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Abstract

Self-stabilization is an approach for fault tolerance in presence of transient
faults in distributed systems. Leader election in distributed systems is of
interest because a leader is used for many key tasks like co-ordination, check-
pointing, and acting as servers. In this paper, we consider the problem of
electing a leader in networks of any topology in a self-stabilizing manner.
We do not make any assumptions about the nature of transient faults, and
e�ectively deal with faults like corrupted messages, transmission errors, and
fake ids. The robustness of our protocol is demonstrated by the fact that we do
not make assumptions about knowledge of diameter of the network, or channel
properties. Our protocol also constructs a minimum depth spanning tree of
the network rooted at the leader. This is a desirable property in applications
where communication between a node and the leader takes place along the
path in the spanning tree.

1 Introduction

Decentralized maxima �nding has a number of applications in distributed systems.
Leader election, and distributed resource allocation are obvious examples of such
applications. In leader election, a leader may be elected based on an attribute like an
identi�er. In resource allocation, the notion of maxima changes dynamically. The
leader in a distributed system can be used to co-ordinate various important tasks
like synchronization, collecting check points, and acting as a server. Typically, the
leader is elected based on a notion of maximality with respect to a static attribute
like an identi�er, or a dynamic attribute like available resources with a node. The
need for fault-tolerance in these protocols is obvious due to the important role
played by a leader in the above mentioned tasks. While fault-tolerance in presence
failure models like crash of a node, or a malfunctioning node have been well studied,
transient faults are relatively less explored. A transient fault is a fault which changes
the state of a system, but not its behavior [8]. Typically, these are the most frequent
faults in a large distributed system encompassing faults like corrupted data packets,
duplicate packets, corrupted bu�er space, and many others. Self-stabilization is a
uni�ed fault tolerance design technique for transient faults [8, 5]. In this paper, we
deal with a transient failure model. We use the terms maxima �nding and leader
election synonymously.

The notion of self-stabilization was introduced by Dijkstra [5]. He de�ned self-
stabilization as a property by which, irrespective of the initial state of the system,
it is guaranteed to arrive at a legitimate state in a �nite number of steps, and
remaining in a legitimate state after reaching a legitimate state for the �rst time.
Formally, a system S is said to be self-stabilizing with respect to a property P if
the system satis�es the following conditions under the execution of the algorithm.
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They are (i) Closure: P is closed under execution of S which implies that once P
is established in S, it cannot be falsi�ed, and (ii)Convergence: Starting from an
arbitrary global state, S is guaranteed to enter a state satisfying P in �nite number
of steps [8]. Two of the most important properties of self-stabilizing systems, es-
pecially in large distributed systems are, (i) they need not initialized, and (ii) they
can automatically recover from transient faults. The size, and the topology of the
present day distributed systems indicate the usefulness of a practical self-stabilizing
system.

Self-stabilizing maxima �nding has been considered by researchers for quite some
time. Ghosh, and Lin [6] consider maxima �nding in a ring network. Maxima
�nding in general networks have been addressed by many works such as [3, 2,
1]. Important problems to be dealt with in case of transient faults are, corrupted
messages, transmission errors, and fake ids [1]. In [2], a special mechanism was
developed to overcome the problem of fake ids, while [3] assumed the knowledge of
an upper bound on the network diameter. We e�ectively deal with all the problems
mentioned above, do not make any assumptions about the knowledge of a key
parameter like diameter. It may be noted that maintaining the diameter of the
network in a self-stabilizing way itself is a problem of interest. Afek, and Bremler [1]
give a self-stabilizing leader election for general unidirectional networks. But they
make the assumption of FIFO communication channels to prove a time bound of
O(n) for convergence where n is number of nodes in the system. In our protocol, we
do not make any assumption about the channel, and prove only the correctness of
the protocol. Most leader election algorithms also construct a spanning tree rooted
at the leader, and use this tree for communication, and co-ordination purposes. In
such cases, the height of such a spanning tree constructed is important in worst
case communication delay between leader, and a node. Our algorithm constructs a
minimum depth spanning tree of the network rooted at the leader. Our algorithm
is very simple, and easy to implement. In summary, in this paper, we present a self-
stabilizing protocol for leader election in networks of any topology encompassing a
broad transient fault model, and providing a very desirable property of constructing
a minimum depth spanning spanning tree of the network in the process.

