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Abstract

The amount of genomic data available for analysis online is vast and ever growing.
Yet, a biologist wishing to gain insight from them is lost in data model, data formats,
and interfaces of particular data sources. In this article, we survey the architecture
of data integration (also known as information gathering or informatics) applica-
tions which are used to integrate and provide uniform access to heterogeneous data
sources in bioinformatics. We use a taxonomy to highlight the capabilities of re-
cent integrated systems for genomic data access and give pointers to their future
extensions.

1 Introduction

The amount of genomic data available for analysis online is vast and ever grow-
ing. Yet, a biologist wishing to gain insight from them is lost in data model,
data formats, and interfaces of particular data sources. Many sources have
data as formatted �le with specialized Graphical User Interfaces (GUIs) and
retrieval packages. The design choices made by the autonomous data sources
considers the complexity of data, eÆciency of analytical tools, multi-platform
support and cost of implementation, but not integration issues which would
have lead to more adoption of database management systems. The heterogene-
ity of the data sources and the multitude of non-standard implementations
present an integration nightmare for uniform access.

The computer science �eld of data integration[19] (also known as informa-
tion integration or information gathering[18]), which lies at the cross-roads of
Arti�cial Intelligence and Databases, studies how to provide access to multi-
ple autonomous heterogeous data sources in a uniform fashion[19] such that
the diversity and distributed nature of the data sources is replaced by the
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virtual model of data accessible to the end user. We further de�ne access as
the ability to model, retrieve and query the individual or collective data from
the data sources in a consistent manner. Given a global world model, a set
of information sources, a mapping of contents of information sources to the
world model, and a query on the world model, the objective is to return in-
formation contained in the information sources that answers the query on the
world model. An agent integrating the di�erent heterogeneous sources must
return only the actual information that satis�es the user's query and no more.
A speci�c example is a biological 1 application to model, query, and annotate
biochip experimental data.

1.1 Bioinformatics: A complex data integration domain

We are interested in data integration in the large and complex domain of
bioinformatics to facilitate data analysis. Here, according to a recent survey[4],
there are atleast 335 data sources in 2002 beginning 2 with at least 6-10 sources
of similar type (for example, protein, pathway, publication, gene expression
data, etc.). In contrast, conventional data integration solutions have dealt with
very few sources with little overlap in content. Moreover, there is rich domain
information on how results for queries should be obtained and strong user
preference for sources (example, one biologist may prefer SWISS-PROT to
PIR for protein information due to its aÆliation). The completeness (but not
correctness) of the results is negotiable in favor of performance and timeliness.
The data size can be large (in megabytes or gigabytes). Finally, the user may
want to employ the unique native data analysis capabilities of the data sources.

Data Analysis in Bio-informatics is in two phases:

(1) Identify genes which constitute an interesting regulatory pattern by ap-
plying a set of statistical analysis/ clustering methods like hierarchical,
k-means, fuzzy and self-organizing feature maps.

(2) Identify functional relationships among selected genes based on maximum
number of information/ data sources to develop and verify hypotheses.
In a sense, the clusters from the �rst step are characterized by a set of
meaningful features from the databases. Additionally, relationship among
the genes is predicted and validated/understood.

Karp [14] has identi�ed the issues in data integration in bioinformatics and
alluded to the need of a reasoning module through what he calls a Relevance

1 We are particularly interested in Bioinformatics, which is the application of in-
formation sciences (mathematics, statistics and computer science) to increase our
understanding of biology.
2 Up from 281 in 2001.
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Module. An example of a query that the biologist may want to ask in e2e is
(modi�ed slightly from [14]):

Q: Find examples of co-expressed genes that code for enzymes in a single
metabolic pathway.

Query Q can be more precisely described as - �nd a set of genes G from a
pathway P where:

� There exists R, the set of all reactions in P
� There exists E, the set of all enzymes that catalyze a reaction in R
� G is the set of genes that encode an enzyme in E, and
� Genes in G are similar in their expression level according to some clustering
algorithm.

To answer the query, the system needs to access a protein pathway data source
like KEGG, the user's gene expression data and a clustering algorithm.We will
use this query throughout the paper to highlight the working of the surveyed
bioinformatics systems.

1.2 Data Integration

A data integration system can be characterized by the amount of transparency
it provides to the user. The di�erent types of transparency, in increasing degree
of abstaction are:

(1) Format transparency or the user not having to know about the data
formats supported by a source and the individual ways to access them.

