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Abstract

Microarrays (or biochips) is perhaps one of the most exciting devel-
opments in bioinformatics research. The emerging biochip technology
has made it possible to simultaneously study expression (activity level)
of thousands of genes or proteins in a single experiment in the labora-
tory. However, in order to extract relevant biological knowledge from the
biochip experimental data, it is critical not only to analyze the experimen-
tal data, but also to cross-reference and correlate these large volumes of
data with information available in external biological databases accessible
online.

We describe a comprehensive system for knowledge management in
bioinformatics called e2e in which data generated by the biochip experi-
ments can be analyzed for emerging patterns among groups of genes with
additional insights from related analyses like pathway scores, sequence
similarity, literature text summarization, etc. To the biologist or biologi-
cal applications, e2e exposes a common semantic view of inter-relationship
among biological concepts in the form of an XML representation called
eXpressML. Internally, e2e can use any data integration solution (like
DiscoveryLink, Kleisli or natively XML-based) to retrieve data and re-
turn results corresponding to the semantic view. We have implemented
an e2e prototype that demonstrates our framework by allowing a biolo-
gist to analyze her gene expression data in GEML or from a public site
like Stanford, and discover knowledge through operations like querying
on relevant annotated data represented in eXpressML using pathways
data from KEGG, publication data from Medline and protein data from
SWISS-PROT.

�Contact person. Author names appear in alphabetical order.
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Figure 1: e2e Biochips Information System Framework Architecture.

1 Introduction

The term biochip is often used to refer to the variety of microarrays and minia-
turized, microuidic systems that perform massively parallel biochemical assays
measuring the expression levels of thousands of genes or proteins simultaneously.
The advent of high-density microarrays, introduced by [25] made it possible for
the �rst time to measure the expression levels of thousands of genes simulta-
neously. Since then, DNA based microarray technologies [26, 4, 8, 19] have
been used extensively in generating the expression levels of all or most of the
genes of several organisms under a variety of experimental conditions. Special-
ized repositories and data warehousing projects are being built (NCBI's Gene
Expression Omnibus1(GEO), ArrayDB2, ArrayExpress3, Stanford Microarray
Database4(SMD), ChipDB5, GeneX[21]) to store the vast quantities of data
that are being generated by the biochips.

A biologist starts with analysis of the gene expression data for insightful
patterns among some clusters of genes. Once a gene cluster is obtained, the
main interest of a biologist lies in �nding out the underlying biological mecha-

1http://www.ncbi.nlm.nih.gov/geo/
2http://genome.nhgri.nih.gov/arraydb/
3http://www.ebi.ac.uk/arrayexpress/
4http://genome-www4.Stanford.EDU/MicroArray/SMD/
5http://young39.wi.mit.edu/chipdb public/front-page.html
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nisms and functions causing these genes to be co-expressed and assign biologi-
cal signi�cance to this cluster. The biological relations among these genes span
multidisciplinary islands of biology. Downstream annotation involves combin-
ing expression data with other sources of information to improve the range and
quality of conclusions that can be drawn. Hence, high-end data management
systems are required to handle the explosion in biochips data where beyond core
data services, their essential capabilities to enable e�ective biochip usage by the
life sciences industry include:

� Biochip data validation

� Comparative analytics

� Improved interpretation of these large data sets through integration of
other biomedical data sources

� Scalability

However, related biomedical data[2] are numerous and hence, it will usually
be available with distributed external organizations who store them in many
di�erent ways and continuously update them. The only common link is that
these related data sources and annotation tools are available online. Our focus
is to develop an infrastructural framework for building knowledge discovery
tools for microarrays that can leverage related but continuously updated diverse
online data.

To the stated end, we describe a comprehensive system for knowledge man-
agement in bioinformatics called e2e (see Figure 1) in which data generated by
the biochip experiments can be analyzed with additional insights from anal-
yses like pathway, sequence similarity, literature text summarization, etc. To
the biologist or biological applications, e2e exposes a common semantic view of
inter-relationship among biological concepts in the form of an XML represen-
tation called eXpressML. Internally, e2e can use any data integration solution
(like DiscoveryLink, Kleisli or natively XML-based) to retrieve data and return
results corresponding to the semantic view. We have implemented an e2e pro-
totype that demonstrates our framework by allowing a biologist to analyze her
gene expression data in GEML or from a public site like Stanford, and discover
knowledge through operations like querying on annotated data in eXpressML,
pathway scoring, text summarization, etc using pathways data from KEGG,
publication data from Medline and protein data from SWISS-PROT, accord-
ingly.

