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Abstract

Existing algorithms for global snapshots in distributed systems are not scalable when the underlying

topology is complete. In a network with N processors, these algorithms require O(N) space and O(N)

messages per processor. As a result, these algorithms are not efficient in large systems when the logical

topology of the communicaion layer such as MPI is complete. In this paper, we propose three algorithms

for global snapshot: a grid-based, a tree-based and a centralized algorithm. The grid-based algorithm uses

O(N) space but only O(
√

N) messages per processor. The tree-based algorithm requires only O(1) space and

O(log N log w) messages per processor where w is the average number of messages in transit per processor.

The centralized algorithm requires only O(1) space and O(log w) messages per processor. We also show a

matching lower bound for this problem. Our algorithms have applications in checkpointing, detecting stable

predicates and implementing synchronizers. We have implemented our algorithms on top of the MPI library

on the BlueGene/L supercomputer. Our experiments confirm that the proposed algorithms significantly

reduce the message and space complexity of a global snapshot.

Keywords: Checkpointing, Global Snapshot Algorithms, Fault-tolerance, Stable Predicates, BlueGene/L

Corresponding Author: Vijay K. Garg, garg@ece.utexas.edu

1 Introduction

Computing the global snapshot of a system is a fundamental problem in distributed computing. It has appli-

cations in fault-tolerance of long-running programs by providing an intermediate checkpoint of the system. In

case of a failure, the system can restart from the checkpoint instead of the beginning of the program.

Global snapshots are also useful in monitoring stable properties of the system. A property is stable if, once

it becomes true, it stays true. Some examples of stable properties are termination, deadlock, loss-of-a-token

etc. By repeatedly computing the global snapshot and evaluating the property on the computed snapshot, one

can detect any stable property.

The definition and the first algorithm to compute a consistent global snapshot for a system with FIFO

channels was given by Chandy and Lamport in [CL85]. For a colorful description of Chandy and Lamport’s

algorithm see [Dij85]. This elegant algorithm has the property that it does not freeze the underlying computation

during global snapshot computation. Thus, the underlying application is not stopped from sending or receiving

any messages when the snapshot algorithm is in progress. We will restrict ourselves to algorithms with this

property.

Spezialetti and Kearns have given efficient algorithms to disseminate a global snapshot to processes initiating

the snapshot computation [SK86]. Bouge [Bou87] has given an efficient algorithm for repeated computation of

snapshots for synchronous computations. In the absence of the FIFO assumption, as shown by Taylor [Tay89],

any algorithm for a snapshot is either inhibitory (that is, it may delay actions of the underlying application)

or requires piggybacking of control information on basic messages. Lai and Yang [LY87] and Mattern [Mat93]

have given snapshot algorithms that require only the piggybacking of control information.

A different protocol has been implemented more recently by Schulz, Bronevetsky, Fernandes, Marques,

Pingali and Stodghill in [SBF+04]. We will refer to this algorithm as SBF+ algorithm. The reader is referred

to a [KRS95] for a survey of global snapshot algorithms.
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All the existing global snapshot algorithms for non-FIFO channels [Mat93, SBF+04], require at least one

message and one integer to be stored for every channel in the system. In a system with N processors and a

completely connected topology, this translates to O(N) messages and O(N) space per processor. In massively

parallel computers, this overhead can be quite significant. For example, the IBM Blue Gene/L computer has

64K processors. Furthermore, at the application level a process at any processor may send message to any

other processor. Thus, the topology at the application level is that of a completely connected graph. Using

existing algorithms on such a system would result in 64K messages per processor per snapshot. In this paper,

we propose three algorithms with different characteristics that make them much more scalable than existing

algorithms. We call these algorithms grid-based, tree-based and centralized algorithms.

The grid-based algorithm assumes a logical grid-like structure of the system. It requires O(
√

N) messages per

processor with each message of size O(
√

N) integers. For Blue Gene/L, this algorithm would use 256 messages

per node instead of 64K messages. Although each message of our algorithm is bigger than existing algorithms,

the total overhead of communication and computation is significantly reduced by using fewer messages. The

space complexity of the grid-based algorithm is similar to existing algorithms. It uses O(N) space at every

processor.

Our tree-based algorithm reduces the space complexity of the global snapshot problem. It uses a constant

number of variables at each processor and O(log N log w) messages per processor where w is the average number

of in-transit messages when the snapshot is taken. A crucial difference between the the earlier algorithms and

our tree-based algorithm is that earlier algorithms relied on informing each process the number of in-transit

messages. The tree-based algorithm avoids this step to reduce the space complexity at each process. The

tree-based algorithm uses O(N log N log w) messages in all.

The total message complexity of the system can be further reduced to O(N log w) messages by using a

centralized algorithm. The disadvantage of the centralized algorithm is that it may require a single node to

process as many as O(N log w) messages.

We also show a matching lower bound on the message complexity of any global snapshot algorithm that

is based on detecting when all in-transit messages have been received. We show that detecting whether W

messages have been received in a system with N processes require at least W control messages when W is at

most N and Ω(N log W/N) when W is greater than N .

The characteristics of the algorithms proposed in this paper are summarized in Figure 1. The algorithm

CLM refers to Chandy and Lamport’s algorithm with Mattern’s modification for non-FIFO channels. It requires

O(N2) messages in all when the underlying topology is completely connected. The marker message contains a

single integer denoting the number of white messages sent on that channel. We will assume that a single integer

is sufficient to count the total number of messages in the system. Thus, message size denotes the total number

of integers sent in the message. The space requirement of this algorithm is O(N) as a process has to store the

number of white messages it has sent to any other process in the system. The grid-based algorithm reduces

the number of messages from O(N2) to O(N3/2) but each message is of size O(
√

N). The tree-based algorithm

reduces the space complexity to O(1). Its message complexity depends on the average number of in-transit

messages. The centralized algorithm reduces the message complexity; however, it requires the coordinator node

to process O(N log w) messages.

This paper is organized as follows. In Section 2, we briefly describe the problem and the existing work.