(2) Location Transparency or the user not having to know about the location
of a piece of information on the source. This gives the impression of a
single location for all information while the access details to the source
is handled by the system.

(3) Schema Transparency or the user not having to know the schemas of
individual sources to reconcile the �nal result. This allows the user to
query data across sources in an integrated manner.

(4) Source Transparency or the user not having to know if a particular source
exists. For example, the user will know that protein information can be
obtained from the system but she will not have to know the source from
which such an information can be obtained. Source transparency necessi-
tates a domain ontology so that the user interacts with the system using
domain concepts and the concepts are in turn reconciled with available
sources.
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Conventional data integration approaches consider the data sources as repos-
itories of data but not as applications (which may in turn embody complex
interactions with other sources). They also do not provide direct mechanisms
for leveraging domain-speci�c user guidance. A characteristic of bioinformat-
ics is that since the number of sources on any particular subject is high, the
data integration solution should be scalable with sources.

A variety of approaches have been developed for integrated access to hetero-
geneous data sources in genomics. In the link-driven federation approach, the
user can switch between sources using system-provided links. The systems
do not provide any transparency to the user. In view integration, a virtual
global schema in a common data model is created using the source descrip-
tion. Queries on the common data model is then automatically reformulated
to source level queries. A variation of view integration is the warehousing ap-
proach where instantiation of the global schema is created, i.e., all data of
interest is locally stored and maintained for integrated access. Both view and
data integration provide format, location and schema transparency to the user.
The holy-grail in data integration is to provide source transparency as well,
which leads to semantic integration. Here, a common ontology describes the
concepts of interest and source characteristics are directly mapped to the com-
mon concepts. The user interacts in the ontological realm while the system
deals with the sources.

1.3 Outline

In subsequent sections, we survey these approaches for data integration in de-
tail in and give examples of typical implementations. As we �nd, though much
stride has been made in integrated genomic data access, no single approach
can handle the idealized scenario. We give pointers to ongoing research e�orts
and future trends.

2 Technologies in Data Integration

A basic problem underlying view integration is the autonomy of the sources,
which invariably leads to the lack of cooperation and standardization of for-
mats among the sources. Existing formats at major biological sites are EMBL
and ASN.1 but they are biology speci�c and not universally adopted even
in biology. If sites were to use IT industry-wide standard formats in biology,
system developers could leverage the available tools, and thereby, ensure reli-
ability and lower cost of system developement.
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In the 90's, Internet and HyperText Markup Language (HTML) have become
the dominant medium for publishing and sharing data. Hence, it is not sur-
prising that a number of low-cost solutions to data-integration have followed
HTML's paradigm of linking-up documents from di�erent sources. The user
can browse the documents through a standard viewer and navigate across
sources by invoking available links.

The main technologies for facilitating universal communication among dis-
tributed components are OMG's Common Object Request Broker Architec-
ture (COBRA[21]) andW3C's eXtensible Markup Language (XML[27]). CORBA
speci�es the standards that an object component should implement so that it
is recognized by artifacts known as brokers which route client requests for ser-
vice. The Life Sciences Research Task Force (LSR) within OMG has �nalized
speci�cation for biomolecular sequence analyses and genome maps but indi-
vidual sources have to provide an interface conforming with the speci�cation.

XML has emerged as the de facto format for exchanging data in the last few
years with abundant development tools and backing from major IT vendors.
XML is ideal for format integration because it can handle semi-structured
data and hence, is more felxible than relational data model where data must
be structured, i.e, the attributes of an entity and their types must be known
in advance. But XML is still just a data format and the participants of any
collaboration must still agree on semantics.

Structure of data is speci�ed in XML by Data Type De�nitions (DTDs) while
type and semantics can be speci�ed by the upcoming XMLSchema. For se-
mantic integration, the data sources in biology and the integration systems
should talk about the common concepts in the same language. Ontologies are
formal models which de�ne concepts and their inter-relationships so that au-
tomated reasoning is possible. Work on ontologies would eventually lead to
the standardization of XML tags and their well understood meanings.