2 System Model

The system is modeled as a graph G = (V;E) where V is the set of nodes and
E is the set of edges between these nodes. The nodes correspond to processors
in the system and an edge between two nodes represents a communication channel
between corresponding processors. Each node i has a unique id, id which is assumed
to be not corruptible. As assumed by Ghosh et al [6], it is assumed that each node
knows another constant, n which is the number of nodes in the network. These are
reasonable assumptions made in many self-stabilizing algorithms.1 Our algorithm
elects the node with maximum id as the maxima or leader. To use our algorithm for
dynamic situations like resource allocation, the id may be replaced by a function
which evaluates the value of current resources held by the node.

We use the serial model of computation where a central daemon randomly se-
lects one of the nodes with enabled guards. If the chosen node has multiple guards
enabled, then one of the guards is randomly chosen. The assumption of a central
daemon is mainly to simplify the proof. An algorithm to transform a self-stabilizing
serial model algorithm to an equivalent self-stabilizing algorithm for asynchronous
computing model has been discussed in the literature [7]. In the asynchronous
computing model there is no central daemon and nodes execute the algorithm

1Ghosh et al [6] assume two non-corruptible integer data items namely id and n, the number
of processors in the ring.
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asynchronously. Hence the assumption of a central daemon does not limit the
applications of our algorithm.

3 The Algorithm

In this section, we present our algorithm. Our algorithm is represented as a set
of guarded action statements. Each statement of the algorithm is written as <
label >: Ci �! Ai where Ci is a guard or a predicate on the values of variables
of a node i and its neighbors, and Ai is an action that should be performed by the
node i if this guard is satis�ed. At each step in our algorithm, a central daemon
evaluates guards of all nodes, selects randomly one node for which at least one guard
is enabled. If more than one guard is enabled, then it also selects at random one
of the enabled guards. The chosen node then executes the action corresponding to
the enabled guard chosen by central daemon. In addition to its id and n, each node
maintains two integer variablesmax and dist. These two variables are vulnerable to
transient fault. In other words, in start state these variables can have any arbitrary
values. max of a node is its estimate of the maximum id in the system and dist is
the estimate of its distance from the node with maximum id. For each node i, Ni

represents the set of neighbors of the node i. As we do not make any assumptions of
the nature of transient fault, a fault can take the system to any arbitrary state. This
can be thought of as a starting point, and our algorithm stabilizes to a legitimate
state. It is easy to note that such a fault model incorporates possibility of corrupted
messages, transmission errors, and fake ids. The algorithm presented below.

repeat

G0 : (i:dist = 0) ^ (i:max 6= i:id)
�! i:max = i:id;

G1 : (i:dist 6= 0) ^ (i:max = i:id)
�! i:dist = 0;

G2 : (i:dist > n � 1)
�! i:max = i:id;

i:dist = 0;
G3 : (i:max < i:id)

�! i:max = i:id;
i:dist = 0;

G4 : (i:dist > 0) ^ (6 9j 2 Ni j (j:max = i:max)
^ (i:dist = j:dist + 1))

�! i:max = i:id;
i:dist = 0;

G5 : (9 j 2 Ni j (j:max > i:max)
^ (j:dist + 1 � n � 1))

�! i:max = j:max;
i:dist = j:dist + 1;

G6 : (8j 2 Ni : j:max � i:max) ^ (9k 2 Ni j (k:max = i:max)
^ (k:dist < i:dist � 1))

�! i:dist = k:dist + 1;
forever

4 Description of the algorithm

The guardsG0; G1; G2; G3 and G4 are termed as correction steps. They are mainly
used to correct an erroneous state. The guards G5 and G6 are termed as follow
steps. They are mainly aimed at maxima �nding by setting a node's max to the
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Figure 1: A follow graph with non-minimal depth.

value of max of a selected neighbor of the node and its dist to one more than that
of the selected neighbor. Execution of a step is called a move.