Section 3, 4 and 5 discuss the grid-based algorithm, the tree-based algorithm and the centralized algorithm



RI-06-003 February, 2006 4

Algorithm Message Complexity Message Size Space

CLM O(N2) O(1) O(N)

Grid-based O(N3/2) O(
√

N) O(N)

Tree-based O(N log N log w) O(1) O(1)

Centralized O(N log w) O(1) O(1)

Notation: N : Number of processes, w: Average Number of in-transit messages/process

Figure 1: Summary of Global Snapshot Algorithms

respectively. In Section 6, we describe the lower bound for this problem. Section 7 describes our implementation

of the global snapshot algorithm on the BlueGene/L computer and performance analysis of the algorithms

proposed in the paper. Section 7 describes other applications of techniques described in the paper.

2 Model and Background

We model a distributed system as an asynchronous message-passing system without any shared memory or

a global clock. A distributed program consists of a set of N processes denoted by {P1, P2, ..., PN} and a set

of unidirectional channels. A channel connects two processes. Thus the topology of a distributed system can

be viewed as a directed graph in which vertices represent the processes and the edges represent the channels.

A channel is assumed to have infinite buffer and to be error-free. We do not make any assumptions on the

ordering of messages. Any message sent on the channel may experience arbitrary but finite delay. The state of

the channel at any point is defined to be the sequence of messages sent along that channel but not received.

A computation is defined as a tuple (E,→) where E is the set of all events that are generated during the

execution, and→ is the happened-before relation [Lam78] on E. We define a consistent cut, or a global snapshot,

as any subset F ⊆ E such that

f ∈ F ∧ e → f ⇒ e ∈ F.

Chandy and Lamport’s algorithm, which works only for FIFO channels, uses the concept of color of messages

and processes. We associate with each process a variable called color that is either white or red. Intuitively,

the computed global snapshot corresponds to the state of the system just before the processes turn red. All

processes are initially white. After recording the local state, a process turns red. Thus the state of a local

process is simply the state just before it turned red. One or more processes initiate the snapshot algorithm by

recording their local state and turning red. Once a process turns red, it is required to send a special message

called marker along all its outgoing channels before it sends out any message. A process is required to turn

red on receiving a marker if it has not already done so. Since channels are FIFO, the above mentioned rule

guarantees that no white process ever receives a message sent by a red process. This property ensures that the

global snapshot recorded is consistent.

It is easy to define the state of the channels for the snapshot. These are the messages sent by a white process

received by a red process. These messages cross the global snapshot in the forward direction and form the state

of the channel in the global snapshot because they are in transit when the snapshot is taken. To record the

state of the channel from Pi to Pj , the process Pj starts recording all messages it receives from Pi after turning

red. Since Pi sends a marker to Pj on turning red, the arrival of the marker at Pj from Pi indicates that there
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will not be any further white messages from Pi sent to Pj . It can, therefore, stop recording messages once it

has received the marker. When a process has received a marker on all its incoming channels, it has finished

recording all incoming channels and its component of the snapshot algorithm is finished.

The entire algorithm takes exactly one message (marker) along each link. Although this algorithm is efficient

for sparse networks it is not scalable for large dense networks. The message complexity of this algorithm is

O(N2).

We now briefly describe an extension to this algorithm due to Mattern[Mat93] that removes the assumption

that channels are FIFO. When channels do not satisfy FIFO property, the marker message cannot be used

to distinguish between white and red messages. Therefore, Mattern’s algorithm includes the color in all the

outgoing messages for any process besides sending the marker. Further, even after Pi gets a red message from Pj

or the marker, it cannot be sure that it will not receive a white message on that channel. A white message may

arrive later than a red message due to the overtaking of messages. To solve this problem Mattern’s algorithm

includes in the marker the total number of white messages sent by that process along that channel. The receiver

keeps track of the total number of white messages received and knows that all white messages have been received

when this count equals the count included in the marker. The message complexity of this algorithm is also

O(N2). The SBF+ algorithm [SBF+04] also uses a message count per channel that indicates the number of

white messages sent on the channel.

Before we discuss our algorithms it is important to understand the source of quadratic message complexity

in existing algorithms. In Chandy and Lamport’s algorithm (and that of Mattern’s), a marker message is sent

along every channel. These marker messages serve three purposes. We discuss how we achieve these three

functions without sending an explicit message for the channel.

First, a marker message indicates to a process that one or more other processes have initiated the global

snapshot algorithm. Thus, marker messages serve to disseminate the knowledge that a global snapshot is

required. This task corresponds to broadcast of some information in a network. We would like the entire

network to know that the global snapshot algorithm has been initiated. Assuming that there is a pre-defined

spanning tree in the network, it is a simple matter to broadcast any information in O(N) messages. Any white

node that wants to initiate the snapshot algorithm, sends “initiate” messages to all its neighbors that are part

of the spanning tree. On receiving such a message a white process turns red and sends “initiate” message to

all its neighbors in the tree except for the node that sent initiate message to it. Observe that any information

about initiation of a global checkpoint algorithm is sent over only along the links that are part of the spanning

tree. Since there are N − 1 links in the tree, there are at most 2(N − 1) messages of type (one message in

each direction). In all three algorithms proposed in the paper, we will assume such an initial step that turns all

processes red.

Second, in a FIFO channel marker messages serve to distinguish white messages from the red messages.

Any message received before the marker is a white message and any message received after the marker is a red

message. This ability to distinguish between messages is useful in recording in-transit messages. This technique

is applicable only for FIFO channels and for Non-FIFO channels one has to piggyback a bit with each message

indicating whether it is a white or a red message. This technique is employed in Mattern’s as well as SBF+

algorithm. We also use the same technique in all our algorithms.