3 Link Driven Federation

The link driven federation is a hypermedia environment. Here, a user starts
from some point of interest in a data source and then can jump to other re-
lated sata sources through system created links. The user has to still interact
with individual sources; only the interaction is easier through convenient links
and not invoking the sources directly. SRS[9], GeneCards[23] and LinkDB[10]
are examples of this approach. A similar system, but not based on links, is
described in (cite patent) where the the middleware provides a set of proce-
dural choices to the user and lets user interaction determine how the data is
fetched.
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The link driven approach is very convenient for non-expert users because of
the simple point-and-click user interface. It is also possible to perform limited
keyword search on the content of a source by specifying regular expressions.

The downside of link driven approaches is that it does not scale well and has
no across-source capabilities. When a new data source has to be added into
the system, links connecting its entries and that of all the other data sources
has to be created. If a data source changes, the link building has to be re-done.
Moreover, a join between the data of two sources is not possible in link driven
approaches.

Recall that query Q involves protein pathways data, gene expression data and
a clustering algorithm. If the user wanted to run query Q in a link driven
system, she would have to manually perform the following steps:

(1) Retrieve gene expression data and �nd clusters of co-expressed genes. For
each cluster C, manually perform the following:

(2) Access a pathways resource. For each pathway P , manually check the
following:

(3) Find R, the set of all reactions in P .
(4) Find E, the set of all enzymes that catalyze a reaction in R.
(5) Let G be is the set of genes that encode an enzyme in E. If G is contained

in C, C is a solution.

A link driven federated system helps the user by facilitating source access
through conveniently inserted links but the user has to explore the query plan
search space manually.

3.1 SRS

The creators of the Swiss-Prot database at the Swiss Institute of Bioinformat-
ics and the European Bioinformatics Institute have created SRS (Sequence
Retrieval System)[9]. SRS allows retrieval from an extensive catalog of more
than 75 public biological databases of interest. The link button in SRS allows
the user to obtain all the entries in one databanks that are linked to an entry
(or entries) in another databank. Hyperlinks are links between entries which
are displayed as hypertext (clicking on the text takes you to the related entry).
These are hardcoded into SRS and are useful for examining entries that are
referenced directly from a data item of interest.
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3.2 LinkDB

The integrated database retrieval system DBGET/LinkDB[10] is the backbone
of the Japanese GenomeNet service. DBGET is used to search and extract en-
tries from a wide range of molecular biology databases while LinkDB is used
to search and compute links between entries in di�erent databases. Once an
entry is retrieved through DBGET, all links from this entry can be obtained
by clicking on the entry name, which causes the search against LinkDB. In
addition to the original links provided by the source database which are em-
bedded in the entry, LinkDB also aims at providing computer-generated links,
which include:

� Factual Links: links between database entries, e.g., Medline ID and Gen-
Bank accession

� Similarity Links: links produced by similarity search, e.g., the results of
BLAST and FASTA

� Biological Links: links by biological meanings, e.g., molecular or genetic
interactions in the KEGG pathways.

4 View Integration

In a typical view integration system, a request from the user is take by the
client application and passed on to the middle level. The middle level ana-
lyzes the request, transforms it into a number of executable sub-requests and
passes them to wrappers. Wrappers are source-speci�c modules that mask the
peculiarities of the source with respect to source access and format of results
returned. A wrapper will suitably transform the sub-request and interact with
the data source for the response. The response is transformed into a format
that the middle-level can handle and returned back. The responses is further
processed by the middle level depending upon the original request and the
�nal result is returned to the client application.

Many researchers have noted that if the middle-level can encapsulate a data
model for the common available data, the user of a data integration system
can use the query mechanism on the data model to access the virtual store,
regardless of the data model of the individual sources. Another bene�t is that
since query languages are declarative, the user can be isolated from the internal
mechanism of data retrieval allowing the latter to be independently optimized.

The capability of a view integration architecture is primarily determined by
its middle level (middleware). View integration systems build a global schema
from the schemas of heterogeneous data sources, and expose the global schema
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to the user for querying. There are two approaches - global-as-view where
the global schema is de�ned as a view over the local sources, and local-as-
view where a global schema is de�ned beforehand and the local sources are
described as views over the global schema.

Internally, middleware is then responsible for four functions:

� Query decomposition and query planning
� Query execution
� Data retrieval from wrappers
� Post-processing and presentation to user.

The advantages of the view integration approach are that the latest content
of the sources is always returned by the system, operations across sources can
be speci�ed in the query language, no storage is needed at the middleware,
and adding new data sources is easier than link driven approach.