The guards G0 and G1 are to remove inconsistencies in the local state of a node.
They require the leader to have max equal to its id and dist to be zero. G2 requires
the dist variable of a node to be less than or equal to the number of nodes minus
one. G3 says that, the estimate of maximum id of a node should be at least as
large as its own id. G4 says that, if a node is not a leader then, it should have
a neighbor whom it has followed. Conceptually a node i has followed a node j if
((j 2 Ni) ^ (i:max = j:max) ^ (i:dist = j:dist + 1)). We term this as a follow
relation between i and j. In G5, a node i follows a node j 2 Ni if j has a higher
estimate of maximum and j's distance estimate is less than n � 2. This ensures that
i's distance estimate is valid after executing the corresponding action. G6 requires
that if a node can follow many nodes all of which have same estimate of maxima
then it should follow the node with the least distance. We explain the need for G6
in the following paragraph.

Let us de�ne a directed graph H as follows: H = (V 0; E0 ) where V 0 = V

and E0 = f( i; j ) 2 E j i has followed j g. We call H as the follow graph of a
system state. If there are many nodes that a node i can follow, then one of them is
randomly chosen to establish the corresponding follow edge (i; j). It is easy to see
that, when a leader is elected, the follow graph of the system state is a spanning
tree of the network. We will now illustrate an undesirable scenario that may occur
in the absence of G6. A leader may be elected, but the follow graph de�ned by the
system state may not be of minimal depth.An example is shown in �gure 1. Figure
1(a) shows a graph G with diameter 3. The id of each node is shown beside it.
Figure 1(b) shows the follow graph H for the system in its current state. A triple
(id; max; dist) is shown beside each node. In this state the maxima is elected.
However the depth of follow graph is 3, while minimum depth spanning tree rooted
at node the with id 50 is 2. When G6 is present, the node with id 40 follows the
node with id 25, instead of the node with id 45. Thus the depth of spanning follow
graph is 2 which is minimal. So G6 is crucial for ensuring the property of minimal
depth spanning tree when leader is elected.

We de�ne a global predicate GP which holds when a leader is elected and the
algorithm has terminated. Let maxnode be the node with maximum id. Then

GP1 � ((maxnode:max = maxnode:id) ^ (maxnode:dist = 0))
GP2 � (8j 6= maxnode; (j:max = maxnode:id)^

(9k 2 Nj j j:dist = k:dist + 1))
GP3 � (8j 6= maxnode; 6 9k 2 Nj j (k:dist < j:dist � 1))
GP � GP1 ^ GP2 ^ GP3

Our algorithm ensures that at termination, the follow graph of the system state
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is a minimum depth spanning tree rooted at maxnode. We prove this claim in the
next section.

5 Safety and Liveness

The following lemmas are suÆcient to prove safety and liveness properties of the
system.

Lemma 1. Let maxnode be the node with maximum id. When GP is true the
spanning tree de�ned by follow relations is the spanning tree of minimum depth
rooted at maxnode.

Proof. We prove the lemma by contradiction. Assume that GP holds. Let
the follow graph be a spanning tree T1 rooted at maxnode. Let T2 be the mini-
mum depth spanning tree of the graph G rooted at maxnode. Let T2 have depth
mindepth. Let the depth of T1 be greater than mindepth. Consider a node id in
T1 at depth mindepth + 1. In T2, there must be a path of length d � mindepth

from maxnode to id. Let this path be maxnode; i1; i2; : : : ; id where ik:dist = k for
k = 1 : : : d. Now let ij be the �rst node along the path i1 : : : id which is at a depth
greater than j in T1. Now ij�1 2 Nij and ij�1:dist = j � 1. So GP3 does not
hold for node ij . This is a contradiction since GP is true. 2

Lemma 2. (Safety) When GP is true no guard is enabled for any node.

