
RI 02012 June 2002 Computer Science/Mathematics

IBM Research Report

Conn-Eval : A Connectionist Method for
Evaluating Multiple Attribute Items

Jayanta Basak Manish Gupta

IBM Research Division

IBM India Research Lab

Block I, I.I.T. Campus, Hauz Khas

New Delhi - 110016. India.

e-mail : bjayanta,gmanish@in.ibm.com

IBM Research Division

Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for pub-

lication outside of IBM and will probably be copyrighted is accepted for publication.

It has been issued as a Research Report for early dissemination of its contents. In

view of the transfer of copyright to the outside publisher, its distribution outside of

IBM prior to publication should be limited to peer communications and speci�c re-

quests. After outside publication, requests should be �lled only by reprints or legally

obtained copies of the article (e.g., payment of royalties). Copies may be requested from

IBM T.J. Watson Research Center, Publications, P.O. Box 218, Yorktown Heights, NY

10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at

http://domino.watson.ibm.com/library/CyberDig.nsf/home

1

Abstract

The task of evaluating and ranking multiple attribute items is relevant

in many di�erent aspects of e-commerce including RFQ, negotiations, per-

sonalized catalogues, pro�ling and customer modeling. Usually a parametric

utility function is considered which is a linear weighted sum of the individual

attribute utilities, and the weights of the individual attributes are estimated

by minimizing the discrepancy between the predicted order and the true

order. However, the individual attribute utilities may not be linearly inde-

pendent and they may not be known a priori. In this paper, we propose

a nonlinear model for ranking the multiple attribute items and their subse-

quent evaluation without assuming any independence between the attributes

and any prior knowledge about individual attribute utility functions. A neu-

ral network (connectionist model) has been used at the core of the algorithm

to learn and rank the items. Since the desired utility value for a bid is un-

known, the usual techniques of function approximation cannot be employed

in this paradigm, and a new objective function (error measure) is de�ned in

this context. New rules are proposed for automatic selection of learning rate

and prescriptions are made for selection of the architecture of the neural net-

work for this task. New query-based sampling technique is also provided to

improve the performance of the method. Experimental results illustrate the

e�ectiveness of the method for ranking items with complex utility functions.

1 Introduction

The task of ranking multi-attributed items is relevant in many di�erent aspects

of e-commerce like auctions, Request for Quotes (RFQ), negotiation, advanced

pro�ling and product catalogues. A subset of items having multiple attributes

with partial or full ordering is given to an agent, and the task of the agent is to

evaluate the attribute values of the items and extract (discover / �nd out) the

embedded utility function such that the next set of items with unknown order can

be ranked with this utility function. The task is straightforward and simply boils

down to function approximation problem if the explicit utility function value is

known. However, no explicit utility function value is usually known to the agent,

rather a human evaluator can provide a pairwise comparison or ranking of the

items.

2

For example, in an RFQ (request for quote), the received responses or bids need to

be evaluated to select the winning bid or set of winning bids. It is equally impor-

tant in �xing up negotiation strategies where each bidder needs to understand and

evaluate the valuation of his counter party for the multi- attributed items. Simi-

lar problems persist in the domain of catalogue and on- line shopping assistants,

where a set of products with multiple attributes are to be properly evaluated for

a buyer and the set of \most interesting" or \most relevant" products are to be

shown to the buyer. Similarly, in the case of advanced pro�ling in a store-front

(B2C commerce), a merchant needs to con�gure optimal grouping of buyers for

performing the strategic business decision making, where it is necessary to under-

stand and evaluate the intrinsic customer utilities from their demographics and

past behavior.

In all these tasks, which are essentially part of decision-support systems, the prob-

lem is to come up with a \good" algorithm to evaluate and rank multi- attributed

items, and is in general, related to multi-attribute utility theory (MAUT) [1, 2, 3, 4].

In the development of multi-attribute utility theory (MAUT), parametric utility

functions are considered to di�erent levels of complexity including multilinear,

multiplicative, and additive models. Solutions to the problem of evaluation of at-

tributes are proposed for the additive models only where the utilities for individual

attributes are considered to be independent [5, 6, 7, 8].

For additive utility function, evaluation of the utility and subsequent ranking of

the items (bids in RFQ, customers in pro�ling) has been performed by formulating

the problem as a problem of linear programming [5] in the design of a decision

analysis system for e-sourcing. In this approach, a technique (WORA) for assessing

the weights of the attributes is proposed by formulating the problem as a linear

programming task. In order to improve online marketplaces, a multi-attribute

resource intermediary (MARI) [8] has been developed which also uses additive

model of the utility function.

Subsequently, in [6], a system called Q-Eval has been developed based on the lin-

ear program solver where the polytope de�ning the feasible solution region of an

additive utility function model is iteratively reduced and queries are generated suc-

cessively from the center of the polytope. In marketing research, a commonly used

alternative approach is conjoint analysis [9] where attribute values are quantized

and cards are designed with all possible quantized attribute values. The rank of a

product in the complete ordering is used as its value and then an additive model

3

is found by regression analysis. Di�erent extensions of conjoint analysis [9, 10] are

also available in the literature.

Traditional auction software vendors [11] including Moai, Vertical Net, Ariba, and

Clarus have added improvements to their software wherein the bidders (i.e., sup-

pliers) have the ability to specify multiple attributes, such as quality and terms

and conditions, etc allowing the bidders to di�erentiate themselves by other factors

besides price. In all the above software weighting factors enable buyers to rate rel-

ative importance of attributes to be bid on. Another genre of RFQ software that

has emerged is from vendors such as Hologix, Emptoris, Perfect and Menerva Tech-

nologies. For example, Hologix's RFQ tool, Attrium, allows complex con�guration

and bill-of-material relationships. Suppliers can specify o�erings with ranges of

attributes and price variations for terms and conditions. Perfect's product, Perfect

Market, enables a buyer to post an RFQ and the software automatically searches

seller's rules (prede�ned and stored in the database), calculates the best possible

o�er for each seller, and ranks all the o�ers according to the criteria that are most

important to the buyer. Here again the buyer can specify weighting factors for each

attribute using a sliding scale where the user can choose from various options such

as \do not care", \important", \more important", \very important", and \most

important".

In most of these existing approaches of additive utility models, two key assumptions

are made, (i) the attributes are linearly independent, and (ii) the utility functions of

individual attributes are known. However, in real life more complex situations can

arise where the utility functions not only take multilinear form of dependency but

even more complex interactions may exist. For example [4] provide an example

(see pg. 232) of a farmer with preferences for various amounts of sunshine and

rain because that will impact his crop. The amount of sunshine that the farmer

prefers is interlinked with the amount of rain that had happened in the past.

In the case of nonlinear utility function having inter-dependent attributes, if the

individual attribute utility function is not known then it is diÆcult to determine

that function or even if that is determined, it may not reect the true utility

function of the individual one.