The disadvantage is that since sources are accessed instantaneously during
query execution, in the event of a source being down, a query can return
less matches or even fail. Also, to build the common integrated view, deep
expertise of systems is needed.

If the user wants to run query Q in a view integration system, she would have
to perform the following steps:

(1) Specify the query in a declarative query language.
(2) Analyze the results produced.

A view integration system helps the user by requiring the query to be only
speci�ed. The system takes the responsibility of exploring the query plan
search space to return the results. However, since the speci�cation of the query
is dependent on the data model used for integration, it can be non-intuitive
and quite complex.

4.1 Discovery Link

DiscoveryLink[12],[15] is an IBM o�ering for information retrieval based on
a relational data model for the virtual collection of data. The user views
Discovery Link as a uniform relational database system with a global schema.
This allows the user of DiscoveryLink to use SQL to query the heterogeneous
sources regardless of whether the sources had the relational data model or
others (e.g., text, XML). Figure 1 illustrates the DiscoveryLink architecture.

In Discovery Link, the capability of the data source is recorded through a
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Fig. 1. Discovery Link Architecture.

wrapper and data source registration process. A source records following in-
formation to Discovery Link:

� The data schema of interest from the source
� SQL capability of the source (example, can it handle test on predicates)
� Data model, cost and initialization parameters

Discovery Link will use the registration information for query planning and
optimization of query execution.

When a SQL query is given, Discovery Link's query subsystem �gures out the
sources that have to be invoked based on their registration information, and
the corresponding wrappers. The initial query is decomposed into sub-queries
which are dispatched to the wrappers. It is the job of the wrapper to retrieve
the necessary data and perform any transformation over the result, so that
the result is relational. Finally, the results from the sub-queries are combined
and presented to the user.

4.2 Kleisli/K2

K2[8], and its predecessor, Kleisli [6], are view integration systems from Uni-
versity of Pennsylvania. K2 and Kleisli are based on a data model of complex
values where collection types, i.e., lists, sets and bags, support type union
and may have arbitrary nesting. The Query language in Kleisli is Collec-
tion Programming Language (CPL) which is designed for manipulating and
transforming complex data and matches the expressivity of Structured Query
Language (SQL) when restricted to relational data, but has di�erent syntax.
K2 supports Object Query Language (OQL[7]) extended with disjoint union
types and has SQL's \select-from-where" syntax.

Like DiscoveryLink, K2 3 uses individual data drivers or wrappers to handle

3 Though we focus only on K2 here, the description is also applicable to Kleisli
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low level integration issues with each class of data sources. Once a query is
issued in OQL, it is type checked based on source metadata, and decomposed
into sub-queries that can be handled by the data sources. Query decomposition
and optimization is handled by a rule-based optimizer which eliminates inter-
mediate results and sends the biggest derived sub-queries to the sources. Any
part of the query that cannot be delegated to the sources has to be executed
by K2.

Since K2 is based on OQL, integrated views can not only be speci�ed by view
functions (as in Kleisli or DiscoveryLink) but also as user-de�ned classes at
di�erent abstraction levels. K2MDL, the class speci�cation language, lets user
describe classes based on how their attributes and extents can be computed
from the available sources. View classes can be queried using OQL, and the
optimizer can decompose them into suitable multisource queries using the
class's K2MDL description.

K2 is a multi-threaded server application in Java that any client can com-
municate with using RMI-IIOP or socket protocols. Kleisli is implemented
in Standard ML. K2 and Kleisli have wrappers for GenBank/EMBL/DDBJ,
dbEST, SWISS-PROT, KEGG, EcoCyc, GDB, SRS-indexed databases and
BLAST.

5 Data Warehousing

The warehousing approach can be described as view integration where the
global schema is materialized i.e., an instance is created locally. The data
from the di�erent sources is downloaded, cleaned of erroneous entries, cate-
gorized into meaningful structures (manually or automatically curated) and
formatted for suitable analysis. Usually, the instance is stored in a database
(e.g., relational database) and can be queried with a database query language
(e.g., SQL).

The biggest advantage of a warehouse for data integration is that the down-
loaded source data can be manipulated into suitable formats and annotated
to facilitate integration and analyses. Execution of queries is usually very fast
because all data is locally available and the system is reliable because there is
no outside dependecy.

