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ABSTRACT: This paper is devoted to formulating the concept of a
symmetric bimatrix game and to developing results analogous to those
for symmetric matrix games, We show that, given any bimatrix game
or two-person non-zero-sum game, there exist two equivalent sym-
metric games, with the property that symmetric equilibrium strategies
for the symmetrized games yield equilibrium strategies for the original
game. An adaptation of Nash's proof of the existence of equilibrium
strategies for any bimatrix game is used to show that any symmetric
bimatrix game with entries which are real numbers does admit of a
symmetric equilibrium point. Finally, the question of whether this
result on the existence of symmetric strategies holds if the matrices
and strategy vectors are in an arbitrary ordered field is answered in
the affirmative through the use of a metamathematical argument. The
argument is sufficiently general to encompass many other results in
game theory.
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INTRODUCTION

The first part of this paper is devoted to formulating the
concept of a symmetric bimatrix game, and to developing results
analogous to those for symmetric matrix games. It is rather sur-
prising that, although symmetric matrix games have been extensively
examined [see, for example, 1], there seems to have been almost no
formal attention paid to the bimatrix case.

Briefly, a symmetric bimatrix game is a game in which the
two payoff matrices are square, and each is the transpose of the
other. For any bimatrix game, we give two methods of ''symmetriz-
ing the game'', with the property that any symmetric equilibrium
point for either of the symmetrized games yields an equilibrium point
for the original game. Further, by an easy adaptation of Nash's
proof of the existence of equilibrium strategies for general bimatrix
games [2], we show that any symmetric bimatrix game with entries
which are real numbers admits symmetric equilibrium strategies.
This result is stated in the form of a simple property about any
square matrix.

Finally, in Section 3, we reach the second principal point of
interest of the paper. We raise the question of whether our theorem
on the existence of symmetric strategies holds if the matrices and
strategy vectors are required to be in an arbitrary ordered field.

Traditionally, such questions have always arisen for the basic



theorems on linear inequalities and games, whenever the concept of
continuity has been invoked to provide proofs even though it plays no
role in the statements of these theorems, and, in each instance,
""rational proofs'" have been found subsequently, which prove the
validity of the results in the context of arbitrary ordered fields.

The present instance is no exception, for recently J. Howson
and C. E. Lemke have developed an ingenious algorithm for finding
symmetric equilibrium points of symmetric games, valid over any
ordered field, and thus proving their existence as a by-product.

But there is a metamathematical route that can also be
followed to establish existence, which we describe in Section 3, and
which is applicable to many situations of the kind we consider here.
We essentially show that proving the theorem in the real case is

sufficient to establish it generally.

SYMMETRIZING A BIMATRIX GAME

A bimatrix game is defined by two real p by q payoff
matrices, A = (aij) and B = (bij): if player 1 chooses i€ {1,...,p}
and player 2 chooses j e {1,...,q}, then 1 receives aij and 2
receives bi,. We shall denote mixed strategies for 1 and 2 by u
and v, probability vectors of dimension p and q, respectively. An

equilibrium point for this bimatrix game is a pair of mixed strategies

(E,;) such that there exist real numbers A\ and p, with
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A symmetric bimatrix game is one in which the payoff
matrices A and B are square, and B = AT. We shall use the
letter C to denote the payoff matrix for the first player in a sym-
metric bimatrix game. A symmetric equilibrium point for a sym-
metric bimatrix game is an equilibrium point in which the mixed
strategies for the two players are the same. Letting x denote
the symmetric equilibrium strategy; v, the common value at this
equilibrium point to both players; and n, the order of C;
conditions (1.1)-(1.4) reduce to

n -
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with
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An alternate way of stating (1. 6) is
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The first method of symmetrizing an arbitrary bimatrix
game is related to that given by Gale, Kuhn, and Tucker in [1] for
symmetrizing matrix games. It requires that each of the entries in
A and B be positive. We may arrange this simply by adding a
suitable positive constant to all matrix entries. This has the effect
of increasing A and p by the same amount, but does not change u
and v. We shall assume this has been done, so that we have
X, p >0,

Given the matrices A and B, we form the payoff matrices

T .
C and C° of a symmetric bimatrix game:

BleF)] 8 o e G = [ —m

C 1is a square matrix of order n =p + q.