Here is a layout of the rest of the paper: we start with a background of gene
expression data and microarrays/biochips, and discuss current approaches for
data integration for bioinformatics. However, a biologist's focus is not just data
but the semantic relationship among retrieved data. To address this, we present
a desiderata for semantic integration and introduce the e2e framework to serve
as such an infrastructure. We discuss the di�erent components of e2e - the data
integration middleware, eXpressML, a uni�ed representation in XML for the
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complete "annotation data" necessary to gain insight into gene expression pat-
terns and the knowledge management (KM) applications. Next, we give a tour
of our e2e prototype that demonstrates the promise of an infrastructure capable
of going beyond analysis of microarray data to intelligently cross-reference and
correlate with information from external biological databases accessible online.
We conclude the discussion with our contributions and future work.

2 Background

2.1 Gene Expression and Biochips

Genes are fragments of DNA containing the fundamental code of life. The Cen-
tral Dogma of biology asserts that this genetic information moves from "DNA
to RNA to protein" and this process is called gene expression. When a gene is
expressed, the coded information contained in its DNA is �rst transcribed into
messenger-RNA and then translated into the proteins present and operating
in the cell. Changes in gene expression are associated with almost all biolog-
ical phenomena, including aging, onset and progression of diseases, adaptive
responses to the environment, and biochemical e�ects of drugs.

As the Human Genome Project hurtles towards completion and hundreds of
novel genes are being identi�ed in human and other organisms, DNA microarrays
are helping to accelerate our understanding of the functions of these genes. The
availability of this biochip data promises to have a profound impact on the
understanding of basic cellular processes, the eÆcacy of diagnosis and treatment
of disease, and improvements in our environment. Biochips, with their numerous
options from DNA to protein microarrays on a wide variety of surfaces and
di�erent modes of quanti�cation, are still in their infancy. In order to realize
the full potential of biochips, the main challenges faced by the life sciences
industry today are:

� Improvements in the core microarray technology to improve the accuracy
of gene expression measurement

� Development of the full spectrum of specialized analytics and (bio)informatics
tools required for making (biological) knowledge discoveries from biochip
data.

Our focus is to develop an infrastructural framework for building knowl-
edge discovery tools for microarrays that can leverage related but continuously
updated diverse online data.

2.2 Integration of Heterogeneous Data

There are several stand-alone analysis tools today (e.g. GeneSightTM from
Biodiscovery, biotechnology solutions from Spot�re, etc.) that detect gene ex-
pression patterns. However, since new genomic data is continuously produced
and made available online, a stand-alone tool, however sophisticated, will fail to
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provide the scalable, heterogeneous information integration infrastructure that
is required for an up to date and comprehensive understanding of the functions
of genes and their complex interactions. For the biologist, true insight is possi-
ble only by linking detected gene expression patterns with known background
information on genes such as its DNA sequence and 3D structure, its role in
cellular processes and disease onset/progression/prevention.

A variety of approaches have been developed for integrated access to het-
erogeneous data sources in genomics. Borrowing the terminology from [7], in
the link-driven federation approach, the user can switch between sources using
system-provided links in a hypermedia environment. Here, a user starts from
some point of interest in a data source and then can jump to other related
data sources through system created links. The user has to still interact with
individual sources; only the interaction is easier through convenient links and
not invoking the sources directly. SRS[10], GeneCards[23] and LinkDB[11] are
examples of this approach. The link driven approach is very convenient for
non-expert users because of the simple point-and-click user interface. It is also
possible to perform limited keyword search on the content of a source by spec-
ifying regular expressions. The downside of link driven approaches is that it
does not scale well and has no across-source capabilities.

Another approach is that of view integration in which a virtual global schema
is created in a common data model using the descriptions of the individual
sources so that the user can declaratively pose queries on the common data
model that may span the content of multiple sources. The system seamlessly
and automatically �gures out how data from the di�erent sources has to be
retrieved [18]. A variation of view integration is the warehousing approach
where instantiation of the global schema is created, i.e., all data of interest in
remote sources is locally replicated and maintained for predictable performance.
Example of general purpose database middleware for integrating heterogeneous
data sources for the Life Sciences domain includes IBM's DiscoveryLink[15],
Kleisli[5], and OPM[6] which provide powerful querying capabilities, but fail to
provide the in-depth analysis that are provided by the "point solutions".