Finally, we come to the third function of the marker. A marker also serves as the indicator of the end of

white messages from a given process. When process P receives a marker on the channel from process Q, it
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knows that all the messages sent from Q to P before Q took its local checkpoint have been received. Since this

property is true only for FIFO channels, Mattern and SBF+ algorithm achieve this functionality by explicitly

sending the total number of white messages sent. By counting the number of white messages received a process

can determine if it has received all the white messages sent on that channel. When a process has determined

that this has become true, it closes that channel. When all the incoming channels are closed, the process has

finished its component of the global snapshot algorithm and can report to the initiator. Note that explicitly

sending along each channel the number of white messages sent contributes not only to the overhead in terms

of messages but also in terms of state maintained at each process. Every process is forced to maintain O(N)

integers recording the number of white messages sent along each channel. It can be observed that even when

process Pi has not communicated with Pj , it still has to send out a message to Pj with 0 as the message count.

All our algorithms either avoid or optimize on this step of a global snapshot algorithm.

3 Grid-based Algorithm

The grid-based algorithm reduces the message complexity of sending the white message count by making use

of the following two observations. First, a process does not need a separate count of the white messages sent to

it by a specific process. All it needs is the total number of white messages that have been sent to it. Whereas

Mattern’s algorithm and SBF+ algorithm communicate to every process the number of white messages sent,

our algorithm communicates the total number of white messages sent to a process. The second observation

is that a process can use one message to send out information about the number of messages it has sent for

multiple processes. We use this observation to reduce the number of messages at the expense of increasing the

size of messages.

Our algorithm uses the notion of color of processes similar to Chandy and Lamport’s algorithm. A process

may be white, red, or black. It is white if it has not recorded its local state. It is red if it has recorded its

local state but not the state of incoming channels, and black if it has recorded its local state and all the transit

messages. Initially all processes are white.

There are three main components in our algorithm. The first component assumes that there is a pre-defined

spanning tree in the system. It uses the spanning tree to broadcast the fact that one or more processes want

to take the global snapshot. It ensures that all processes in the system turn red with O(N) messages by using

the spanning tree. Furthermore, by including the color of the sending process in all messages, the algorithm

also guarantee that no white process ever acts on a red message. On receiving a red message a white process

immediately turns red. This component is fairly standard, but for completeness sake it is shown in Figure 2.

The second component is required for processes to determine the total number of white messages it is

supposed to receive. This component assumes a 2D grid structure to compute the total number of white

messages sent to a specific process. We will use Pi,j to denote the process at the co-ordinate (i, j) of the grid.

For simplicity, we will assume that the grid is a perfect square. The algorithm can be applied to grid with

any number of rows and columns. Each process maintains a matrix whiteSent[i, j] which records the number

of white messages sent to process Pi,j . Further, any process Pr,c will also compute rowCount[j] which is the

total number of white messages sent by processes in row r to the process Pc,j . Note that the vector rowCount

has size
√

N and is maintained by each process. Further, all diagonal processes in the grid Pc,c maintain an

additional vector totalCount such that totalCount[j] equals the total number of white messages sent by all
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initiate() // enabled only if (color=white)

take local checkpoint;

color = red;

send “init” to all processes connected by tree edges;

On receiving “init” message or a red message on edge e

if (color = white)

take local checkpoint;

color = red;

send “init” to all tree edges except e

Figure 2: Common Initiation Component

processes to the process Pc,j .

This component is shown in Figure 3. In step 1, each process Pr,c sends ith row of whiteSent to Pr,i. Note

that this message has O(
√

N) integers and O(
√

N) such messages are sent by each process. In step 2, Pr,c

receives cth row from all processes in row r. It maintains a cumulative sum of all the vectors received. When it

has received values from all the processes in its row, rowCount[j] is equal to the number of white messages sent

to Pc,j by processes in row r. It then sends rowCount[.] to Pc,c. In step 3, a process participates only if it is a

diagonal processor in the grid. Nodes that correspond to Pi,i are responsible for computing the totalCount for

all processes in row i. Once Pi,i has calculated totalCount for each process in its row, it informs that process

with a message of size O(1).

The message complexity of this component is O(
√

N) messages sent/received per node, each of size O(
√

N).

This component results in every process knowing whiteCount, the total number of white messages that have

been sent to the process.

The third component is responsible for turning all processes black and detecting when that has happened.

A process keeps track of all the white messages it has received in the counter whiteReceived. When this count

equals whiteCount, the process knows that it has recorded all possible in-transit messages and turns black.

When the entire tree has turned black, the snapshot algorithm is complete. Detecting that the entire tree is

black can be performed with O(N) messages by using standard convergecast on the spanning tree[Gar04].

Based on the preceding discussion, we have the following Theorem.

Theorem 1 There exists a global snapshot algorithm that requires O(
√

N) messages per node where each mes-

sage contains O(
√

N) integers.

Remark: In the above discussion, we assumed that the grid was
√

N×√N . The algorithm can be generalized

to any grid of size numR×numC. When the number of rows is less than the number of columns, the algorithm

does not need any change. When the number of rows is greater than the number of columns, then a process Pr,c

sends whiteSent[i, .] to Pr,i mod numcols instead of sending it to Pr,i. The algorithm uses O(numR) messages

each of size O(numC). Note that when the grid is N by 1, the algorithm reduces to a completely distributed

algorithm with O(N2) messages of size O(1). The other extreme case is when the grid is 1 by N . This case
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Pr,c::

Step 1: for i:= 0 to numRows-1 do

send row i of the matrix whiteSent to Pr,i;

Step 2: receive row c from all processes in row r;

let rowcount be the cumulative count;

send rowcount to Pc,c;

Step 3: if (r=c)

receive rowcount from all processes Pi,c in column c;

let totalcount be the cumulative count;

send totalcount[j] to Pc,j ;

Figure 3: The Grid-based Algorithm to Compute whiteCount

reduces to the centralized algorithm with O(N) messages each of size O(N).

4 Tree-based Algorithm

The grid-based algorithm requires every process to maintain the number of white messages sent to any process.

This information requires O(N) integers to be maintained at every process. This overhead may be prohibitive

for high performance computing applications. We now show an algorithm that reduces this overhead to O(1)

integers.