We then have the following correspondence between the
equilibrium points of the original game and the symmetric equilibrium

points of the derived symmetric game:



1.1 If E,;, A, satisfy (1.1)-(1.4) for the original bimatrix
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satisfy conditions (1.5) and (1.6), for the symmetrized game {1s 1%

1.2 If x, v satisfy (1.5) and (1.6) for the symmetrized

game (1.7), then

- e 5
= - 2 . i = ’---1:-
u, %/ %, 1=1 p

P _
vl =v2xi
i=1

satisfy conditions (1.1)-(1.4) for the original bimatrix game.

The proof of the first assertion obtains via straightforward sub-

stitutions. In the second assertion, the positivity of A and B ensure

P— g =
that T x. and Z X, are both positive. The remainder of the

i=1 j=1



proof then follows directly.

The second method of symmetrization is analogous to that
proposed by von Neumann for matrix games [1]. Given payoff
matrices A and B, we form a square matrix C of order pq as
follows:

+ b
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(The interpretation of this symmetrization remains that given in [1],
viz., that of holding two plays of the original game simultaneously,
with the two players assuming opposite roles in each play.)

1.8 If -1;, ;, N\, p satisfy (1.1)-(l.4) for the original game,

then

and
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satisfy conditions (1.5) and (1. 6), for the symmetrized gamea (1. 8).
1.4 If x, v satisfy (1.5) and (1. 6) for the symmetrized

game (1.8), then
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satisfy conditions (1.1)-(1.4) for the original game.

Again the method of proof involves some straightforward
substitutions.

Using either of the results 1.2 or 1.4, we have thus reduced
the question of the existence of an equilibrium point for an arbitrary
bimatrix game to the question of the existence of a symmetric
equilibrium point for a symmetric bimatrix game.

EXISTENCE OF A SYMMETRIC EQUILIBRIUM POINT FOR A
SYMMETRIC BIMATRIX GAME

We shall now show that any symmetric bimatrix game has a

symmetric equilibrium point.

Theorem 2.1:Let C denote a (square) payoff matrix for

player 1 and CT denote the payoff matrix for player 2 in a sym-

metric bimatrix game. Then there exists a probability vector x

and a real number v satisfying

n
P C; < v 1:130 y Iy
(1.5) - ii5y =
j=1
and
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Proof: Given C anda probability vector x, we define
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Let A 1 = the (n-1)-dimensional simplex consisting of all n-
n_

dimensional probability vectors. Consider the continuous mapping,

f: &n-l S An-l’ defined by

e e o G = by 5Tk

We use the following:

Lemma: If x is a fixed point under £, then x satisfies

(1.5) and (1.6), with

Proof: Let x be a fixed point under {f. Since

n_ I _

Z x (e, %)
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i=1 j=1 Y

I
c. = T c.. x. for which §i> 0,

we must have



n
T x. (Z c..x.)> X c. x. for some i with x, > 0,
_ 2 i

Hence, c. = 0 for this i. But since x, is not changed under the
i

n
mapping by f, c. = O,i.e.,ci= 0 for all i. But this means
i=1
n - n n
Ze,x < Z %2 (Z e,x, )= v for i=1, o

i.e., (1.5) and (1. 6) are satisfied.

We complete the argument by invoking the Brouwer Fixed
Point Theorem, which requires that the mapping f have at least one
fixed point, thus ensuring the existence of at least one symmetric

equilibrium point for the given bimatrix game.

A METAMATHEMATICAL PRINCIPLE
We shall now show that the theorem of Section 2 and, by the same,
argument, Nash's theorem and other results of Game Theory, such
as the Minimax Theorem, by virtue of their syntactical (external)
form alone, are equally valid in all ordered fields. In part, it turns
out to be natural to show that all these theorems remain true within
an even more general framework, which will be described presently
in more detail. Roughly speaking, we shall show that the theorems
in question hold (with the appropriate verbal modifications) for all

ordered abelian groups with ordered fields as operator rings.
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Let F be an ordered field, and let A be an ordered
abelian group with respect to the operation of addition, +, which
includes more than one element, and which possesses the following
additional properties.