On the other hand, maintenance cost in warehousing is high because the down-
loaded data from the sources has to be kept fresh (i.e, synchronized with the
online source). If this is not done, the result of a query may be computed on

with the di�erences noted above.
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stale local data, thereby compromising result correctness. Also, there is a large
initial cost and ongoing storage requirement.

5.1 GUS - Genomics Uni�ed Schema

Genomics Uni�ed Schema (GUS[8]) is a warehousing based data integra-
tion systems from University of Pennsylvania. GUS uses a relational data
model and stores nucleotide, amino acid sequences and annotations in tables.
The data sources already included are GenBank/EMBL/DDBJ, dbEST and
SWISS-PROT. The straight forward advantages of GUS is availability clean
data with custom annotations, and fast and reliable query performance. Ad-
ditionally, one can access data in more intuitive and insightful ways than the
sources allow because data in GUS is structured along ontologies of biological
terms.

GUS builds and maintains a map between DNA sequence based entries at
some sites and gene-based entries at others through its local storage of the
necessary date. Its tables hold the conceptual entities that DNA sequences and
annotations indirectly represent, which are genes, the RNA derived from these
genes and the proteins from those RNAs. While transforming the data into
gene-centric organization, it cleans data to identify erroneous annotations and
mis-identi�ed sequences. Then, it uses ontologies to structure the annotations
for di�erent organisms.

GUS facilitates data maintenance by tracking how data is generated/ accessed
from sources and subsequently modi�ed. This helps in learning about contin-
uous changes (external or internal) to the knowledge of genes that data items
represent. The revisions of original data can be by the source itself, annota-
tions are slowly experimentally veri�ed, and predicted values become more
accurate with better algorithms. For example, with computationally-derived
annotations, GUS stores the algorithm used, its implementation version, input
parameters and the run time information.

To keep its database synchronized with external data sources after initial
download, GUS retrieves updates and new entries from them based on the
source's change schedule or periodically. The changed �elds of the modi�ed
entries are detected from the database based on a di�erence operation, and
updated accordingly. Both the new and updated entries are subjected to an
annotation update process in which the protein and DNA sequence and their
annotation, are transformed into gene and protein based entries. The user
always sees a production version of the database while updates are made
to the next development version. When the development cycle is over, the
database version is put into production, and a new development version is
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created.

6 Semantic Integration

Ease in data access to remote sources is necessary for a exible integration
systems but raw data in itself does not mean much. Usually, both data and its
biological context determines the complete meaning (semantics) of an item.
Semantics plays a key role in subsequently processing the data and interpreting
the results. We discuss e�orts in biology in building consensus on data formats
and semantics.

If the user wants to run query Q in a semantically integrated system, the query
speci�cation will be intuitive and in the relevant concepts from the domain.
The system may internally map the speci�cation to a query form that is more
amenable for automatic query decomposition based on the (data) integration
infrastructure. The user would perform the following steps:

(1) Specify the query in terms of domain concepts.
(2) Analyze the results produced.

6.1 TAMBIS

TAMBIS[11] (Transparent Access to Multiple Bioinformatics Information Sources)
is an integration system for molecular biology where a domain-dependent on-
tology is used for source-transparent information retrieval. The biologist user
interacts with TAMBIS at the semantic level of TAMBIS Ontology[3] (TaO,
as it is called) while the system handles the source level interaction. TAMBIS
uses the GRAIL language for description logic to build the domain ontology
and leverages the middleware of BioKleisi, a variant of Kleisli[6] to implement
data integration.

An ontology is a formal speci�cation of concepts in a domain so that logi-
cal reasoning like subsumption (does a concept A subsume B ?), sanctioning
(what are permissible roles of A ?), thesaurus lookup (what is English mean-
ing of A ?), classi�cation (what is the relative possition of A in the lattice
of terms ?), satis�ability (is A feasible ?) and retrieval (get all instance of A
and hence, all instances of concepts subsumed by A) can be automatically
performed. TAMBIS domain ontology has around 1800 biological concepts
and their relationships which has been created manually by a biologist and
a bioinformatician over 2 years. The ontology is organized into subdomains
around protein structure, function, homology, location and process. The on-
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tology drives the user's experience with the system by facilitating building of
only relevant queries at the concept level and mapping them into executable
query plans for the sources. User does not need to know what sources were
used to answer the query, providing source transparency to the user.