It is important to remember that the goal of a biologist is not just to get any
data from di�erent sources. Instead, she wants to access only relevant data that
she can easily correlate in the pursuit of understanding the biochip assay. Hence,
what is needed is semantic integration in which the user sees domain concepts
like proteins and pathways while the infrastructural artifacts like source names
(SWISS-PROT, KEGG, etc) and attribute �elds (protein id, etc) are handled
transparently by the user. Our goal in bioinformatics should be to provide a one-
stop solution that facilitates knowledge discovery for microarrays by supporting
analyses of gene expression data and cross-validation of emerging patterns with
annotations of related data and applications available online. We will call such
a solution to be a SIM (Sematically Integrated solution for Microarrays) system.
It is clear that SIM systems will enable the biotechnology and pharmaceutical
industry to realize the full potential of biochips.
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3 Desiderata for a SIM system

As important biological data sources are distributed, autonomous, and hetero-
geneous, a biologist needs a uni�ed view of heterogeneous data and applications
that is irredundant, consistent, and semantically organized for maximum us-
ability. The main features of a SIM system include:

1. At the core, data storage and data management of massive volumes of
biochip experimental data.

2. Statistical analysis and visualization toolboxes for detecting gene expres-
sion patterns from biochip experimental data.

3. Downstream annotation/association of detected gene expression patterns
with relevant biological information from heterogeneous data sources.

4. Knowledge discovery through querying, analyzing, data mining and visu-
alization of the experimental and the downstream annotation information.

After a solution can store the large gene expression data from experiments,
the data is �ltered for gene expression patterns through a wide class of visual-
ization and analysis algorithms. Next, a SIM system needs the ability to access
and retrieve remote online sources so that a query and browsing interface can
be built that allows the biologist to query both the biochip experimental data
and the analytical results, and the annotations on related biomedical data from
remote sources. Related data can be heterogeneous (e.g. sequence, pathways,
literature, etc) and the user may issue queries that correlate annotations of
di�erent sources. Finally, specialized bioinformatics tools are essential to gain
insight into the di�erent functions of genes, their complex interactions and roles
in disease onset/progression/ prevention.

A system related to our de�nition of SIM is TAMBIS[12] where a common
ontology of about 1900 terms is constructed to describe the concepts and rela-
tionships in molecular biology. Users interact with TAMBIS in the ontological
realm while the system internally maps them to source schemas using Kleisli[5]
as its data integration middleware. However, TAMBIS is not targeted towards
microarrays and does not provide the full spectrum of query/analytical capabil-
ities (breadth) that is needed in making (biological) knowledge discoveries from
biochip data.

3.1 e2e - An end-to-end SIM Framework

We now discuss e2e as a SIM framework in which semantic relationship among
biological concepts is represented in eXpressML and analytical KM tools can
work from this abstraction. As seen in Figure 1, e2e envisages a two stage
approach.

The underlying infrastructure for e2e is a view integration middleware (called
Enterprise Information System to emphasize the fact that it should be able to
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handle large data sizes) which can retrieve either microarray experimental data
or external information from publicly available biological data sources. Recall
from the background section that in a view integration system, a virtual global
schema is created in a common data model using the descriptions of the indi-
vidual sources and any query posed on the common data model is answered by
seamlessly and automatically retrieving data from di�erent sources. In choosing
a middleware, one has to consider the issues of uniform data model, the query
language to support and availability of source wrappers. For example, with a
relational data model and SQL query language, DiscoveryLink[15] is a middle-
ware solution on commercial DB2TM database while Kleisli[5] uses a complex
value model of data and Collection Programming Language (CPL), but either
could be used within e2e. In the present prototype, the data management is in
XML and in-memory, but will be migrated to a relational database in the next
version.

To the biologist or biological applications, e2e exposes a common semantic
view of the inter-relationship among biological concepts in the form of the XML
representation of eXpressML[1]. This semantic biological model provides the
user with a common biological context to view and manipulate related data and
issue XML queries in Quilt[24] through a query interface.