In the tree-based algorithm each process does not maintain individual counts for the number of white

messages sent. Instead, it maintains the deficit which denotes the total number of white messages sent minus

the total number of white messages received. Note that the deficit for a process may be negative. Clearly, the

total number of in-transit messages that correspond to the global checkpoint equals the sum of all deficits when

the processes turn from white to red. Our algorithm is based on computing this number and detecting when

all these messages have been delivered.

The tree-based algorithm consists of three components. The first component for initiation is same as the

grid-based algorithm. The second component corresponds to computation of the total deficit in the network.

This can be accomplished easily using a convergecast in O(N) messages. Let W be the total deficit computed

using second component. The third and final component corresponds to detecting when all in-transit messages

have been received. We call this problem the distributed message counting problem. The distributed message

counting problem can be defined as follows. There are W in-transit messages that are destined for N processes.

The problem is to detect when all W messages have been received. We are interested in algorithms that are

efficient for even large values of W .

We abstract the total deficit as tokens that are distributed in a network. Each token represents a pending

message for which the destination is unknown. Whenever a message is received a token is consumed. The goal is
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to detect when the total number of tokens reduces to zero. A simple algorithm in which a coordinator maintains

all the tokens can solve this problem in O(W ) messages. Whenever a process receives a white message it simply

informs the coordinator who consumes a token.

We now show an algorithm that uses O(N log N log(W/N)) messages. When W is much larger than N ,

this algorithm will outperform the coordinator based algorithm. The algorithm works based on rounds. There

are at most dlog W/Ne rounds. Initially, we divide the total number of tokens W equally among all processes.

The maximum number of tokens any process has in the first round is w = dlog W/Ne. Let wk be the maximum

number of tokens any process has at round k. Our algorithm ensures that wk+1 ≤ wk/2. Thus the maximum

number of tokens owned by a process goes down by a factor of two in every round.

We now describe the algorithm at round k. We use three colors — green, yellow and orange — to label

all the processes. A process is orange if it has no tokens and it has received one or more in-transit messages.

These in-transit messages have not consumed tokens and such processes would initiate messages to search for

tokens. A process that does not have this problem is either yellow or green. A process pi with ri tokens is

considered green if it has strictly greater than wk/2 tokens and yellow otherwise. Intuitively, green processes

are rich, yellow are debt-free, and orange are in debt (and therefore poor).

We organize the processes in a perfect binary tree. The degree and the height of the tree is used only in

analyzing the message complexity. The algorithm is correct for any spanning tree.

Our algorithm ensures the following properties: (I1) A yellow process cannot have a green child. (I2) The

root is green, and (I3) Any orange node eventually becomes yellow.

It is sufficient to describe the protocol when an in-transit message arrives. This event is detected as arrival of

a white message at a red process. For every white message, a token must be consumed. No action is required at

the destination to maintain the invariants if consuming a token does not change the color of the process. After

all, the invariants are specified only using the color of the process. We now consider two possible transitions

that can happen when the color gets changed. The pseudo-code for the algorithm is shown in Figure 4.

On turning from green to yellow

if any child green

send (“swap”, tokens) to that child;

else if root node

reset for the next round

On turning from yellow to orange

send (“split”, tokens) to the nearest green ancestor;

Figure 4: The Tree-based Algorithm for Distributed Message Counting

First, consider the case when the color changes from green to yellow. This transition can violate invariant

(I1) if any of its children is green. To maintain the invariant, the process sends a “swap” message with its

tokens to its left child (if any). If the left child is green, it replies with an “accept” message and performs the

swap operation. Otherwise, it replies with a “reject” message. When a process receives a “reject” message, it
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tries the swap operation with the other child. If none of the children is green then the process knows that it

does not violate (I1). If this node is root, then it also knows that the entire tree does not have any green node.

In this case, it initiates a global “reset” operation that takes the algorithm to the next round.

Note that when a child performs a swap operation, it turns yellow and may violate (I1). So after the swap

operation, the child, in turn, may initiate its own swap message. The total number of “swap” “accept” and

“reject” messages is O(log N) because they traverse one path down the tree.

Now consider the case when a node changes from yellow to orange. The process sends a “split” message to

its parent. Our algorithm will allow only a green node to split. If the parent is green, it splits its tokens with

the requesting process. Otherwise, this message is forwarded to its parent. The message is guaranteed to find

a green node due to (I2). When a green node splits its token, it is guaranteed to become yellow. This can now

fire up the rule for turning from green to yellow.

The “reset” operation is performed as follows. The root requests all nodes to send their tokens to the root.

Once the root has received messages from all processes, it calculates the total number of tokens (in-transit

messages) and recalculates wk for the next round.

By using the above algorithm, and repeatedly halving wk, we are guaranteed to reach the case when wk is

1. At that point, we continue with one more round with a process to be green if it has the token, yellow if it

has no token and orange if it has no token but a pending in-transit message. When the root detects that the

the entire tree has turned yellow, it can signal the end of the global snapshot algorithm.

We now show the following claim.

Theorem 2 The algorithm uses O(N log N log(W/N)) messages.

Proof : Initially no node has more that W/N tokens. Let wk be the maximum number of tokens any process

has at round k. We show that wk+1 ≤ wk/2. The new round begins only when the root turns yellow and both

its children are yellow. This implies that no node in the tree has more than wk/2 tokens. Thus, the root node

can start the next round with wk+1 = wk/2. This argument shows that there are at most log(W/N) rounds.

In each round, there can be two types of transitions — from green to yellow and from yellow to orange. The

yellow to orange transition results in splitting operations. There can be at most N splits because each split

turns a green node into yellow. Thus, there can be at most N splits. Each split takes at most log N messages

before it succeeds in finding a green node. Every split is followed by a transition of a node from green to yellow.

This transition also takes at most log N messages.

The number of transitions from green to yellow is also bounded by N . Thus, each round requires O(N log N)

messages.