In this paper, we propose an evaluation algorithm for ranking multiple attribute

items considering nonlinear interactions between the individual attributes and as-

suming no a priori knowledge about the individual attribute utility functions. The

proposed method also assumes no uncertainty during decision making [4][chapter

4

5]. A subset of items (bids) is randomly selected from the entire set of items

(bids), and the user ranks them and submits the ranked list to the system. Every

pair of the ranked list is then fed to a multi-layered feed-forward neural network

and the network learns the relative preferences of the item set. Neural network

models have been employed widely in the context of function approximation and

category learning [12]. However, in the present context, since the desired utility

function value is unknown, it is not possible to employ the function approximation

algorithms in evaluating and ranking the item set. Therefore, we propose a novel

objective function (error measure) and a new technique to adaptively adjust the

learning rate has also been proposed in this framework.

Note that, in performing the ranking of multi-attribute items, we do not need to

consider the evaluation of individual attributes separately (i.e., which attribute is

more important than the other). This is because in the case of nonlinear inter-

actions in the individual attribute utility functions, attribute importance or the

evaluations are dependent on the present attribute value and there is no absolute

importance of an attribute as used in the case of conjoint analysis or additive util-

ity models. However, attribute selection/evaluation from a ranked list of items can

be obtained by the sensitivity analysis of network output with respect to the input

attributes. For example, the absolute value of the �rst derivative of network out-

put with respect to an input attribute will provide an attribute sensitivity index of

that attribute with respect to its present value. Various other methods have been

proposed in literature for evaluation/selection of features/attributes of the items

in the context of classi�cation and clustering [13, 14, 12] which include selective

elimination/addition of features and their e�ect on classi�cation/clustering per-

formance, formulating certain criterion measures and its optimization. However,

from a ranked list of items, no such study is available in the literature of neural

network study.

2 Problem De�nition and Formulation

2.1 Background

In the multi-attribute utility theory, a parametric utility function is assumed for

evaluating multiple attribute items (bids) [2, 4]. Various forms of valid utility

5

functions are available in the literature. The most general form of the utility

function, called multilinear utility model is given as

u(x) =
mX
i=1

wiui(xi)+
mX
i=1

X
j>i

wijui(xi)uj(xj)+
mX
i=1

X
j>i

X
k>j>i

wijkui(xi)uj(xj)uk(xk)+: : :

(1)

where x = (x1;x2; � � � ;xm) is a vector of m random variables over performance

measures, ui(:) is a single attribute utility function over measure i (scaled in 0

and 1), wi is the weight for measure i, and the higher order terms represent the

interactions between the di�erent attributes. A simpli�ed version of the multilinear

utility function model is the multiplicative utility model where the higher order

interaction terms are in general expressed as

u(x) =
mX
i=1

wiui(xi)+
mX
i=1

X
j>i

wwiwjui(xi)uj(xj)+
mX
i=1

X
j>i

X
k>j>i

wwiwjwkui(xi)uj(xj)uk(xk)+: : :

(2)

such that the higher order interactions can be modeled as products of the individual

attribute weights. A further simpli�cation of the utility function leads to additive

model where the higher order interactions are ignored such that

u(x) =
mX
i=1

wiui(xi) (3)

In the formulation of the problem with additive utility function, a linear program

solver is employed for an ordered set of bids B1 � B2 � � � � � Bn with the

constraints

Pm
i=1wi = 1

u(x1) � u(x2)

u(x2) � u(x3)
...

u(xn�1) � u(xn)

(4)

6

where u(xi) is the utility for bid . The constraints in equation (4) de�ne a polytope

which represents a feasible (valid) region of solution for a ranked set of bids repre-

sented by the vectors (x1;x2; � � � ;xn) such that for each i, xi = (xi1;xi2; � � � ;xin)

as in equation (1). A point in the feasible region is chosen to get the solution to

the problem [13]. In [6], the polytope is iteratively re�ned for each inequality and

the successive query is generated in such a way that it reduces the feasible region

to a maximum extent pulling the solution towards the center of the polytope.

2.2 Algorithm Conn-Eval

In the proposed algorithm, it is assumed that the utility function not only takes

multilinear form with higher order interactions but can also have even more general

forms (Section 4). Secondly, the individual attribute utility functions are consid-

ered to be unknown and therefore they are to be evaluated separately. Due to

the presence of higher order nonlinear interactions, it is not possible to evaluate

individual utilities ignoring or keeping the other attributes �xed. We provide a

neural network based algorithm for evaluating the multiple attributes and their

nonlinear interactions to generate the ranking of the multi-attributed items.

Method Conn-Eval (Input In : Set of items for evaluation with multiple attributes;

Output Rl : Ranked list of items)

1. Select a subset of items and display them to user

2. User ranks the subset of items and submits the ranked sublist r to the system

3. Initialize a multi-layered feed-forward neural network

4. repeat

5. for every pair of items (a; b) in the ranked sublist r

6. Compute the required change in parameter weights of the neural network

end for 7. Compute average change in parameter weights for all possible

pairs in the ranked sublist r provided by the user

8. until there is not any signi�cant change in the parameter weights

9. Evaluate the entire set of items In by the network and get the output ranked

list Rl.

7

End Conn-Eval.

3 Neural Network based Approach (Conn-Eval)

A multilayered feedforward network [12] is trained on an ordered set of bids in

such a way that that the network output provides same ordering of the bids as

the desired one. In order to obtain the desired performance, it is crucial to do the

training of the network properly with a suitably chosen error measure.

3.1 Error Measure

If f(x) is the function generated by the neural network then (f(xi)�f(xj)) should

have the same sign as (u(xi)�u(xj)) for all i and j. In other words, the relative or-

dering (partial or complete ordering) provided by the trained network must match

with that given by the known samples. Any trained network can obtain this with

f(x) = �(u(x)) (5)

where �(:) is a monotonic non-decreasing function (in stricter sense it should be

a monotonic increasing function). If the training of the neural network can deter-

mine one such function then it serves the purpose. The network is said to have

committed an error if for a multidimensional utility function, (u(xp) � u(xq)) and

f(xp) � f(xq) for some p and q. The problem cannot be modeled as a function

approximation task (as performed in nonlinear regression or function learning [14])

since the true value of the utility function u(xp) is unknown and therefore cannot

be used to train the network function f(x). Only the relative pairwise ordering of

the true utility function i.e., sign(u(xp) � u(xq)) is known for the training bids.