Finally, e2e envisages an application layer where knowledge management
tools are available for detecting gene expression patterns and downstream an-
notation of these patterns with heterogeneous information provided by the mid-
dleware. For example, some tools that can be used are: pathway visualization
tools[17] for annotating gene clusters with pathway information, text summa-
rization tools[27, 16] for annotating gene clusters with biological function, and
sequence alignment tools[3] for annotating gene clusters with motifs/domains.
Figure 2 shows a schematic ow between KM analyses tools that a biologist
may take in pursuit of discovery. Note that the input for any KM tool is a group
of genes and (optionally) eXpressML while the output is some insight about the
group. By applying diverse tools, a biologist can verify her insights with analyses
spanning multidisciplinary islands of biology.

e2e is a SIM system o�ering semantic integration of the diverse data sources
to the user. Speci�cally, a user only needs to know about the biological domain
while the system will hide the peculiarities of the sources involved to answer a
domain query.

3.2 Integration in e2e

e2e works on two types of data - the gene expression data from microarray
experiments and annotations of gene expression as well as relevant distributed
data necessary to gain insight into gene expression patterns. The annotations
are semantically arranged in the XML representation of eXpressML[1].

For gene expression, we adopted Rosetta Inpharmatics' Gene Expression
Markup Language, GEMLTM 6, which has been accepted relatively widely by

6http://www.geml.org
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the industry as a uniform syntax for storing and exchanging gene expression
data from multiple biochip experiments. For annotations, we developed the
eXpressML representation keeping following into consideration:

� The semi-structured nature of XML makes it the appropriate language for
uni�ed view of annotations as it guarantees exibility and scalability in
the data model for future extensions.

� The common view should allow querying, modeling, and browsing of com-
plex annotations.

� The uni�ed model should arrange the annotation information in a compact
hierarchy but reect the relationship among the biological data items and
facilitate complex queries.

Though details of eXpressML have been given elsewhere[1], we indicate its
organization and give a snapshot of its DTD in Figure 3 (also see Figure 7 of e2e
tour). The clustering groups from gene expression analyses are represented un-
der expression data analysis while annotation on related data is collated under
reporter. Such data includes DNA, protein, keywords, disease, pathways, en-
zyme and citation information and is obtained either directly or by running KM
tools on data from heterogeneous data sources relevant to the genes/proteins
in the biochip experiment. Note that gene expression data itself is not part
of eXpressML. A related e�ort is MAGE-ML7 which represents useful annota-
tions that describe the experimental conditions and environments (array type,
number of spots, sample source, etc). However, MAGE-ML does not support
annotation derived from heterogeneous external sources while eXpressML ex-
tends to this as well.

Now both GEML and eXpressML are available from e2e and can be queried
with an expressive XML query language. The Biochips Query Interface (refer to
Figure 1) select supports queries in Quilt XML query language [24] (speci�cally,
Kweelt8 implementation of Quilt). Quilt is the precursor to XQuery9, which is
being formalized by W3C (see a survey of XML query languages at XML Cover
pages10). Quilt allows querying on the content and structure of XML documents
- it is the latter capability that makes it more powerful in expressiveness to SQL
(for relational data) or XML query languages like Xpath or XSLT. The query
interface has templates for a number of pre-canned queries and the user can also
pose any Quilt query which is valid (as shown later in Figure 8 of e2e tour).

3.3 KM Layer

The KM layer consists of two types of applications:

7http://www.mged.org/Workgroups/MAGE/mage.html
8http://db.cis.upenn.edu/Kweelt/
9http://www.w3.org/TR/xquery/
10http://xml.coverpages.org/xmlQuery.html
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<!ELEMENT eXpressML(project)
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<!ATTLIST project

id CDATA #IMPLIED
name CDATA #IMPLIED
company CDATA #IMPLIED …> …
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Figure 3: Outline of eXpressML. A query like `list all regulatory pathways and
enzymes associated with genes that are similar in expression to gene HXK1
(Hexokinase-1)' can be formulated against the eXpressML but it not possible
with existing representations like GEML or MAGE-ML. This is because the
query involves determining the genes in the same cluster (group) as gene HXK1
and �nding the pathways and enzymes associated with the resulting gene list
(marked by circles).
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� Tools for detecting gene expression patterns by supporting clustering, clas-
si�cation, and visualization of biochip experimental data.

� Downstream annotation tools combining expression data with other sources
of information to improve the range and quality of conclusions that can
be drawn. Related data can be sequence, 3D structure, biochemical path-
ways, medical literature, genetic maps of diseases, etc.