31 A admits F as an operator ring. That is to say,
there exists a mapping (binary operation) from F X A into A,
written as N a=b, N\ ¢ F, a,b ¢ A, such that for all \,up e F,a,be A,
Mpa) = (Me)a; (Mp)a = ha + pa; Matb)=Xa+ Xb; 1-a =a (where 1
is the unit element of F); and, finally, if A > 0 and a > 0 then
»a> 0.

We may suppose, for convenience, that FF and A are
disjoint, although A may be order-isomorphic to the additive group

of F. The system made up of the field F and the group A will

be denoted by (F;A).
We are going to construct a formal language, L, whose
sentences, with a natural interpretation, refer to a system (F;A)

as described. L contains the following atomic symbols, (with some

comments added immediately for ease of understanding).
Individual constants 'of the first kind', «, ﬁi, Ya- -+ (8mall
Greek letters near the beginning of the alphabet, with or without

subscripts) in one-to-one correspondence with the elements of

the field F;
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individual constants ''of the second kind', a,b,c,... to
denote elements of the group A;

variables "of the first kind", x, P, §,... relating to F,
and variables "of the second kind", x,vy,2,... relating to A;

the relations E (x,y) (for x=y), S (x,y, 2z) (for xty=2z),
Q (x,y) (for x<y), all relating to elements of A, and R (x,V, 2)
(for xy=z) which will appear in the well-formed formulae only
if the symbol in the first place is related to F and the symbols
in the other two places are related to A;

the usual connectives, ~, A , v, 3, =, and brackets, [, ]
and quantifiers, (¢ ) and (@ ). Only variables of the second

kind, x,y,2,... will appear within the quantifiers.

Atomic formulae in L. are obtained from the relations

E, S, or Q by filling their places with variables or constants of the
second kind, and from R by filling the first place with a variable or
constant of the first kind and the remaining places with variables or

constants of the second kind,

Well-formed formulae (wiff) are obtained from the atomic

formulae by the use of connectives, in the usual way, and by quanti-

fication with respect to variables of the second kind. A sentence is

2 wff in which all variables of the second kind (if any) are quantified.
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For example, the following are sentences:

3.2 Wu) ¥v) ¥w) vx) ¥y) ¥z) [R (¢, u,v) AR (a, w,x) AS (u, w,y)

AS (¥,%,2) DR la,y.z) |

3.3 w) x) ¥y) z) [R (e, w,x) aR (B, w,y) DR (y, W, z) ]

A sentence X of L is interpreted in the usual way with
respect to a particular system (F;A), given a one-to-one correspon-
dence between the individual constants of the first kind which occur
in X and some of the elements of F and between the individual
constants of the second kind in X and some of the elements of A.
If ¢ corresponds to (''denotes'’) any element of F, then 3.2 holds
in (F;A), while 3.3 holds in that system provided vy denotes the sum
of the two elements of F which are denoted by ¢ and . Indeed,

the totality of these sentences then expresses the distributivity of

the operation X\ a=b with respect to the elements of A on one hand
and with respect to the elements of F on the other hand. Putting it

in a different way, 3.2 and 3.3 are axiom schemes which express

the distributive properties of R.

Notice that we have admitted as sentences well-formed
formulae which are unquantified with respect to the variables of the
first kind which occur in them. Such sentences will be regarded in

the interpretation as open sentences, i.e., they will be interpreted




as if they were quantified universally with respect to their variables
of the first kind. Thus, if we replace a« in 3.2 by the variable ¢,
then we obtain a single axiom which is equivalent to the axiom scheme
3.2. The language L has no facilities which would enable us to apply
a similar procedure to 3. 3.

Now suppose in particular that (F;A) = (FO;AO) where F0
is the ordered field of real numbers and AO is a copy of the ad-
ditive group of real numbers, with a ¢ FO mapped on a ¢ Ao. For
any X\ ¢ Fo’ the result of the operation X\ a is defined in the natural
way, i.e., as the image in AO of the product X a in Fb' Then the
principal result of this section is as follows:

3.4 Theorem. Let X be a sentence in L which does not
contain any individual constants and which holds in (FO;A.O]. Then
X holds also in any other ordered abelian group with an ordered
field as ring of operators, (F;A).