Therefore a measure to be optimized (minimized) can be considered as

E =
X

u(xp)�u(xq)

[sign(u(xp)� u(xq))� sign(f(xp)� f(xq))](f(xp)� f(xq))
2 (6)

8

where f(:) is the network output. The �rst part of the error measure [sign(u(xp)�

u(xq))� sign(f(xp)�f(xq))] is zero if the bids are in the same order according to

the network output as that of the original one, and as a result the error is zero. If

the bids are out of order then the �rst part is nonzero and the network is penalized

with an error equal to the squared di�erence between the network outputs of the

bid pairs. The intuition is that even if there is an error in �nding correct pairwise

order, the network must at least make them equal. The generalization error for

the measure (equation (6)) can be expressed as

E =
Z

(f(xp)� f(xq))

2:p(xp):p(xq)dxpdxq (7)

where
 is the subspace where the network has made an error in ordering the bids,

and p(:) is the density function of observing the bids. Considering the independence

of the random vectors Xp and Xq, it can be shown that the generalization error

reduces to

E = E
((f(x)� < f(x) >
)
2) (8)

where E
 indicates the expectation over the subspace
 and < : >
 indicates the

function mean over the subspace. Therefore the generalization error reveals the

fact that minimization of the output error can lead to a function which is constant

for all possible values of x. Note that, a constant function also follows the property

of non-decreasing monotonicity as mentioned in equation (5).

In order to avoid a constant function, the objective measure can be modi�ed as

E =
X

u(xp)�u(xq)

[sign(u(xp)�u(xq))�sign(f(xp)�f(xq))](K:f(xp)�f(xq))
2 (9)

where K is a constant such that 0 < K < 1. The generalization error can be

expressed as

E =
Z

(L(xp;xq)� 1)2:f 2(xq):p(xp):p(xq):d(xp)d(xq) (10)

9

where L(xp;xq) = K:f(xp)=f(xq), such that E goes towards zero when L(xp;xq)!

1 (necessary but not suÆcient) under the assumption that f(x) 6= 0 for all x. Since

L(xp;xq) = K:f(xp)=f(xq), it imposes an ordering on f(:) forK < 1 and f(x) 6= 0

identically.

Instead of the squared error measure, we have taken the �rst order di�erence such

that for two bids p and q,

E(p; q) =

8<
: f(xq)�K:f(xp) when f(xp) � f(xq) but Bp � Bq

0 ordering is the same as desired.
(11)

The total error measure for all the bid/item pairs is given as

E =
X
p;q

E(p; q) (12)

3.2 Learning Rules

We train a three-layered feedforward network with the objective of minimizing the

measure given by equation (11). The input layer accepts the variables or attributes

of the bids/items, the �rst and second hidden layers generate the nonlinear func-

tions and �nally in the output layer, the activations are combined to generate the

utility function. The steepest gradient descent rule can be derived as

�wl
ij(p; q) = ��:

@E

@wl
ij

(13)

which is simpli�ed as

�wl
ij(p; q) =

8<
: �(KÆil(p)vjl(p)� Æil(q)vjl(q)) if f(xp) � f(xq) and Bp > Bq

0 otherwise

(14)

where

10

�wl
ij(p; q) : the change in wl

ij when the network is presented with the

pair of bids (Bp; Bq),

wl
ij : weight of the link connecting the neuron i of layer (l � 1)

to neuron j of layer l,

� : learning rate,

vjl(p); vjl(q) : the output of the jth node in layer l of the network

for xp and xq as input to the network respectively,

Æjl(p); Æjl(q) : error propagated backward from the output layer to node j

of layer l.

The output of node j of layer l is

vjl(p) =
1

1 + exp(�ujl(p))
(15)

where ujl(p) is the total input to the jth node of layer l from the previous layer,

given as

ujl(p) =
X

wl
ijvi;l�1(p) (16)

For an input node vj0(p) = xpj where xp = (xp1; xp2; � � � ; xpm) is an m-dimensional

vector. The value of Æ can be recursively computed as

Æil =
X
k

wkiÆk;l+1vil(1� vil) (17)

For the output layer, Æ = 1.

The updating of the parameter weights is highly dependent on the selection of

learning rate (�). If a large learning rate is chosen then the weights change rapidly,

however, near the �xed point, it oscillates and the network does not converge to a

particular solution. On the other hand, if a very small learning rate is chosen then

network becomes very slow to converge.

11

3.3 Selection of the Learning Rate

Several studies are made for the optimal selection of the learning rate in the liter-

ature of neural networks and machine learning [12]. Certain annealing schedules

[15, 12, 16, 17] have also been proposed in the literature in various other contexts.

In order to circumvent such problems, conjugate gradient descent error minimiza-

tion [16] has also been proposed instead of the steepest descent techniques. How-

ever, in the context of quotes (response to RFQ), this is being a �rst attempt (to

the knowledge of the authors), no such algorithm has been proposed for automatic

scheduling of the learning rate. The optimal learning rate at every iteration can be

obtained by the principle of minimum residual error such that at every iteration

the weights of the links are updated in such a way that the discrepancy between

the ordering obtained from the network and the desired ordering on the training

samples gets minimized.

For two di�erent bids xp and xq (with u(xp) � u(xq) and f(xp) < f(xq)), the

weights need to be updated in such a way that

K:(f(xp) + �f(xp)) = (f(xq) + �f(xq)) (18)

according to equation (11), where �f(:) is the change in the output of the network

due to the change in the parameter weights. In other words,

K:�f(xp)��f(xq)) = f(xq)�Kf(xp) (19)

Consider that

�f(xp) =
P

i

�
@f(xp)

@wL
i

:�wL
i

+ @f(xp)
@vi;L�1

P
j

�
@vi;L�1

@wL�1
ij

:�wL�1
ij + @f(xp)

@vj;L�2

P
k

�
@vj;L�2

@wL�2
jk

:�wL�2
jk + � � �+

�
: : :
��

(20)

From equations (14) and (17), the chain rule in equation (20) can be simpli�ed

and equation (19) can be expressed as

12

�:(
X
i;j;l

(�wl
ij)

2) = f(xq)�Kf(xp) (21)

where

�wl
ij(p; q) = K:Æil(p)vjl(p)� Æil(q)vjl(q) (22)

Thus for steepest gradient descent, the optimal selection for the learning rate is

given as

�opt =
f(xq)�K:f(xp)P
l

P
i;j(�w

l
ij(p; q))

2
(23)

In the on-line updating of the weights of the network, the parameter values depend

on the sequence in which the pair of bids/items are presented to the network. We

have used the batch mode updating of the parameter values such that

�wij =
1

N

X
p;q

�wij(p; q) (24)

for all i and j, N being the total number of pairs. In displaying a list of items/bids

to a user, often it is more important to display the top items as correctly as possible

than the bottom items/bids. In other words, an error occurred in the positioning a

top item/bid appears to be costlier than an error occurred down the list. In order

to take care of this situation, the errors in the top bids/items should be counted

more than that down the list. We, therefore, weigh di�erently to the mistakes

depending on the position of the bid/item pair in the ordered list. Therefore, in

the batch-mode updating of the weights, the total error is given as

E =
X
p;q

�p;qE(p; q) (25)

The batch mode updating rule is thus given as

�wij =

P
p;q �pq�ij(p; q)P

p;q �pq
(26)

where �pq is an weight associated with the pair (p; q) (assuming p < q, i.e., Bp � Bq

in the training set). The parameter �pq depends on the position of the bid/item p in

the ranked list and its distance from the other bid/item q. For example, if the �rst

bid/item is confused with the tenth bid/item then the error is more severe than

13

the case when it is confused with the second one. Secondly, the parameter should

also depend on the absolute position of the bid/item. For example, if there is an

error in positioning the �rst bid/item then the error is counted more than if the

error occurs in the tenth bid/item position in the ranked list. Di�erent heuristic

measures can be de�ned for the parameter �pq. We have de�ned it as

�pq =

"
(n� p+ 1)(q � p+ 1)

n2

#�
(27)

where n is the total number of training bids/items in the ranked list. � > 0 is a

parameter which controls the relative weights between the top and bottom items.