Proof. Let maxnode be the node with maximum id. Clearly no guard is enabled
for maxnode. Now consider any node j 6= maxnode. Clearly G0; G1; G3 are not
enabled. G4 is not enabled because GP2 is true. By Lemma 1, G2 is not enabled.
Since i:max = maxnode:max8i, G5 is also not enabled. G6 is not enabled because
GP3 is true. Thus no guard is enabled for any node. 2

Lemma 3. (Liveness) If GP is not true, then there exists at least one node for
which at least one guard is enabled.

Proof. We prove this lemma considering GP1; GP2 and GP3 separately.

1. GP1 does not hold.

(a) (maxnode:max = maxnode:id )^ (maxnode:dist 6= 0 ) : G1 is enabled
for maxnode.

(b) maxnode:max < maxnode:id : G3 is enabled for maxnode.

(c) maxnode:max > maxnode:id :

i. maxnode:dist = 0 : G0 is enabled for maxnode.

ii. maxnode:dist > 0 :
Consider the maximum length path maxnode; i1; i2; : : : ; ilast such
that each node in the path has followed its successor by the follow
relation. Consider the node ilast.

ilast:dist > 0 : Since the path is maximal length, there is no
neighbor of ilast whom it has followed. Hence G4 is enabled for
the node ilast.

ilast:dist = 0 : As maxnode has transitively followed ilast,
ilast:max = maxnode:max. So frommaxnode:max > maxnode:id

it follows that ilast:max 6= ilast:id. Thus G0 is enabled for the
node ilast.
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2. GP1 holds but GP2 does not hold.
Let set S consist of maxnode and all nodes j with j:dist � n � 1 which
have followed some node k such that k:max = maxnode:id. That is, S =
fmaxnodeg [ f j j (j:max = maxnode:max) ^ (:G4 for j) ^ (j:dist � n� 1)
g. Let S1 = V � S. Since the graph is connected, there must exist nodes j
and k such that (j 2 S ^ j:dist < n � 1) and k 2 S1 and j; k are neighbors.

(a) k:max < j:max : G5 is enabled for k.

(b) k:max > j:max : If k:dist = 0 then G0 is enabled for k. If k:dist <

n � 1 then G5 is enabled for j. Consider the case where k:dist = n � 1.
Let k; i1; i2; : : : ; ilast be the maximal length path such that each node
in the path has followed its successor. Following case 1(c)ii, either G4 is
enabled for node ilast or G0 is enabled for node ilast.

(c) k:max = maxnode:max : If k:dist > n � 1 then G2 is enabled for k.
Otherwise k 62 S implies G4 is enabled for k.

3. GP1 and GP2 hold but GP3 does not hold.
If there exists a node k such that k:dist > n � 1 then G2 is enabled for k. If
i:dist � n � 18i and G6 is not enabled for any node then GP3 is true and
hence GP . But this is a contradiction since GP3 is false. 2

GP is a global predicate that is satis�ed when a leader is elected. By Lemma 1
and Lemma 2 we have proved that irrespective of the start state a leader is elected
when the algorithm terminates. We prove termination in the next section.

6 Termination

We complete the correctness proof by proving termination of the algorithm. For
proving termination it suÆces to show that every node in the system can execute
only �nite moves.

We de�ne a max-dist tuple as a tuple (max; dist). Two max-dist tuples are
said to be equal i� both the components of the tuple are equal to each other. We
de�ne a relation greater than (> ) between two tuples T1 = (max1; dist1) and
T2 = (max2; dist2) as follows:

T1 > T2 i�
(i) max1 > max2 OR
(ii) ((max1 = max2) ^ (dist1 < dist2)).

Lemma 4. If a node executes in�nite moves then it executes in�nite follow moves.