5 Centralized Algorithm

The centralized algorithm is similar to the tree-based algorithm described in the previous section. The difference

lies in the algorithm for solving the distributed message counting problem. Thus, the centralized algorithm also

consists of three components. The first component for initiation is the same as the grid-based and tree-based

algorithms. The second component for computation of the total deficit in the network is same as the tree-based

algorithm. The third component corresponds to the distributed message counting problem that detects when all

the in-transit messages have been received.
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We now give an algorithm that uses O(N log(W/N)) messages. In the next section we will show that

any algorithm that solves the distributed message counting problem will use at least Ω(N log(W/N)) messages,

implying that we cannot hope to do better in terms of message complexity.

The centralized algorithm for solving the distributed message counting problem is similar to the one used

in the tree-based algorithm. The difference lies in the logical organization of processes. Unlike the tree-based

algorithm in which the processes were logically organized as a perfect binary tree, in the centralized algorithm,

the green processes are organized as a list with a fixed tail. The advantage of organizing the processes in such a

manner (as we will show) is that we can avoid the factor of log n message exchanges that occur in the tree-based

algorithm when the colour of a process changes, and in fact we can complete the processing required on change

of the colour of a process with only a constant number of message exchanges. The disadvantage, however, is

that all the processes must interact with the process representing the tail of the list, leading to centralization

of message exchanges.

If not tail process

On turning from green to yellow

send (“swap”,tokens) to tail;

On turning from yellow to orange

send (“split”, tokens) to tail;

On receiving “swap” request

retain wk/2 tokens,

send accept message with remaining tokens to requestor;

On receiving “split” request

send accept message with half the tokens to requestor;

else if tail process

On turning from green to yellow

If head 6= tail

send (“swap”, tokens) to head;

head = head− 1;

else

reset for the next round;

On receiving “swap” or “split” request

If head 6= tail

forward request to head;

head = head− 1;

else

reset for the next round;

Figure 5: The Centralized Algorithm for Distributed Message Counting

The centralized algorithm also works in rounds, as does the tree-based algorithm. Again, there are at
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most dlog W/Ne rounds. Initially, we divide the total number of tokens W equally among all processes. The

maximum number of tokens any process has in the first round is w = dlog W/Ne. Let wk be the maximum

number of tokens any process has at round k. The centralized algorithm also ensures that wk+1 ≤ wk/2. Thus

the maximum number of tokens owned by a process goes down by a factor of two in every round.

We now describe the algorithm at round k. We again use three colours — green, yellow and orange — to

label all the processes. these colours have the same significance as in the tree-based algorithm. A process is

orange if it has no tokens and it has received one or more in-transit messages. A process is considered green if

it has strictly greater than wk/2 tokens and yellow otherwise.

The processes are organized as follows. All the green nodes are organized as a list. There is a fixed process

that represents the tail of the list. This node always remains green. Let the processes have ranks 0, 1, .., N − 1.

Let the tail be the process with rank 0. The tail maintains the list using only one variable, head. The variable

head stores the first green node in the list. When head equals h, then logically, the list of green nodes is

{h, h− 1, .., 0}. The algorithm ensures that whenever there is need to remove a green node from the list, only

head is removed from the list. The list can then be quickly updated simply by decrementing head. At the start

of every round, head is initialized to N − 1.

We now describe the protocol when an in-transit (white) message arrives. For every white message, a token

must be consumed. No action is required if this does not change the colour of the process. We now consider

two possible transitions that can happen when the colour gets changed. the pseudo-code for the algorithm is

shown in figure 5.

First, consider the case when the color changes from green to yellow. Since nodes are only removed from

the head of the green list, this process borrows all except wk/2 tokens from head, so that it remains green and

head turns yellow instead. In order to accomplish this, it sends a “swap” request to the tail. The tail forwards

this request to the head and removes head from the green list, since the head is guaranteed to become yellow.

The head, on receiving the message sends all except wk/2 tokens to the requesting process. If the requestor is

the same as head, then the tail sends back a reject to the head, and removes it from the green list. The head

on receiving the reject, turns yellow. Note that if the head is same as tail, that is there is no other green node,

then the tail knows that all the processes have turned yellow. In this case, it initiates a global “reset” operation

that takes the algorithm to the next round.

Now consider the case when a node changes from yellow to orange. Since nodes are only removed from the

head of the green list, this process borrows half the tokens from head. In order to accomplish this, the process

sends a “split” message to the tail. The tail forwards this request to the head and removes head from the green

list, since the head is guaranteed to become yellow. The head, on receiving the message splits its tokens with

the requesting process. In case there is no other green node other than the tail, the tail initiates a global “reset”

operation that takes the algorithm to the next round.

The “reset” operation is performed as in the case of the tree-based algorithm. The root requests all nodes

to send their tokens to the root. Once the root has received messages from all processes, it calculates the total

number of tokens (in-transit messages) and recalculates wk for the next round.

We now show the following claim.

Theorem 3 The algorithm uses O(N log(W/N)) messages.

Proof : Initially no node has more that W/N tokens. Let wk be the maximum number of tokens any process

has at round k. We show that wk+1 ≤ wk/2. The new round begins only when all the nodes turn yellow. This
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implies that no node in the tree has more than wk/2 tokens. Thus, the root node can start the next round with

wk+1 = wk/2. This argument shows that there are at most log(W/N) rounds.

In each round, there can be two types of transitions — from green to yellow and from yellow to orange. The

green to yellow transition results in swapping operations and the yellow to orange transition results in splitting

operations. There can be at most N splits/swaps because each split/swap turns a green node into yellow. Each

split/swap takes O(1) messages in finding a green node. Thus, each round requires O(N) messages.

6 Lower Bound

In this section we show that any algorithm must exchange at least O(N log W/N) point-to-point control messages

to detect termination if W > N and W control messages otherwise.

Lemma 1 Let W be the number of messages remaining to be delivered. Then there exists a processor pW that

generates a control message on receiving at most dW/Ne messages. Therefore any algorithm for termination

detection can be forced to exchange a control message on delivery of at most dW/Ne messages (by sending these

messages to pW ).