It is not difficult to prove 3.4 for the case that F is real-
closed and A is obtained from F just like AO was obtained from
FO. That is to say, A is a copy of the additive group of F and if
ae¢ A is the image of an element a of F, then we define that X a
is, for any \ ¢ F, the image of A ¢ in A, In this case, suppose
that X satisfies the assumptions of 3.4. We introduce an expres-

sion X' which is obtained from X by replacing the letter R
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everywhere by the letter P (to be interpreted as multiplication,

P (x, 0,) means x § = ¢) and by substituting variables of the

second kind everywhere by variables of the first kind, without
clashing with the variables which are already present in X. X' may
be regarded as a sentence of the ordinary lower predicate calculus.
In view of the definition of X a in (F;A), it will be seen

that X holds in (F;A) if and only if X' holds in F and

so, in particular, X holds in (FD;AD) if and only if X' holds in
Fo' Now, by Tarski's theorem on the completeness of the elementary
theory of real-closed fields [3], X' holds either in both Fo and F
or in neither one of these fields. But X holds in (FD;AO) by
assumption and so X' holds in Fo’ and hence in F, and finally,

X in turn holds in (F;A).

In order to prove 3.4 for the general case, we shall make
use of a different method of reduction. Given (F;A), we introduce
a structure A% as follows:

A% coincides with A as an ordered abelian group. More-
over, for every \ ¢ F there is a one-place operation (function)
f}\(x) which is defined on A and takes values in A such that
f)\(a) = b if and only if Aa=b in (F;A).

To describe A% we use a language L* of the lower

predicate calculus with individual constants a,b,c,... individual
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variables x,y,Zz,..., relations E (x,v), Q(x,v), S (x,y,2), for
equality, order, and addition, as before and two-place relations
D} (x,y) where the subscript A varies over the elements of F.

In the interpretation, D, (a,b) shall hold in A%* if and only if

X
f (a) = b, i.e. if and only if Xa=b in (F;A). In addition, Li* shall

A
include the same connectives, quantifiers and brackets as before.
From the atomic symbols we obtain wif, in particular sentences
(this time, without free variables) in the usual way. A sentence X
of L%* can be interpreted in A% provided the individual constants
of X, if any, denote (correspond to, or are identified with) certain
elements of A%,

Among the sentences of L%* which hold in A% we may find
the following, all formulated in terms of the relations E, S, P, D)\’
and in terms of the individual constant O.

3.5 A set of sentences which states that E (x,y) is a
relation of equivalence with substitutivity, e.g. for all k¢ F,

%) ¥y) (v2) () [D, (x,y) AE (x,2) AE (y,w) O D, (2, %) J

3. 6 a set of sentences which state that the structure
described is an ordered abelian group containing at least two dif-
ferent elements;

T the following sentences which express properties of

D}\(x,y) for every N e F,
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¥x) @y) ¥z) [D,(x,y) A[D, (x,2) D E (y, 2)] ]
¥x) (¥) [D, (x,7) 4Q (0,%) 2 Q(0,y) ]
%) D, (x, x);
for any three elements A,u,v ¢ F suchthat Ap = v,
¥x) ¥y) (v2) [D, (x.v) ADP'(YI 2) 2D (x,2) ];
for any M e F,
(vu) (vv) (vw) (vx) (v y) (vz) [D, (u,v) A D, (w, %) 4
S (u,w,y) aS (v, x,2) D D)L('y', z) ];
for any AN,p,v e F such that A +p = v,
vV w) (vx) (Vy) (Vz) [D, (W, x) 4 DH(WaY) a5 (x,y,2) 2D (w, z)].
For a given ordered field F, let KF be the set of sentences
detailed in 3.5, 3 6, 3.7. We are going to prove

3.8 Theorem. KF is model-complete.

Proof of 3. 8. We shall apply the model-completeness test of [3].