Proof. Clearly a node can execute G0; G1; G2; G3 moves atmost once. Thus
the only correction step that can be executed in�nite times is G4. A G4 move by
a node i puts it in a state such that (i:max = i:id) ^ (i:dist = 0). Only a follow
move can change i:max or i:dist. Hence i can execute the next G4 move only after
it makes atleast one follow move. The same argument holds for subsequent G4
moves. Thus if a node executes G4 in�nite times then it has to execute in�nite
follow moves. 2

We de�ne a set repeated-follow-moves(i,j,a,b) as a set of follow moves such that
at each follow move in the set, i follows j when the max-dist tuple of j is equal to
(a; b). If a set repeated-follow-moves(i,j,a,b) is in�nite then we call it as in�nite-
follow-moves(i,j,a,b).

Lemma 5. For every node i which makes in�nite moves, there exists a node j in
its neighborhood such that j makes in�nite moves and
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(i) There exists a set S of in�nite-follow-moves(i; j;maxj ; distj),

(ii) there is a node k 2 Nj such that there exists a set S1 of in�nite-follow-
moves(j; k;maxk ; distk), and

(iii) (maxk; distk) > (maxj ; distj).

Proof. Part(i) of the lemma is obvious as the number of possible values of
max and dist is �nite in the start state, and there must exist an in�nite-follow-
moves(i; j;maxj ; distj) for one or more nodes j. Let in�nite-follow-moves(i; j1;maxj1 ; distj1)
be one such set. If there exists an in�nite-follow-moves(j1 ; k;maxk; distk) for k 2
Nj1 then the lemma is true as it is imperative that (maxk ; distk) > (maxj1 ; distj1).
If not, then for node i to follow j1 in�nite times there must be another neighbor
j2 such that i makes in�nite oscillation of follow moves between nodes j1 and j2.
However this will require that in�nite-follow-moves(i; j2;maxj2 ; distj2) exist. By
G5 and G6 this requires (maxj1 ; distj1) > (maxj2 ; distj2), and (maxj2 ; distj2) >
(maxj1 ; distj1) which is impossible. Hence one of j1; j2 must have a neighbor k
whom it follows in�nite times. Let this node be jf . Thus there must exist nodes jf
and k such that (i), (ii) and (iii) are true for i; jf and k. So the lemma is true. 2

We observe that the relationship expressed in Lemma 5 is transitive.

Theorem 1. No node can make in�nite moves.

Proof. Consider a node i1 which makes in�nite moves. Following lemma 5, there
must be an in�nite sequence of nodes i1; i2; i3; : : : such that for all x � 1,

(i) in�nite-follow-moves(ix; ix+1;maxix+1 ; distix+1) exists,
(ii) in�nite-follow-moves(ix+1; ix+2;maxix+2 ; distix+2) exists, and
(iii) (maxix+2 ; distix+2) > (maxix+1 ; distix+1).

But the number of max-dist tuples in the system is �nite. So this sequence cannot
be an in�nite sequence which is a contradiction. 2.

Theorem 2. (Termination) The algorithm computes leader in a self-stabilizing
way.

Proof. By GP , Lemma 2, Lemma 3 and Theorem 1 the algorithm elects the
leader irrespective of starting state in �nite time. 2

7 Conclusion

In this paper, we have proposed a self-stabilizing algorithm for leader election of
networks of any topology. We have proved algorithm's correctness, and termination
properties. Our algorithm encompasses a very generic transient fault model, does
not make assumptions about knowledge of properties like diameter of the netwrok,
or channel properties like FIFO channels. Our algorithm constructs a spanning tree
of minimum depth rooted at the maximal node. This is a very desirable property
in applications where the spanning tree constructed is used for communication with
the leader. Our simulation of the protocol suggest that our algorithm terminates
in O(n) time. We are currently investigating this property. We would also like to
investigate if a self-stabilizing algorithm which terminates in O(diameter) time is
feasible without the knowledge of diameter.
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