Proof : Suppose there is no such processor. Then the adversary could send W/N + 1 messages to W mod N

processors and W/N messages to the remaining N−(W mod N) processors. The algorithm would not exchange

any control message and therefore would not be able to detect termination. The adversary can therefore force

a control message to be generated by sending dW/Ne messages to pW .

Let W be the remaining messages to be delivered. Now, consider the algorithm of the adversary described

in figure 6. We define one round to be one iteration of the loop of the adversary.

W := Sum of deficits at all processes;

while ( W > 0 ) do

deliver dW/Ne messages to processor pW (as determined in lemma 1) ;

W := W − dW/Ne ;

Figure 6: Algorithm of the adversary

Lemma 2 Any termination detection algorithm must exchange at least r control messages where r is the number

of rounds executed by the adversary.

Proof : Using lemma 1, one control message is forced to be generated by the termination detection algorithm

on execution of one round of the adversary’s algorithm. The statement follows.

Theorem 4 The number of control messages exchanged by any algorithm to detect termination is

Ω(N log(W/N)) if W ≥ N and

Ω(W ) if W < N
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Proof : We will show that the adversary executes W rounds when W < N and Ω(N log(W/N)) rounds when

W ≥ N .

Consider the case when W < N . Only one message is delivered in every round until W becomes 0. Therefore

the adversary can execute W rounds.

Now consider the case when W ≥ N . Let k = blog W/Nc, i.e., 2kN ≤ W < 2k+1N . We claim that the

adversary executes at least (k + 1)N/4 rounds. The proof is by induction.

• Base Case (k = 0): N ≤ W < 2N

Two messages are delivered in every round until W becomes < N . Thereafter one message is delivered in

every round until W becomes 0. Therefore at least N > N/4 rounds are executed by the adversary.

• Induction Case : 2kN ≤ W < 2k+1N

The number of messages delivered in each round is dW/ne until W < 2kN . Thereafter, the number of

messages delivered in each round decreases. Therefore the number of messages delivered in any round is no

more than 2k+1. Consider the first N/4 rounds. The number of messages delivered in these N/4 rounds is

no more than 2k+1N/4. Therefore the number of messages remaining to be delivered after N/4 rounds is at

least W −2k+1N/4 ≥ 2k−1N . If the number of messages remaining to be delivered after these N/4 rounds

is ≥ 2kN , then the adversary keeps executing rounds and delivering messages until 2k−1N ≤ W < 2kN .

Now, using the induction hypothesis, the adversary executes at least kN/4 + N/4 = (k + 1)N/4 rounds

before termination. Substituting the value of k, the adversary executes at least N(1+log W/N)/4 rounds.

The theorem follows from the discussions above and lemma 2.

Note that the distributed message counting problem is a special case of the termination detection problem

where one tries to detect when all processes are passive and all channels are empty [DS80]. If one considers

only those messages that are sent before checkpoint and defines a process to be passive after checkpoint, our

problem is reduced to that of termination detection. It is well known that termination detection may require at

least as many messages as the application messages in the worst case[CM85]. The main difference between the

general termination detection problem and distributed message counting problem is that once a process turns

passive it can never turn active (even when it receives a message). This difference explains the reduced message

complexity.

7 Experimental Results

We implemented the three checkpointing algorithms (grid, tree and centralized) for BlueGene/L using C. The

BlueGene/L is a massively parallel supercomputer that scales upto 65, 536 dual-processor nodes. Each of the

two cores is an embedded PPC440 core, designed to reach a nominal clock frequency of 700 MHz (1.4 giga-

operations per second). The BlueGene/L uses five interconnect networks for I/O, debug, and various types of

interprocessor communication. The most significant of these interconnection networks is the three-dimensional

torus that has the highest aggregate bandwidth and handles the bulk of all communication. The signaling rate

for the nearest neighbor links is 1.4 Gbps in each direction. Each node supports six independent, bidirectional

nearest neighbor links, with an aggregate bandwidth of 2.1 GBps. The hardware latency to transit a node is

approximately 100 ns. The torus network uses both dynamic (adaptive) and deterministic routing with virtual
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buffering and cut-through capability. Adaptive routing allows packets to follow any minimal path to the final

destination, allowing packets to dynamically “choose” less congested routes.

7.1 Setup

Each processor has a unique logical rank. These ranks vary from 0 to N − 1.

For the grid based algorithm, the grid is constructed by logically organizing the processors into m rows and

n columns, where n = m if the number of nodes is a perfect square and n = 2m otherwise. For instance the

32 nodes system is organized as a 4 × 8 grid whereas the 64 nodes system is organized as an 8 × 8 grid. The

processors are logically organized in the grid by row major ordering of their ranks, i.e., a processor with rank i

is in row bi/nc and column i mod n in the logical grid.

The convergecast tree is logically organized over the nodes as follows. The root has rank 0, it’s left and right

children are nodes with ranks 1 and 2 respectively, and so on. Thus, the nodes are organized in a binary tree

filled in order of ranks from top to bottom and left to right. Thus for a node with rank i, its left child has rank

2 · (i + 1)− 1, its right child has rank 2 · (i + 1) and its parent has rank b(i + 1)/2c− 1 (provided these are valid

ranks). For the tree based algorithm, the convergecast tree is used as the checkpointing algorithm tree as well.

The algorithm for the application code that is used to analyze the performance of these algorithms is

described in Figure 7.

ApplicationAlgorithm( W, M )

for i = 1 to W /* W Loop */

send data message to random destination ;

int fin = N − 1 ; // number of finished messages remaining to be received

int i = 0 ; // number of messages sent to other processes

while ( ( fin > 0 ) OR ( i < M ) )

if ( i < M )

send data message to random destination ;

i + + ;

if ( i == M )

send finish message to all other processors ;

if ( fin > 0 )

recv message ;

if ( received finish message )

fin−− ;

endWhile

Figure 7: Application algorithm for analyzing performance of the checkpointing algorithms

The algorithm takes as parameters W and M . All processors first perform W sends without performing any
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receives. This is followed by a loop in which on every iteration, one send and one receive is performed. This

is done till M sends have been performed. As the messages are sent to random destinations, the number of

messages to be received is not known. Therefore, a finish logic is included in which every processor on finishing

M sends, sends a finish message to every other destination. A processor can therefore proceed to cleanup when

it has received N−1 finish messages, where N is the number of processors. After finishing all sends and receives,

a processor waits for the checkpointing algorithm to complete (if it has not already completed).