We have chosen it as 0.5.

4 Architecture Selection for Conn-Eval

The performance of the network is dependent on the selection of architecture for

learning the bids. As discussed in literature [12], a large number of parameters

in an architecture can result in poor generalization due to over�tting [16, 18],

and a smaller architecture may not be able to capture the details. In the case

of over�tting, if the function does not posses the monotonic nature then it will

severely a�ect the generalization performance.

Neural network architecture selection is a widely studied problem in the literature

[12, 18, 19], although no speci�c attempt is made to evaluate their performances

in the context of ranking the responses to RFQ. Here we prescribe a guideline for

selecting the number of hidden nodes in a neural network for a given kind of utility

function.

In general, a multilinear utility function (equation (1))

u(x) =
X
i

�iui(xi) +
X
j>i

�ijui(xi)uj(xj) + � � �+
X

k>j>i

�ijkui(xi)uj(xj)uk(xk) + : : :

(28)

can be expressed as

14

u(x) = �l(
X
i

�ilui(xi)) (29)

with u0(x0) = 1. Any such polynomial of order r can be expressed as a product

form having r terms. Thus, a utility function can be expressed as

log(u(x)) =
X
l

log(
X
i

�ilui(xi)) (30)

since the ranking of the bid responses remains una�ected by logarithmic operation

(logarithm is a monotonic increasing function). We can express an even more

generalized form of utility function as

log(u(x)) =
X
l

l log(
X
i

�ilgil(x)) (31)

where � and are constant weights and gil(x) are the subutilities capturing the

dependencies among the variables and in general, are increasing or decreasing con-

cave functions. The constants specify the power of degree of the subutilities in

the interaction (for example quadratic, cubic and higher order terms). Given the

individual utility functions, it is evident from equation (30) that only r hidden

nodes suÆce to �nd out a correct order of the responses if the multilinear utility

function is of order r.

In the context of neural networks, a more generalized form of utility function can

be expressed as

u(x) = o(
X
l

lhl(
X
i

�ilgil(x))) (32)

where o(:) is a function (exponential as in equation (31) characterizing the complex

interactions between the weighted subutilities together with the functions h(:).

The form of the utility function given by equation (32) is exactly the same form

of function as produced by a multilayered feed-forward network with g(:), h(:)

and o(:) being the transfer functions of the �rst, second hidden layers and the

output layer respectively. The �rst hidden layer should have an order of m nodes

15

Type of Utiility Function Hidden Nodes Hidden Nodes

(m-dimensional in the First in the Second

input vector) Hidden Layer Hidden Layer

Linear O(m) O(1)

Quadratic O(m) O(2)

Polynomial of O(r) O(m) O(r)

Log-polynomial of O(r) O(m) O(r)

Exp-polynomial of O(r) O(m) O(r)

Table 1: Estimates of the number of hidden nodes required in three-layered feed-

forward network for di�erent kinds of utility functions.

representing the number of variables in the input bids or objects with each hidden

node modeling a concave function (equations (31) and (32)), and the second hidden

layer should consist of r hidden nodes, r being the order of the polynomial. The

increasing or decreasing nature of the subutilities can be controlled by the positive

or negative values of the weights (such as � and in equation (32)) which can be

embedded as weights of the links from �rst to second hidden layer of the network.

For di�erent forms of utility functions such as logarithm of polynomials or expo-

nential function of polynomials, the number of hidden nodes needs to be selected in

the same way as that of the polynomial utility function, although the output trans-

fer function can be chosen di�erently. Note that, the selection of transfer function

of the output node (i.e., the node in the output layer) in this kind of application

is not very crucial as that in the function approximation problem because it deals

with the relative order of the input or the relative magnitude of the function and

not with the true output value of the function. Table 1 summarizes the order of

requisite number of hidden nodes in a three-layer feed-forward neural network for

ranking the quotes.

In Table 1, it is assumed that the subutilities are not known. If the individual

subutilities are known then only one hidden layer will suÆce with the assumption

that the subutility functions are fed directly as input and prescribed second hidden

layer is used as the �rst hidden layer of the remodeled network.

16

5 Selection of Training Samples by Querying

In the algorithm based on neural network described above, the bids or objects are

divided into two di�erent sets, namely the training set and the test set. The net-

work is trained on the training set and then tested on the test set. The performance

of the algorithm depends on the training samples selected from the bids/items.

Algorithms [20, 21, 22, 23, 24, 25] are designed to selectively obtain the training

samples (labeled samples) in order to perform the training (active learning) in

various contexts including classi�cation, clustering and function approximation. In

[20], a survey is provided on di�erent active learning algorithms in neural networks.

Usually in the active learning algorithms, labeled samples are selected in such a way

that it maximizes the information content required for the training of the learning

machine. In supervised classi�cation algorithms, query is generated (i.e., training

samples are selected) from the most confusing decision regions. The most confusing

samples are selected by employing a set of very simple learners and samples for

which simple learners collectively make maximum number of incoherent decisions,

are selected. In some of the algorithms as surveyed in [20], local methods are also

employed (like Voronoi diagram) to select the suitable labeled samples. However,

in the context of learning utility where only a ranked subset is provided as labeled

samples (and not the labels of individual samples), very few query-based sampling

techniques [6] to select labeled samples is reported in the literature. The main

objective of the active learning is to reduce the cost of labeling the samples and

make the learning algorithm faster, i.e., to train the learning machine with fewer

examples.

In the present algorithm it is very diÆcult to employ simple learners to learn

nonlinear utility functions for getting the most confusing bid or item pairs. In

Iyengar et al. [6], an assumption is made about the linear dependency of known

subutility functions. In the problem formulation (of the linear program) the order

of items describe a polytope by virtue of the linear inequalities. At every step,

a new bid or item is selected in order to minimize the volume of the polytope

by selecting a bid which generates a hyperplane dividing the polytope into equal

halves.

In the present neural network based training algorithm, no a priori knowledge

about the individual utility function is considered, and nonlinear interactions are

17

allowed between the individual attributes. In order to follow the same guideline

as in the Iyengar et al. [6], it is necessary to provide a mathematical description

of the decision space in terms of complex nonlinear or piecewise linear boundaries

generated by the two hidden layers which is hard to analytically describe. Here we

provide a much simpler query generation algorithm which is designed particularly

for evaluating the multi-attribute utility items.