Below, we describe some of the implemented front-end tools in detail but note
that new tools can be built that have as input a group of genes and optionally,
subset of data represented in eXpressML.

4 Knowledge Management Applications

We discuss the range of front-end tools and techniques that e2e incorporates to
create integrated and systematic models of biological systems.

4.1 Microarray Analysis

The �rst tier of Microarray data analysis typically involves clustering or classi-
�cation of the microarray data. In clustering (or cluster analysis), genes with
similar expression patterns are grouped together. Then, it is the gene cluster
rather than the individual genes that get associated with biological functions
(e.g. DNA repair, galactose metabolism). For example, hierarchical clustering[9]
has been used to determine the functions of gene clusters in regulating cell-cycle
in yeast.

e2e provides a platform for integrating algorithms made available through
third-party vendors or academic researchers seamlessly as long as they provide
following basic information:

� Any initialization parameters and the format of input gene expression data
(tabular or XML).

� The format of output result.

� If the algorithm supports visualization, a handle of the input and output
panels.

Given this, the e2e microarray platform generates the necessary adapters for
mapping GEML/eXpressML data into the inputs/outputs of the external tool.
We have implemented hierarchical clustering (shown in Figure 6 of e2e tour)
and K-means clustering in the e2e prototype.

4.2 Text Summarization

The biomedical literature databases are rich source of information from various
disciplines of biomedical sciences. Text mining of these databases can be used
to augment, con�rm, or discover biologically signi�cant information for gene
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clusters spanning di�erent biological domains. The main challenges in handling
biomedical citations are:

1. Querying on even a small cluster of genes retrieves tens of thousands of
documents.

2. Use of multiple names and conventions in referring to genes makes it dif-
�cult to cross-reference documents with gene names.

3. Non-uniform nomenclature and language usage for same biological con-
cepts make it diÆcult for text mining of the citations retrieved.

4. Highly complex and parallel interrelations among biological processes across
multiple biological domains.

We have developed a specialized text-mining system called MedMeSH sum-
marizer [16] that provides a summary of the citations pertaining to a group of
genes in a given cluster. The MedMeSH summarizer system uses PubMed as
the literature database and provides an automated document extraction and
summarization solution (an output is shown in Figure 10 of e2e tour). PubMed,
the most widely used biomedical literature database has more than 11 million
citations (since 1960) and about 30,000 new citations are added each month.
Key features of MedMeSH Summarizer are:

� The user is required to provide only a list of genes (gene cluster) as input.

� The output is a summary of the documents, which shows

{ The most important MeSH terms which describe the whole cluster
(can be viewed as an overall list, a tree, or partitioned based on
cluster-relevance).

{ Produces summaries across all biological domains, which are relevant
to the cluster.

4.3 Pathways Scoring

Living organisms behave as complex systems that are exible and adaptive to
their surroundings. At the cellular level, organisms function through intricate
networks of chemical reactions (metabolic pathways) and interacting molecules
(regulatory pathways). These networks or biochemical pathways may be consid-
ered as the wiring diagrams for the complete biological system of an organism.

The information harnessed from microarray data can show the pathway dy-
namics. Genes in any organism act in concert with other genes in a pathway,
and the biological functions of a gene depends on these other genes. Annota-
tion of microarray data with pathway information can help in understanding
the functions and roles of the proteins involved in various cellular processes.
The pathway scoring system serves as an important tool for interpreting the
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Figure 4: Loading the gene expression data for 50 reporters.
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large amount of data from microarrays, in assessing the behavior of pathways
at di�erent cell stages or the e�ect of stimuli on cellular processes.

We have implemented pathway scoring algorithms [17] that can be used to
answer queries like:

� Which pathways are most a�ected during the course of the experiments?

� Which pathways are functioning di�erently between the two groups of
patients?

� What is the nature of the e�ect? (details such as which genes in a pathway
are most a�ected, are the genes over-expressed or under-expressed, which
reactions are disrupted etc.)

It retrieves information using gene expression data and putative metabolic
and regulatory pathways database of KEGG. The outputs are (one output is
shown in Figure 11 of e2e tour): pathway scores which quantify "activity",
"coregulation", and "cascade" e�ects in pathways as measured by the gene ex-
pression levels from the microarray experimental data, and pathway animated
visuals which show the e�ects on individual pathways over the course of a mi-
croarray experiment series or between two or more groups.