The send and receive calls are blocking calls that in turn use the MPI library for inter-process communication.

They first receive all checkpointing messages that are available. These messages are passed to the checkpointing

algorithm that in turn processes them (generating and sending checkpointing messages to other processors, if

necessary). After the checkpointing messages have been processed, the send call performs the corresponding

MPI send routine (MPI Send) and the receive call performs the corresponding non-blocking MPI receive routine

(MPI Irecv). The reason that the receive call is implemented using a non-blocking MPI call is to allow processing

of checkpointing messages as and when they become available, even when no application messages are available.

Every checkpointing message has a fixed 32 byte header that contains some checkpointing algorithm specific

information such as message type, source, destination, round number (for tree and centralized algorithms), etc.

Therefore the minimum message size for a checkpointing message is 32 bytes. Over and above this fixed header,

a checkpointing message may contain additional information, such as tokens, counts of white messages sent, etc.

We ran this application using all the three algorithm on BlueGene/L partitions of 32, 64, 128, 256 and 512

nodes. We analyzed the algorithms for the fixed values of 40000 for W , and 50000 for M .

The checkpoint initiation time was uniformly picked by every processor from a range T1 to T2. In one set

of experiments we set T1 to 950 milliseconds and T2 to 1050 milliseconds. The mean checkpoint initiation time

was 1 second. In another set of experiments we set T1 to 285 milliseconds and T2 to 315 milliseconds. The mean

checkpoint initiation time was 300 milliseconds.

We also performed another optimization on the tree and centralized algorithms. We modified these algo-

rithms, so that on the initiation of a round, i.e., when intial deficit for a round is being computed, we receive

all the white messages that are pending that have not been absorbed by the algorithm. For example, suppose

that a node has 4 pending messages which it has received but which have not been absorbed by the algorithm

because it is orange and is awaiting a response for its split request. Suppose that a reset round is initiated at

this time. Then, the node absorbs these white messages by incrementing its received count by 4 and computes

the deficit with this new value of received count. We collected data on 512 nodes using this optimization to

analyze the improvements if any.

We recorded the following information for all the runs:

• Maximum Processor Latency: The processor latency is the time elapsed (in microseconds) on a processor

from when checkpointing is initiated on that processor to when the algorithm completes checkpointing,

i.e., it determines that all the white messages have been received. The maximum processor latency is the

processor latency maximized over all the processors.

• Total Latency: The total latency is the time elapsed (in microseconds) from when the earliest processor

determines that checkpointing has been initiated to when the last processor determines that checkpointing

has been completed.

• Message Size: the minimum, the maximum and the average message size of a checkpointing message
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generated during the run.

• Messages sent/received: The minimum, the maximum and the average number of checkpointing messages

sent/received by any processor.

• Initial Deficit: The initial deficit computed for the tree and centralized algorithms.

• Number of Rounds: The number of rounds before the tree/centralized algorithms detects completion.

7.2 Results

7.2.1 Latency

The total latencies (in microseconds) observed for the three checkpointing algorithms when the application was

executed with W = 40000, M = 50000 and mean checkpoint timeout of 1 second, are shown in table 1. The

maximum processor latency was observed to be only negligibly smaller than the total latency.

Grid Tree Centralized

N Initial Latency Max Time/ Latency Latency Max Time/

Deficit Msgs Msg Msgs Msg

32 2880992 104 23 4.52 6192 5053 1548 3.26

64 5764032 157 31 5.06 11232 9108 3109 2.93

128 11536256 190 48 3.96 19191 15765 5738 2.75

256 23105280 293 64 4.58 36921 34641 12290 2.82

512 46341632 572 96 5.96 50578 69574 24506 2.84

Table 1: Total latencies (microseconds) for the checkpointing algorithms on different number of nodes

With a mean checkpoint timeout of 1 second, we observed that all the white messages were sent before

the checkpointing algorithm started. This is reflected by the initial deficit count for the tree and centralized

algorithms. The initial deficit count is exactly N · (W +M +N−1), accounting for the data and finish messages

generated from all the nodes. Therefore the latency observed reflects the time taken by the checkpointing

algorithm from initiation to completion.

The maximum time during active processing is spent in MPI calls. For the grid algorithm, the latencies are

very small compared to the tree and centralized algorithms. This is because the number of messages generated

is small upto 512 nodes and most of these are processed (sent and received) in parallel on different nodes. There

is little to compare between the latencies of the tree and centralized algorithms.

Since the maximum time in processing is spent in MPI calls, we calculated the maximum messages processed

(sent + received) by any node for different values of N . For the centralized algorithm, the tail node is almost

always busy sending/receiving messages to/from other nodes. Therefore, we expected the latency to be propor-

tional to the number of messages being processed by the tail node. For this, we calculated the average time for

processing a message by dividing the latency by the sum of the messages sent and received (assuming send and

receive MPI calls take roughly the same time). Our hypothesis was confirmed by the consistency observed for

time per message. For the grid algorithm, we expected similar results since the diagonal elements of the grid

are almost always busy processing messages. However, the number of messages sent and received are too small
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to account for noise (initiation over convergecast tree, computations, etc.) to make any meaningful inferences.

For the tree based algorithm, the message exchange is more dynamic in nature and there is no single node that

is almost always busy making it difficult to analyze the latency numbers.

7.2.2 Message Size

The minimum, maximum and average message sizes observed for the three checkpointing algorithms when the

application was executed with W = 40000, M = 50000 and mean checkpoint timeout of 1 second, are shown in

table 2.