For given F, let M = A% be a model of KF and let

X= (Hxl) ...(Hxn) Q(xl,...,xn]
be a primitive sentence (an existential sentence whose quantifiers
are followed by a conjunction of atomic formulae and/or of the
negations of such formulae) which is derived in M. Suppose that X
holds in some extension M' of M which is a model of KF then we

have to show that X holds also in M. In ordinary language, let X
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be a finite system of equations and inequalities and of negations of
equations or inequalities, i.e. X consists of conditions of the form
3.9 r = s, r#s, r <s, r>s
r+s=t r+s#t Ar=s Ar#s
where h¢ F and r,s,t stand either for definite elements of M or

for the '"unknowns' x X . Suppose that Z possesses a

17"

solution xi = ai in M'. Then we have to show that Z 1is solvable

already in M.

We may simplify = by deleting all expressions of the form
r + s # t and by introducing instead, in each case, a new unknown
X, and the conditions r+ s = x, and x, # t. Similarly, we may
replace Ar # s by \r = X, and xi¢ s. Finally, if r # s in M'
then either r<s or r >s holds in M' and if r > s then either
r>s or r=s., We may then select the alternative which actually
holds in M', for X, = ai and replace r # s, or r > s, by it, If the
modified system, Z', can be shown to hold in M, so does the original
>. Thus, we may suppose from now on that Z' contains only ex-
pressions of the form

3.10 r = 8, r< s, r+s=t Ar=s

Now suppose that M does not contain any elements which

x. be the unknowns which appear in Z',

satisfy Z, and let Xpveoes X

k > n, and which are satisfied by a set x, = a, in M'. Let M%* =
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M(a,,...,a ) be the model of KF which is generated by the ad-

k

junction of a a to M, M¥CM' M* consists of all elements

1777k

of M' which can be written in the form,

m+}\13. +

N - i 1 = .
| K3k with m ¢ M, ?\ig F,i=s1l, y k

Then the quotient group M#*/M is of linear rank j <k or, as we
shall say, M#* is of linear rank j modulo M. Since M#¥* contains
A5 54 ,ak, Z' is solvable in M%*, By rearranging the a, if

i

necessary we may assume that By s emien Bz BTE linearly independent
1

dulo M (i.e. in M*/M hil i ey d d g ¥ @ bk
modulo (1. & 46 /M) while a4 a, depend on a, a,
modulo M. Put

M :M: M, =M, (a.): izl,---;j:

o i 1170
so that M, consists of all elements m + A a. with m ¢ M, 1’ e F,

1 1 L=
Since X' possesses a solution in Mj = M* but not in Mo =M

there exists a smallest integer £, lf_lgj such that Z' possesses

a solution in MR. but not in Mﬁ L Let x, = bi’ i=1l,...,k be such

a solution. Then there exist uniquely determined m, ¢ M£ 1,}\_ e F
- 1

such that

f
.
3

3011 b.=m.+ X a, , 1=
i i R
Put

1,...,k

3.12 X

.=m. + . x , 1
i i i

where x is a new variable. If we substitute the right-hand sides of
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3.11 for the X, in the equations of the form r =s, r+ s =1, and
» r = s which appear in I' then we must get identities in x since
otherwise a[ would depend linearly on Mf.'l and hence, belong to
it. Thus if we make the same substitutions in the inequalities r <s
which belong to X' then any value x =c¢ which satisfy the resulting
conditions will yield values of the X, which satisfy Z'. The con-
ditions in question are of the form

3.13 m+)\x<n+px,m,nEMQ—_1,)\,ng
and we know that they are satisfied in Ml by x = ai. We claim
that these inequalities must then be satisfied already by some x =c
in Ml-l' Indeed, if X\ =p then the inequality under consideration
reduces to m < n, which is satisfied independently of the value of x.
If \ <p then we may replace the inequality by x < (p—k)_l (n-m)
and if p <\ then the inequality is equivalent to x> (e —)\)_l (n-m).