In order to design the algorithm, a basic assumption is made about the form of

individual attribute utilities. Each subutility follow an increasing or decreasing

or a single hump-like curve in general even after the complex nonlinear interac-

tions. However, it is assumed that any subutility curve does not possess frequently

changing behavior of increasing and decreasing nature. It is assumed that the users

do not commit mistakes in evaluating the bids or items (in order to generate the

training data). In fact, even if a user commits errors, the present algorithm gets

an approximate function based on the erroneous training data. Formally,

Assumption 1 : Let f(x) be a utility function of item represented as attribute

vector x = [x1; x2; � � � ; xn]
0

, then for a set of ranked items (ranked according to

utility function f(x)), [x(1);x(2);x(3); � � � ;x(N)], for any attribute i, the deriva-

tives [@f
@xi
jx=x(1) ;

@f

@xi
jx=x(2) ;

@f

@xi
jx=x(3); � � � ;

@f

@xi
jx=x(N)] should have the same sign or

can have at most one sign change if the user feedback is correct.

Based on the assumption, the query generation algorithm is given as :

S : Entire set of items or bids to be ranked.

T : Training set.

begin

1. Initialize the set T = A pair of bids randomly chosen from S.

repeat

2. Train the network with the training set T to obtain the utility function f(x).

3. Sort all items in S � T . Without loss of generality, let the sorted set of items

or bids be

x(1) � x(2) � x(3) � � � � � x(N)

18

where N = jS � T j is the set of items in the set S � T .

4. Compute

Z =

2
666664

sign(@f

@x1
jx=x(1)) sign(@f

@x2
jx=x(1)) � � � sign(@f

@xn
jx=x(1))

sign(@f

@x1
jx=x(2)) sign(@f

@x2
jx=x(2)) � � � sign(@f

@xn
jx=x(2))

...

sign(@f

@x1
jx=x(N)) sign(@f

@x2
jx=x(N)) � � � sign(@f

@xn
jx=x(N))

3
777775 (33)

where n is the number of attributes.

5. For each attribute i and consecutive bid/item pairs, compute sign changes such

that

C2 = [change(Z11; Z21); change(Z12; Z22); � � � ; change(Z1n; Z2n)]

C3 = [change(Z21; Z31); change(Z22; Z32); � � � ; change(Z2n; Z3n)]
...

CN = [change(ZN�1;1; ZN1); change(ZN�1;2; ZN2); � � � ; change(ZN�1;n; ZNn)]
(34)

where change(si; sj) is de�ned as

change(si; sj) = 1 if s1 and s2 are opposite signs

= 0 otherwise
(35)

6. Count the number of 1s in each vector Ci denoted by jC2j, jC3j, � � �, jCN j.

7. Select the bid/item j such that

j = argmaxifjCijg (36)

Add item/bid j to the training set such that

T T
[
fx(j)g (37)

until the error (training error or validation error) is less than certain threshold or

the size of training set reaches a maximum limit (governed by the user)

end

Note : In computing the matrix Z in step 4, it has been assumed that the signs

of the derivatives are either (+)ve or (-)ve. However, the derivative can also take

19

a zero value in which case it can lead to a contradictory situation in step 5. For

example, let for two di�erent attributes the derivatives of the utility function for

sorted set of items take the values as

(+ + 0 0 - - 0 0 + +) and (+ + 0 0 + + 0 0 + +).

In the �rst case, essentially there are two sign changes through 0 and in the second

case there is no sign change of the utility function. However, in order to capture

it in the sign change in step 5, the algorithm must have a look-ahead operator

to understand which one is a sign change and which one is not. We did this

operation by scanning the sign of the derivative of each column in Z sequentially,

and converting each 0 with the sign of its predecessor. Therefore, the two di�erent

cases exempli�ed changes to

(+ + + + - - - - + +) and (+ + + + + + + + + +) respectively. Then step 5 is

applied to compute the sign change along the columns of Z.

The query generation algorithm (active learning) has been designed based on the

assumption 1 in order to minimize the confusion in each bid/item of the test set.

Although in assumption 1, it is stated that the assumption is valid if the user

feedback is correct, it is quite possible that a user can make mistakes in real-life

scenario and the utility function can change its sign more than once. However,

the query generation algorithm does not restrict the utility function to change its

sign only once, rather it tries to minimize the number of sign changes. In other

words, even if a user commits mistakes, the algorithm �nds out the approximate

utility function based on the user's feedback without restricting the utility function

subject to only one sign change with respect to some attribute.

6 Experimental Results

We generated a batch of test bids where a subset of these test bids are ordered

by a known utility function. A neural network is then trained by this subset of

ordered bids. The performance of the trained network is then tested on the entire

batch of bids ordered by the known utility function. The performance of the neural

network based method is also compared with the LP-based technique with known

subutility functions. Note that, in the neural network based method no a priori

knowledge about the sub-utility functions is assumed. The performance of the

network is tested with di�erent types of utility functions having di�erent number

20

of input variables.

6.1 Performance Measure

In order to quantify the performance, a measure is de�ned which compares the bid

ranking according to the output of the network and that derived from the known

utility function. For example, let the true order of 5 bids generated by the given

utility function be

B1 � B2 � B3 � B4 � B5

and two di�erent predicted orders be

B1 � B3 � B2 � B4 � B5

and

B1 � B4 � B3 � B2 � B5:

In both the cases, only two bids are interchanged in the true order. However, the

e�ect of the mistake is more severe in the second case because it makes B4 greater

than B3, B3 greater than B2, and also B4 greater than B2. In literature, some

measures have been used to evaluate the performance in ranking bids [5, 6]. Here

we compare every ordered pair of bids with the order according to the network

utility function, and the total number of mismatches is counted. The performance

is then measured as

Performance =

1�

number of mismatches

total number of bid pairs

!
� 100% (38)

If the algorithm is able to �nd out the correct order then the performance will

show a 100% accuracy, otherwise it will degrade.

In order to have more importance to the mistakes in the ranking of top bids/items,

the performance measure can be modi�ed as

21

Performance1 =
[(N � i + 1)(j � i + 1)]� � 100%P
(i;j)2ErrorSet[(N � i+ 1)(j � i+ 1)]�

(39)

where N is the total number of items in the ranked list (including the training

set), i and j are the positions of the items in the ranked list with i < j (i.e.,

Bi � Bj), and ErrorSet is the set of all pair of items/bids for which the network

commits mistakes. The parameter � is the same exponent as used in equation (27)

(� = 0:5).

Often, it is more important to show the top items correctly to the user instead of

displaying the entire ranked set of items. In order to do so, another performance

measure is de�ned which simply counts the number of correct top K items in the

top K positions. This is the same measure as used in [6]. Therefore, the second

performance measure is

Performance2 = number of correct top K items in top K positions (40)

6.2 Test Utility Functions

We considered three basic subutility functions and combined them by certain non-

linear form (such as product or sum of products). In literature [4], di�erent form of

utility functions are mentioned. We have used have the following forms of subutility

functions.
f1(x) = 1� exp(��(x� �)) for x � �

= 0 otherwise
(41)

where � > 0 is a parameter which controls the steepness of the ascent of f1(x)

(Figure 1) and � can be positive or negative depending on the type of the variable.