Grid Tree Centralized

N Layout Min Max Avg Min Max Avg Min Max Avg

32 4 ×8 32 64 53.70 32 36 35.97 32 36 35.95

64 8 ×8 32 64 58.08 32 36 35.98 32 36 35.95

128 8 ×16 32 96 82.70 32 36 35.98 32 36 35.95

256 16 ×16 32 96 89.07 32 36 35.98 32 36 35.95

512 16 ×32 32 160 144.97 32 36 35.98 32 36 35.95

Table 2: Message Sizes (in bytes) for the checkpointing algorithms on different number of nodes

As the checkpoint initiation message contains no additional information other than the message type, which

is in the fixed 32 byte header, we observe a minimum message size of 32 bytes for all the algorithms.

For the grid based algorithms, the messages exchanged in steps 1 and 2 contain one integer (4 bytes) for

every column in the grid layout. Therefore the maximum message size is 32 + 4·(number of columns). The

average message size also increases with the increase in the number of columns. Most messages are of type 1 or

2. Type 3 messages only carry a single integer.

For the tree and centralized algorithms, message sizes are not dependent on the number of nodes in the

system. Some messages carry an additional information element (such as requestor or tokens) that take up

an additional 4 bytes. Therefore, the maximum message size observed is 36 bytes. The average message size

for these algorithms is also close to the maximum message size as most messages carry an extra information

element.

7.2.3 Message Counts

The minimum, maximum and average send message counts observed for the three checkpointing algorithms

when the application was executed with W = 40000, M = 50000 and mean checkpoint timeout of 1 second, are

shown in table 3. Similarly, the receive counts are shown in table 4.

The minimum and maximum messages sent and received for the grid based algorithm is deterministic and

follows from the communication pattern of the algorithm.

Even though the number of messages received and sent for the grid algorithm is small compared to the

tree and centralized algorithms, this number increases at a much faster rate with an increase in the number of

nodes. Comparing the message counts for the tree and centralized algorithm, observe that the average number

of messages sent/received for the centralized algorithm is less than that of the tree based algorithm, however, the

maximum message counts are much higher. These observations are in agreement with the theoretical analysis;
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Grid Tree Centralized

N Layout Min Max Avg Min Max Avg Min Max Avg

32 4 ×8 4 12 5.88 34 485 149.41 29 576 80.16

64 8 ×8 8 16 9.80 37 813 193.25 28 991 78.03

128 8 ×16 8 24 10.09 38 1884 252.68 28 1992 80.72

256 16 ×16 16 32 17.94 35 3603 269.91 27 3894 81.91

512 16 ×32 16 48 18.13 31 3434 190.36 23 6557 69.66

Table 3: Sent Message Counts for the checkpointing algorithms on different number of nodes

Grid Tree Centralized

N Layout Min Max Avg Min Max Avg Min Max Avg

32 4 ×8 1 12 5.88 48 429 149.41 44 592 80.16

64 8 ×8 8 15 9.80 51 799 193.25 43 1012 78.03

128 8 ×16 1 24 10.09 53 2120 252.68 42 2100 80.72

256 16 ×16 16 32 17.94 49 4053 269.91 42 4085 81.91

512 16 ×32 1 48 18.13 43 3314 190.36 35 7193 69.66

Table 4: Receive Message Counts for the checkpointing algorithms on different number of nodes

even though the message count complexity of the centralized algorithm is lower, it suffers from centralization

in communication at the tail node.

7.2.4 Optimized Implementation

The initial deficit counts and number of rounds for the tree and centralized algorithms (both optimized and

unoptimized) for mean checkpoint timeout values of 300 ms and 1 second, with W = 40000 and M = 50000 on

512 nodes are shown in table 5.

Mean Checkpoint Timeout=300 ms Mean Checkpoint Timeout=1 s

Algorithm Initial Deficit No. of Rounds Initial Deficit No. of Rounds

Tree 30318186 13 46341632 16

Tree (Opt) 20469063 5 0 1

Centralized 30203345 13 46341632 9

Centralized (Opt) 20467177 7 0 1

Table 5: Initial Deficit Counts and number of rounds taken for unoptimized and optimized versions of tree and

centralized algorithms

When the mean checkpoint timeout is 1 s, checkpointing is initiated after all the data messages have been

sent and received. Therefore, in the optimized versions of the algorithms, the initial deficits are straightaway

computed as 0 and the algorithms terminate in the first round.

When the mean checkpoint timeout is 300 ms, checkpointing is initiated while the data messages are being

exchanged. The initial deficit counts are lower as messages that have already been received are not included in

the deficit. It can be observed that the optimized algorithms terminated in lesser number of rounds. Actually,
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the optimized algorithms are guaranteed to terminate in the first round reset that occurs after all the processes

have received all white messages destined for them.

8 Other Applications

One of the key ingredients in the tree-based and the centralized algorithm is an efficient solution of a prob-

lem that we call distributed message counting problem. The solution of this problem also has applications in

implementation of synchronizers [Awe85]. A synchronizer is a layer of software that allows simulation of a

synchronous network on asynchronous networks. The mechanism gives each process a logical abstraction of a

pulse. A process can start the next pulse if all messages that have been sent to it in the last pulse have been

received.

The β synchronizer [Awe85] uses a spanning tree to determine when a process is enabled to start the next

pulse. Define a process to be safe if all messages that it has sent has been received. It is clear that if all processes

are safe then the process can start the next pulse. To detect that a process has become safe, β synchronizer

uses acknowledgements. This results in overhead of a control message per application message. An alternative

implementation of a synchronizer is as follows. In each pulse, the root computes the total deficit using broadcast

and convergecast on the tree. It then uses distributed message counting to detect when all messages in the

current pulse have been received. Finally, a new pulse is generated using broadcast.

Assuming a perfect binary tree, the β synchronizer uses O(W+N) messages. Our algorithm uses O(N log N log(W/N))

messages which is is significantly smaller than O(W + N) when W >> N .
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