Queries are posed as source-independent declarative queries in terms of TaO
concepts. On the other hand, the concepts supported by the local sources
are available as CPL programs through Kleisli wrappers. The global concepts
are mapped to the local source concepts through manually built mapping
functions, which transform them into ordered (procedural) source-dependent
queries for execution by the middleware. Though the maps are built manually,
they have to be built only for lowest level concepts since logical reasoning
can automatically build maps for the rest. The CPL program has ordered
collection of function calls, and they are used by Kleisli's query reformulation
subsytem to generate an executable query plan. In contrast, view integration
systems like DiscoveryLink or K2/Kleisli take procedural source dependent
queries directly from the user, and generate query plans from them.

TAMBIS is implemented mainly in Java. A prototype of the system has been
built with 250 concepts in protein and mapped to 5 sources - SWISS-PROT
for protein sequences, PROSITE for protein motifs, BLAST for protein homol-
ogy, ENZYME which is a repository of enzyme classes, and CATH, a protein
classi�er.

6.2 e2e { An End to End Solution

e2e[1] is a comprehensive data integration solution for microarrays which al-
lows results of microarray experiments to be evaluated for emerging patterns
among groups of genes with additional insights from related analyses like path-
way scoring, sequence similarity and literature text summarization to To the
biologist or biological applications, e2e exposes a common semantic view of
inter-relationship among biological concepts in the form of an XML repre-
sentation called eXpressML[2]. Internally, e2e can use any data integration
solution (like DiscoveryLink, Kleisli or natively XML-based) to retrieve data
and return results corresponding to the semantic view. Currently, an e2e proto-
type allows a biologist to analyze her gene expression data in GEML or from
a public site like Stanford, and discover knowledge through operations like
querying on relevant annotated data represented in eXpressML using path-
ways data from KEGG, publication data from Medline and protein data from
SWISS-PROT.

As seen in Figure 2, e2e envisages a two stage approach. The underlying
infrastructure for e2e is a view integration middleware (called Enterprise In-
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Fig. 2. e2e Biochips Information System Framework Architecture.

formation System to emphasize the fact that it should be able to handle large
data sizes) which can retrieve either microarray experimental data or exter-
nal information from publicly available biological data sources. In choosing a
middleware, one has to consider the issues of uniform data model, the query
language to support and availability of source wrappers. For example, with a
relational data model and SQL query language, DiscoveryLink[15] is a middle-
ware solution on commercial DB2TM database while Kleisli[6] uses a complex
value model of data and Collection Programming Language (CPL), but either
could be used within e2e. In the present prototype, the data management is
in XML and in-memory. eXpressML model provides the user with a common
biological context to view and manipulate related data and issue XML queries
in Quilt[24] through a query interface.

Additionally, e2e envisages an application layer where knowledge management
tools are available for detecting gene expression patterns and downstream an-
notation of these patterns with heterogeneous information provided by the
middleware. For example, some tools that can be used are: pathway visual-
ization tools[17] for annotating gene clusters with pathway information, text
summarization tools[25,16] for annotating gene clusters with biological func-
tion, and sequence alignment tools[5] for annotating gene clusters with mo-
tifs/domains. Figure 3 shows a schematic ow between KM analyses tools that
a biologist may take in pursuit of discovery. Note that the input for any KM
tool is a group of genes and (optionally) eXpressML while the output is some
insight about the group. By applying diverse tools, a biologist can verify her
insights with analyses spanning multidisciplinary islands of biology.
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Fig. 3. A Schemata of Flow between KM Analyses in e2e.

7 Related Work and Conclusion

In life sciences, there are many projects on integrating heterogeneous data
sources. Kleisli[8] has CPL language that allows the expression of complicated
transformations across heterogeneous data sources. CPL is procedural (which
makes optimization diÆcult) and geared toward biomedical sources. Discov-
erLink [15],[12] uses SQL which is very general and well understood purpose.

Other solutions including GUS[8] and Incyte have taken a data warehousing
approach to provide fast access to pre-integrated data. While warehousing
approaches provide good performance, they su�er from data maintenance and
replication drawbacks.

In middle level systems for information retrieval, there are many research
prototypes TSIMMIS and Garlic[13]. Recently, commercial companies have
emerged for content integration for multiple markets based on a XML o�er-
ing. Examples are Vitria[26] and Nimble Technology [20]. Nimble has Nimble
Integration Suite which uses XML-QL as the integration language. e2e also
uses XML for content integration but the XML query language is QUILT.
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