For example, in the case of quality of a product � is positive indicating the fact that

a product with bad quality has no utility. On the other hand, for returns policy,

� can be negative indicating that even if the company does not have any returns

policy, the product can have some utility to the user.

The second subutility function (Figure 2) of decreasing nature is chosen as

f2(x) = 1� 1�exp(�x)
1�exp(��)

for 0 < x � �

= 0 otherwise
(42)

22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x →

u(
x)

 →

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x →

u(
x)

 →

(a) (b)

Figure 1: Nature of utility function given by equation (41), (a) for � > 0 and (b)

for � < 0.

Here the parameter � > 0 controls the steepness of descent of the utility function

and � > 0 controls the extent of the utility function. For example, for the attribute

price, a product's utility decreases with price and it becomes zero for a user when

the price exceeds certain threshold (more than the buying capacity of the user).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x →

u(
x)

 →

Figure 2: Nature of utility function given by equation (42)

The third form of subutility function (Figure 3) we have chosen is

f3(x) = exp(��1(x� �1)
2sgn(�1 � x)� �2(x� �2)

2sgn(x� �2)) (43)

where

sgn(x) =

8<
: 1 if x � 0

0 otherwise

The parameters �1 and �2 are the steepness control parameters for ascent and

descent of the utility function on both the sides. The parameters �1 and �2 control

the width of the function.

23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x →

u(
x)

 →

Figure 3: Nature of utility function given by equation (43)

6.3 Synthetic Data

We generated utility function in the context of procuring paper rolls [26] from

various suppliers or manufacturers. The attributes that a customer can consider

are Price, Quality of the paper roll, Time to procure the material from the point of

order placement, Restriction on the quantity (e.g., a customer may be interested

to procure 100 rolls, but a supplier will not supply less than 200 rolls or a supplier

may not have 100 rolls and he can supply only up to 50 rolls at a time), Shipping

cost that the customer must pay, Restriction on width of the paper roll (customer

may like to procure such paper rolls having certain range of width), Restriction on

thickness, Returns Policy, Shipping Insurance, Customer Services Support, Vendor

Rating, Manufacturing Capability, Financial Stability, Color of the Paper roll, and

many such other factors. Several of these attributes can be dependent on each

other according to the user preferences. For example, if price becomes very low

then the customer's utility on the time-to-procure will not change independently

because a change in the lower range of time-to-procure will not add much to the

utility value as compared to a very high range of time-to-procure.

The attributes quality, manufacturing capability and shipping cost take the �rst

kind of utility function (i.e., utility function of ascending nature) given by equation

(41) with a positive value of the threshold �. The attributes returns policy, shipping

insurance, customer service support and vendor rating also take the �rst kind of

utility function (ascending nature) with a negative value of �. The attributes price

and time to procure take the second kind of utility function (descending nature as

in equation (42)). The attributes like quantity restriction, width and thickness take

the third kind of utility function (equation (43)) such that each of these attributes

has a high utility if its value lies within certain range and the utility falls o�

suddenly if it is outside the range.

24

We de�ned two di�erent composite utility functions. The �rst one is given as

u1 = 0:5u(price):u(quality):u(time-to-procure)

+0:3u(quantity-restriction):u(shipping-cost)

+0:2u(width):u(thickness):u(returns-policy):u(shipping-insurance):

u(customer-service-support):u(vendor-rating):

u(manufacturing-capability)
(44)

and the second composite function is given as

u1 = u(price):u(quality):u(time-to-procure)

u(quantity-restriction):u(shipping-cost):

u(width):u(thickness):u(returns-policy):u(shipping-insurance):

u(customer-service-support):u(vendor-rating):

u(manufacturing-capability)

(45)

i.e., u2 is the product of all individual utilities.

The algorithm has been tested on randomly generated data in [0; 1] for both the

composite utility functions. A set of 100 bids/items are generated synthetically

in both the cases and a subset has been used to train the network. The utility

functions (described in equations (41), (42) and (43)) are imposed on the bid/item

attribute vectors. The training data is chosen by random sampling as well as

by query sampling algorithm as described in Sections 5 and 6. Figures 4 and

5 illustrate the performance and comparative results of the algorithms both for

random sampling and query sampling. The performance is reported here with both

the performance measures (Performance1 and Performance2 given by equations

(39) and (40) respectively). Note that, the results shown in Figures 4 and 5 are

the average of 10 di�erent experiments. We have also tested the algorithm with

di�erent network architectures. Results for only one architecture is reported here

as a case study.

25

5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
3

4

5

6

7

8

9

10

11

12

13

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

(a) (b) (c)

5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

4.5

no. of training sample →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
5

5.5

6

6.5

7

7.5

8

8.5

9

no. of training sample →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
14

14.5

15

15.5

16

16.5

17

17.5

18

no. of training sample →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

(d) (e) (f)

Figure 4: The performance (Performance2 as given by equation ()) of conn-eval

for random sampling and query-based sampling techniques. The dotted curve

show the performance for random sampling, and the solid curve illustrates the

performance for query-based sampling technique. The results are average of 10

di�erent experiments with an architecture (16, 10) where 16 is the number of

nodes in the �rst hidden layer and 10 is the number of nodes in the second hidden

layer. (a) The number of correct 5 top items in the top 5 positions with imposed

utility function u1 (equation (44)), (b) The number of correct 10 top items in the

top 10 positions with imposed utility function u1 (equation (44)), (c) The number

of correct 20 top items in the top 20 positions with imposed utility function u1
(equation (44)), (d) The number of correct 5 top items in the top 5 positions with

imposed utility function u2 (equation (45)), (e) The number of correct 10 top items

in the top 10 positions with imposed utility function u2 (equation (45)), (f) The

number of correct 20 top items in the top 20 positions with imposed utility function

u2 (equation (45))

26

5 10 15 20 25
10

15

20

25

30

35

40

45

50

number of training samples →

P
er

ce
nt

ag
e

er
ro

r →

5 10 15 20 25
3

4

5

6

7

8

9

10

11

12

number of training samples →

P
er

ce
nt

ag
e

er
ro

r →

(a) (b)

Figure 5: The performance or error (Performance1 as given by equation (39)) of

conn-eval for both random sampling and query-based sampling techniques. The

dotted line illustrates the performance for random sampling and the solid line

for query-based sampling with an architecture (16,10) for both the cases. (a)

The performance for the imposed utility function u1 (equation (44)). (b) The

performance for the imposed utility function u2 (equation (45)).

6.4 Real-life Data

In the synthetic data set, the bid/item attributes are randomly drawn from uni-

form distribution in [0; 1]. It is observed that the performance of the query-based

sampling algorithm is almost comparable with the random sampling technique and

does not provide a signi�cant improvement. This is due to the fact that in the case

of uniform distribution, the data is uniformly dense everywhere in [0; 1] and as a

result, the query generation algorithm does not provide an order of advantage over

the random sampling technique. In order to test the eÆcacy of these algorithms,

the method is tested on a real-life data set.

