certain
output classes of customers. We say that the queueing model has the
M= M property if the departure process for each output class of customer
is Polsson when the arrival process for each input class of customer is
Poisson. In an open network of queues model in which each service center
has the M=% M property it is easy to show that the entire network has
the M9 M property. In the network model, input and output classes of
customers are now identified by pairs (i,r) where 1 identifies a
service center and r a customer class. Considering a subnetwork as a
service center, it is clear that we can treat a network of subnetworks.
Service rates within a subnetwork may depend in various ways on the
"state" of the subnetwork. We can also model service deletions for sub-
networks. Thus, the number of customers in a subnetwork can be limited
to some maximum. If a new arrival to this subnetwork would cause this
maximum to be exceded then the customer procedes instantaneously to the

next subnetwork as though it had just completed service in the subnetwork.
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CONCLUSION

A sufficient condition for the departure process of a queueing system to,
be Poisson has been given along with examples of queueing systems which
were not previously known to have this property. It was shown that a
network of queueing systems which have Poisson departures when the

arrival processes are Poisson has a product form solution. While both

of these results are only sufficiency conditions, they appear to be
very general. In particular, the author is not aware of any general
results for networks of queues models which do not satisfy the M /M

property. The necessity of this condition is an open question.
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