Accordingly, the inequalities of ' are equivalent to a system

e
i

3,14 X<Ci

L, vounP

1l

x> @, i=p+1,...:4

1

where one or the other, or both, of the two sets may be empty. If
the last-mentioned alternative occurs, we may choose for x = c an

arbitrary element of ME, v If neither set is empty, we must have

min c. > max cC,
) 1 . i
i<p i>p+l
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since 3.14 is solvable in M_ and we may then choose

L

x=c=3(min c, + max c.)

i<p i>p+1
which is in M,l E If the first set is empty but not the second, we may
satisfy 3.14in M by
-1
X=c¢c= max ¢, + c¢'
i>p+l

where c' 1s an arbitrary positive element of M Finally, if the

-1

second set is empty but not the first, we put

where c¢' is again any positive element of Mf. E Accordingly, we

may in all cases satisfy 3.14, and hence X', already in M

L1
This contradicts the definition of MQ_ and proves 3. 8,
3.15 Theorem. KF is complete.

Proof of 3.15. According to [3], a set is complete provided

it is model-complete and possesses a prime model. A structure M
0

is a prime model for a set of sentences K if ].\/IO is a model of K
and if every model of K possesses a substructure (partial structure)

which is isomorphic to M . For K = KF, such a structure M is
o o

given by the ordered additive group of F in which the function

fk(a.) = b 1is defined by ordinary multiplication \a = b. Indeed if M

is any model of K_, and a is a positive element of M then the sub-

¥
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group M' of M which consists of all elements \a, with X ¢ F, is
isomorphic to Mo not only with respect to addition and order but
also with respect to the functions fh(x), under the correspondence
A& ra. This proves 3.15.

We are now in a position to complete the proof of the main
theorem, 3.4. Given a system (F;A) and a sentence X which holds
in {FO;AO) as assumed in 3. 4, let F be the real closure of F.
Consider the system (f;.:ﬁ:) where A isa copy of the additive group
of F and the operation \a for \e F, ac A is explained by means
of the multiplication in F, similarly as before. By the part of 3.4
which was proved at the beginning, we know that X holds also in
(E;Z). Let X=0Q (xl j ,Xn) where Xpoeee yX, are the variables
of the first kind which appear in X. Then Q {8 s waos an) holds in

1

(f;K) for any .. ; i e € F. It follows in particular that

1

Q(a ,...,an) holds for any a

1 ,...,ane F and hence, that X

1

holds in (F, }\:). We now ''translate'' the sentence X which was

formulated in L into a sentence X% in L* by replacing the atomic
formulae of the form R (\,x,y) which occur in X by the corres-
ponding D)L(x,y). Let A% be the structure which is obtained from
A by the introduction of the functions f}\(x) for all \ ¢ F, as ex-
plained previously. Then X* holds in A* and hence, by 3.15,

holds also in any other ordered abelian group with F as operator
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ring. In particular, X* holds in A* and so X holds in (F;A).
This proves 3. 4.

We still have to show that the result of Section 2 of the
present paper (and similar results, like Nash's theorem or the
Minimax theorem) can be brought within the scope of 3. 4. It is
indeed not possible to represent the theorem by a single sentence in
L since the order of the matrix involved varies over the positive
integers. Accordingly, we first split the assertion of the theorem
into a sequence of statements for the individual integers n, We
then regard the elements of the matrix as elements of the field F,
and the components of the vectors whose existence is asserted as
elements of the group A. We still have to eliminate the constant 1
which appears as a group element since no such constant is supposed
to occur in the sentence X. This can be done by observing that the
theorem remains true if we replace 1 by any other positive

element (of the group). For given n, the statement of the theorem

then takes the following form:

3,16 "For any E)J in E; f:d=Y: « a0, and for any
i
positive y in A there exist Xppeoe s X in A such that
k. =05 &= 1ensany and x1+... +xn=y and if xj>0, lej<a
s
> + a2 + X
then ﬁjl X1+ E}JZ XZ+ + 0 x 204 % mk}.’. X, ﬂk.n »



23,

It is now not difficult to express 3.16 as a sentence of the
language L. Similar remarks apply to other results of game theory
such as the Minimax theorem and Nash's theorem.

The argument may be shortened if we restrict ourselves to
the assumption that the coefficients of the matrices and vectors in
question belong to the same ordered field. In this case, some of the
metamathematical reasoning may be replaced by algebraic consider-
ations which show that there exists a solution whose coordinates

depend rationally on the coefficients of the matrix,
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