A real-life data set on digital camera is obtained from amazon.com. We obtained

197 cameras with 15 attributes. After data cleansing, we retained 93 cameras

with 9 numeric attributes. The camera attributes we considered are price, CCD

resolution, memory card included, optical zoom, digital zoom, width, height, depth,

and weight. Since it is very diÆcult to obtain the ranking (or partial ranking) of

the items in real-life, we imposed utility functions on these attributes separately.

(Note that, it is possible to obtain a score for each item in the amazon.com, but

the score reects the overall feedback about the item. However, total number of

feedbacks and the sales �gures vary very widely across the items. It does not at all

reect any utility value of the items with respect to an individual or any particular

27

customer segment.)

We imposed the utility function of type 1 (equation (41)) on the attributes CCD

resolution, memory card included, optical zoom, digital zoom and depth. The type

2 utility function (equation ()) is imposed on the attributes price, width, height

and weight. The composite utility functions for the items are given as

u1 = 0:4u(price) + 0:3u(CCD-res):u(mem-card-incl):u(opt-zoom):u(digital-zoom)

+0:3u(width):u(height):u(depth):u(weight)
(46)

and

u1 = u(price):u(CCD-res):u(mem-card-incl):u(opt-zoom):u(digital-zoom):

u(width):u(height):u(depth):u(weight)
(47)

The e�ectiveness of conn-eval is tested for both the imposed utility functions with

random sampling and query based sampling algorithms. Figures 6 and 7 illustrate

the performance of the algorithms with two di�erent architectures. Note that,

the results reported here are the averages of 10 di�erent experiments. We have

tested the algorithms with various architectures like (10,6),(10,7),(10,8) and the

ones illustrated in Figures 6 and 7. The results are almost comparable and it shows

that the results for query-based sampling does not vary widely depending on the

architecture so long as the architecture is selected according to the prescription as

given in Section 4. The results for two di�erent architectures are reported here as

case studies.

The results as provided so far are obtained for a fully ranked (fully ordered) subset

of training samples. However, the strength of the algorithm lies in the fact that

it can learn from a partially ordered subset of training samples and obtain a total

order on the test set (or the entire set of samples). We have tested the e�ectiveness

of the query-based algorithm on a partially ordered training set on real-life data.

The partial order of the training data is generated by comparing a sample with

only a fewer percentage of samples in the data. Whenever a sample is selected by

the query-based sampling technique, it compared with only 60% of the existing

28

5 10 15 20 25
1.5

2

2.5

3

3.5

4

4.5

5

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
4

5

6

7

8

9

10

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
13

14

15

16

17

18

19

20

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

(a) (b) (c)

5 10 15 20 25
2

2.5

3

3.5

4

4.5

5

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

(d) (e) (f)

Figure 6: The performance (Performance2 as in equation (40)) of conn-eval on

real-life data set with an imposed utility function u1 (equation 46). (a) The num-

ber of top 5 correct items in the top 5 positions with an architecture (11,7), (b)

the number of top 10 correct items in the top 10 positions with an architecture

(11,7), (c) the number of top 20 correct items in the top 20 positions with an

architecture (11,7),(d) The number of top 5 correct items in the top 5 positions

with an architecture (12,8), (e) the number of top 10 correct items in the top 10

positions with an architecture (12,8), (f) the number of top 20 correct items in the

top 20 positions with an architecture (12,8)

29

5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

4.5

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
2

3

4

5

6

7

8

9

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
6

8

10

12

14

16

18

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

(a) (b) (c)

5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

4

4.5

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
2

3

4

5

6

7

8

9

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
4

6

8

10

12

14

16

18

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

(d) (e) (f)

Figure 7: The performance (Performance2 as in equation (40)) of conn-eval on

real-life data set with an imposed utility function u2 (equation 47). (a) The num-

ber of top 5 correct items in the top 5 positions with an architecture (11,7), (b)

the number of top 10 correct items in the top 10 positions with an architecture

(11,7), (c) the number of top 20 correct items in the top 20 positions with an

architecture (11,7),(d) The number of top 5 correct items in the top 5 positions

with an architecture (12,8), (e) the number of top 10 correct items in the top 10

positions with an architecture (12,8), (f) the number of top 20 correct items in the

top 20 positions with an architecture (12,8)

30

samples in the training set (by randomly choosing the samples in training set for

comparison with a probability of 0.6). A typical case of partial order obtained

with �ve training samples in the training set is B1 � B2; B3; B4 and B3; B4 � B5.

Figures 8 and 9 illustrate the results for query-based algorithm.

5 10 15 20 25
11

12

13

14

15

16

17

18

19

20

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
6

6.5

7

7.5

8

8.5

9

9.5

10

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
1.5

2

2.5

3

3.5

4

4.5

5

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

(a) (b) (c)

5 10 15 20 25
11

12

13

14

15

16

17

18

19

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
4

5

6

7

8

9

10

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
1.5

2

2.5

3

3.5

4

4.5

5

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

(d) (e) (f)

Figure 8: The results (average over 10 di�erent experiments) on real-life data

for partially ordered training data set with query-based sampling technique. The

utility function imposed on the real-life data set is given by equation (47). The

performance is measured according to equation (40) for di�erent architectures;

(a),(b), and (c) respectively top 20, top 10 and top 5 correct items for an architec-

ture (12,7), (d), (e) and (f) respectively top 20, top 10 and top 5 correct items for

an architecture (11,7).

7 Conclusions and Discussion

A neural network (connectionist model) based algorithm has been presented for

ranking multiple attribute items with nonlinear interactions between the attributes

assuming no a priori knowledge about the individual attributes. The nonlinear in-

teractions between the multiple attributes exist in di�erent domain of e-commerce

31

5 10 15 20 25
11

12

13

14

15

16

17

18

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
5

5.5

6

6.5

7

7.5

8

8.5

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

(a) (b)

5 10 15 20 25
10

11

12

13

14

15

16

17

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

5 10 15 20 25
5

5.5

6

6.5

7

7.5

8

8.5

no. of training samples →

no
. o

f c
or

re
ct

 to
p

ite
m

s
→

(c) (d)

Figure 9: The results (average over 10 di�erent experiments) on real-life data

for partially ordered training data set with query-based sampling technique. The

utility function imposed on the real-life data set is given by equation (46). The

performance is measured according to equation (40) for di�erent architectures; (a)

and (b) respectively top 20 and top 10 correct items for an architecture (12,7), (c)

and (d) respectively top 20 and top 10 correct items for an architecture (11,7).