4.4 Protein Sequence Analysis

An annotated model organism genome can be used as a source of reference
for annotating and understanding other genomes. By comparing the complete
genome of one organism to another, it is clear that certain genes have been
conserved since evolutionary divergence from a common ancestor. Genes can
be found in the di�erent organisms, with identical functions and/or protein
motifs. The way to do this is by sequence analysis. The sequence analyser has
a host of sequence similarity tools including BLAST and FASTA and uses the
SWISS-Prot database.

5 A Tour of e2e

As mentioned before, we have implemented an e2e prototype that demonstrates
the promise of an end to end bioinformatics framework for microarrays. We
take a tour of the system following a set of actions that a typical biologist may
take for analyzing microarray results.

Figure 4 shows when the biologist has loaded the gene expression data for
50 genes (right panel) and selected 10 of them for further analysis. Now, the
biologist can view the expression levels of the selected genes graphically as seen
in Figure 5. In Figure 6, she has used hierarchical clustering to group the 10
genes based on their expression level.

Now, the biologist can ask the e2e tool to use pathways data from KEGG,
publication data from Medline and protein data from SWISS-PROT to build
eXpressML (which is a semantic model) for the selected genes. It is the task
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Figure 5: Viewing the expression level in graphical form.

of the tool, in conjunction with corresponding wrappers, to access the sources
and dynamically fetch the corresponding data, and assemble it as eXpressML.
Figure 7 shows the eXpressML generated for the 10 selected genes.

The e2e prototype allows the user to view and query on both gene expression
data and eXpressML. Figure 8 shows the query interface where there are some
pre-speci�ed parameterized queries in english or the user is free to specify their
own Quilt query. Queries can be diverse and cover any data represented in
eXpressML and gene expression or genes in the result of any previous query.
The latter is possible because we internally follow the convention of returning
a query result with a list of applicable genes. Queries can range from asking
information about a set of genes like the list of keywords, the reactions and
enzymes, the expression level, or correlating information from diverse sources.

In Figure8, the biologist has posed a query using the genes from the result
of a previous query (Q1), which in this case is a single gene (YHR007C), and
asked for all its pathways. Figure9 shows the result containing the names of the
pathways.

The user can also select a set of genes and invoke text summarization appli-
cation. An example output is shown in Figure10. Additionally, she can score
the pathways based on a scoring algorithm. Figure 11 gives one of the output
views.

6 Conclusion and Future Work

A biologist working with microarrays needs an handle over not only gene ex-
pression data and their analyses, but also on annotations of related data like
pathway scores, structural similarity, or summarization from available literature
on the genes. In this paper, we presented a comprehensive bioinformatics KM
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Figure 6: Clusters of genes with similar expression level.

Figure 7: The eXpressML constructed for selected genes by dynamically inte-
grating data from KEGG, SWISS-Prot and PubMed.
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Figure 8: Query interface for posing Quilt queries on expresssion data and
eXpressML.
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Figure 9: Result of the Quilt (XML) query posed in Figure 8.

framework called e2e which provides a uniform window to biochip data and
related annotations. To the biologist or biological applications, e2e exposes a
common semantic view of inter-relationship among biological concepts in the
form of an XML representation called eXpressML. Internally, e2e can use any
data integration solution (like DiscoveryLink, Kleisli or natively XML-based) to
retrieve data and return results corresponding to the semantic view.

We demonstrated an e2e prototype that gives an early glimpse of the wide
potential of an integrated KM solution for bioinformatics. Biologists who have
used the e2e prototype value the ability it provides to cross-relate concepts
and analytics from di�erent areas. However, they want to run it with larger
expression data (1000s of genes), something for which the current e2e prototype
is slow due to the in-memory storage of XML. This limitation will be addressed
in a future re-implementation of e2e.

We are looking at extending e2e along various directions:

� Improve annotation quality for di�erent types of data. Users speci�cally
want advanced text summarisation support that leverage known biological
ontologies.

� Extend the range of annotations and the types of related data.

� Improve query interface to allow the biologist to issue natural language
queries which get translated to necessary format and structure of the un-
derlying data model.

� Improve retrieval of unstructured data along with issues like change de-
tection and caching of results.

� Address middleware issues of e�ective query decomposition and scalability
in the presence of large data (through available database technologies) and
domain knowledge of biology[28].
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Figure 10: Summary of top keywords in medical literature that correspond to
the selected genes.

Figure 11: A visualization of pathway scores corresponding to the selected genes.
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