32

such as auctions, negotiations, catalogues and customer modeling. Here we im-

posed certain complex nonlinear utility functions and the proposed model is found

to be e�ective in ranking the items. The neural network based algorithm has fur-

ther been modi�ed to select training bids/items (query-based sampling). It has

been found that the algorithm performs much better with query-based sampling of

the training samples than with random sampling of the training samples in the case

of real-life data set. We have also performed experiments where a partially ranked

item set is provided as training set (instead of fully ordered training set). The pro-

posed algorithm with query-based sampling is found to perform quite satisfactorily

in ranking the item set with partially ordered training data. Since many of the

existing techniques [6, 5, 7, 8] are based on the assumption of linear dependency

between known utilities of individual attributes, they cannot be duly compared

with the proposed algorithm which essentially assumes nonlinear interaction and

unknown utility function of the individual attributes.

Attribute evaluation (i.e., which attribute is more important than the other) has

not been performed separately in the present work. We can perform the sensitivity

analysis of the output with respect to the input attributes after network �nds

out a ranked list of item. However, relative importance of individual attributes

depends on all other attribute values of the bid/item concerned due to the nonlinear

interaction of the attributes, and no absolute importance can be associated with

individual attributes. Evaluating individual attributes is not within the scope of

the present article and it constitutes a scope of our future study.

Conn-eval algorithm incorporates query-based sampling technique to perform faster

learning, i.e., to learn the utility function with fewer number of training samples.

However, a feed-forward neural network with two hidden layers has a large number

of free parameters and with a few training samples, it becomes a highly under-

constrained optimization problem in minimizing the error. In order to obtain bet-

ter generalization performance, error minimization can be performed under certain

regularization criteria [12] (for example, incorporating information criteria (AIC)

or network cost (MDL) or other regularization measures including network dimen-

sion). In the context of ranking item set, the de�nition of generalization error

can be di�erent from that in the context of function approximation and concept

learning. These issues can constitute an interesting scope of future study.

We provided a prescription for the suitable neural architectures for di�erent num-

ber of attributes with di�erent levels of complexity in the utility function. Studies

33

can be made for automatic selection of architecture in order to obtain a ranked set

of items. In literature, methods are available for architecture selection by growing

and/or pruning the networks [12]. Certain objective measures need to be de�ned

in the context of ranking items in order to perform the task of pruning. These mea-

sures essentially relate to the generalization measures which (as described before)

can constitute a part of further work.

In order to obtain a model capturing the nonlinear interactions between attributes,

we have exploited the capacity of connectionist models. However, instead of con-

sidering only neural networks, other tools including decision trees, support vector

machines, evolutionary algorithms or classical pattern recognition techniques [27]

can be explored for this task.

34

References

[1] J. C. Butler, J. Jia, and J. Dyer, \Simulation techniques for the sensitivity

analysis of multi-criteria decision models," Eur. Journal Operations Research,

vol. 103, pp. 531{545, 1997.

[2] J. C. Butler, D. J. Morrice, and M, \A multiple attribute utility theory ap-

proach to ranking and selection," Management Science, vol. 47, pp. 800{816,

2001.

[3] R. T. Clemen, Making Hard Decisions. Boston MA.: PWS Kent Publishing,

1991.

[4] R. L. Kenney and H. Rai�a, Decisions with Multiple Objectives. New York:

Wiley, 1976.

[5] M. Bichler, J. Lee, C. H. Kim, and H. S. Lee, \Design and implementa-

tion of an intelligent decision analysis system for e-sourcing," Tech. Rep. RC

22048(98946)30, IBM Research Report, April 2001.

[6] V. S. Iyengar, J. Lee, and M. Campbell, \Q-Eval : Evaluating multiple at-

tribute items using queries," in ACM Electronic Commerce (EC'01), Tampa,

Florida, USA, October 14-17, 2001.

[7] T. L. Satty, The Analytic Hierarchy Process. New York, USA: McGrawHill,

1980.

[8] G. Tewari and P. Maes, \Design and implementation of an agent-based inter-

mediary infrastructure for electronic markets," in ACM Conference on Elec-

tronic Commerce (EC'00), pp. 86{94, 2000.

[9] P. Green and V. Srinivasan, \Conjoint analysis in marketing research : new

developments and directions," Journal of Marketing, vol. 54, pp. 3{19, 1990.

[10] R. Johnson, \Comment on adaptive conjoint analysis : some caveats and

suggestions," J. Marketing Research, vol. 28, pp. 223{225, 1991.

[11] E. Andren, \Negotiation software helps work out e-commerce details," Gart-

ner Group Research Notes (ECEA), vol. 9, 2001.

[12] S. Haykin, Neural Networks : A Comprehensive Foundation. New York:

Macmillan College Publishing Company, 1995.

35

[13] J. Basak, R. K. De, and S. K. Pal, \Unsupervised feature selection using

neuro-fuzzy approach," Pattern Recognition Letters, vol. 19, pp. 997{1006,

1998.

[14] R. A. Devijver and J. Kittler, Pattern Recognition : A Statistical Approach.

London: Prentice-Hall, 1982.

[15] J. Basak, \Learning Hough transform : A neural network model," Neural

Computation, vol. 13, pp. 651{676, 2001.

[16] S. Lawrence and C. L. Giles, \Over�tting and neural networks : conjugate

gradient and back propagation," in Proc. IEEE Intl. Joint Conference Neural

Networks, Como, Italy, 2000.

[17] D. Saad, On-line Learning in Neural Networks (Ed.). Cambridge CB2 2RU:

Cambridge University Press, 2001.

[18] S. Lawrence, C. L. Giles, and A. C. Tsoi, \What size neural network gives

optimal generalization?," Tech. Rep. UMIACS-TR-96-22,CS-TR-3617, Insti-

tute for Advanced Computer Studies, University of Maryland, College Park,

MD20742, 1996.

[19] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.

[20] M. Hasenjager and H. Ritter, \Active learning in neural networks," in

http://citeseer.nj.nec.com/404108.html.

[21] M. Saar-Tsechansky and F. Provost, \Active learning for class probability

estimation and ranking," in Proc. Seventeenth International Conference on

Arti�cial Intelligence (IJCAI-01), Seattle, Washington, 2001.

[22] M. Hasenjager, H. Ritter, and K. Obermayer, \Active learning in self-

organizing maps," in Kohonen Maps (E. Oja and S. Kaski, eds.), pp. 57{70,

Amsterdam: Elsevier, 1999.

[23] Y. Freund, H. S. Seung, E. Shamir, and N. Tisby, \Selective sampling using

the Query by Committee algorithm,"Machine Learning, vol. 28, pp. 133{168,

1997.

[24] K. K. Sung and P. Niyogi, \Active learning for function approximation," in

Advances in Neural Processing Systems (G. Teasauro, D. Touretzky, and T. K.

Leen, eds.), vol. 7, pp. 593{600, Cambridge, MA: MIT Press, 1995.

36

[25] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, \Active learning with statis-

tical models," Journal of Arti�cial Intelligence Research, vol. 4, pp. 129{145,

1996.

[26] R. Goodwin, P. Keskinocak, S. Murthy, F. Wu, and R. Akkiraju, \Intelli-

gent decision support for the e-supply chain," Proc. American Association for

Arti�cial Intelligence, 1999.

[27] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classi�cation (2nd Ed.).

New York: Wiley, 2000.

37

