Self-Disco very on Hierarchical Three Dimensional Torus

Jose Castanos*
(castanos@us.ibm.com)

Vinayaka Panditf
(pvinayak@in.ibm.com)

ABSTRACT

The advances in technology have made it possible to build
massively parallel supercomputers connected using inter-
connection networks. IBM’s Blue-Gene/L (BG/L) machine
with 65536 (2'¢) processors operating at 180 TFLOPS is
a good example. BG/L is planned to have a three dimen-
sional hierarchically organized torus topology. The process
of discovering size of a machine, assigning consistent, and
unique spatial coordinates to the processors for identifica-
tion, is called self-discovery. An automated, and distributed
fault-tolerant algorithm to achieve self-discovery is very im-
portant for the operation of such a system. In this paper, we
present an autonomic, distributed, and fault-tolerant algo-
rithm that hierarchically achieves self-discovery on a BG/L
machine of previously unknown size, unknown extent along
its dimensions. Our algorithm works even in the presence of
node and link failures.

Keywords: Autonomic computing, Fault tolerance, Self-
discovery, Massively parallel systems.

1. INTRODUCTION

Blue-Gene/L system is based on a large scale cellular archi-
tecture. The basic building blocks in such an architecture is
a cell, which is replicated in a pattern to form the whole sys-
tem. Each cell is isomorphic to other cells and acts locally.
Such architectures can be connected in several topologies,
like torus, mesh, tree etc. Large systems are hierarchically
constructed using smaller sub-systems of the same topology.
The advantage of such an architecture is unlimited scalabil-
ity.

The Blue-Gene/L system consists of maximum 65536 (2'¢)
nodes, connected through a three dimensional torus net-
work. The system is hierarchically constructed using smaller
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toruses (cubes) as shown in Figure 1. The smallest entity
in the system is a chip, which is also called a compute node.
Each chip consists of two PowerPC 440 cores and 256MB of
DRAM. Each node has six bi-directional links to the torus.
Two nodes combine to form a (2x1x1) torus called compute
card. Sixteen compute cards combine into a node board
which is a 32 node torus in a logical topology of 4x4x2. Six-
teen node boards combine to form a 8x8x8 torus called the
midplane. A cabinet consists of two such midplanes. The
system is a 32x32x64 torus consisting of sixty four cabinets.

Due to its massive size, several key parameters such as size
of the system, its extent along each dimension, and spatial
coordinates (addresses) of nodes cannot be pre-programmed
into the system. The process of discovering these parameters
automatically during initialization of the system is called
self-discovery. It forms an important component of such
systems. Such large systems are also very prone faults due to
node and link failures. Therefore, an autonomic, distributed
and fault tolerant algorithm for self discovery is essential.

We begin by formally defining the problem in Section 2. In
Section 3 we describe the algorithm to resolve disorientation.
We describe the algorithm to assign unique and consistent
spatial coordinates to the nodes and to discover the extent
of the torus in Section 4. We conclude in Section 5.

2. PROBLEM FORMULA TION

The BG/L system can be modeled as a large three dimen-
sional torus, hierarchically constructed using smaller three
dimensional cubes (we also refer to these cubes as toruses,
as the interconnections out of a cube can be looped back to
form a torus). The problem of self discovery is to discover
the size, extent of the system along each axes and assign
consistent spatial coordinates to the nodes. This problem
can be solved hierarchically: given that the smaller toruses
have discovered their sizes, extent and spatial coordinates,
how to discover the size, extent, and spatial coordinates of
the bigger torus?

In the BG/L machine a cabinet consists of two midplanes.
Each midplane is a 8x8x8 torus consisting of sixteen node
boards. These boards are connected to each other via a
back plane. The interconnections of different compute cards
in a node board and of different node boards in a midplane
are fixed and done in hardware that is tested extensively.
Therefore it is unlikely that these interconnections are in-
correct. However, the interconnections across midplanes is
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done manually using external cables. Therefore it is possi-
ble that, while building the machine these cables are mis-
connected. In some cases, these cables might be connected
incorrectly. In some other cases, these cable might be con-
nected such that machine still forms a torus, but different
midplanes are not oriented correctly.

The basic problem in carrying out the self-discovery of the
big torus is the disorientation problem. Note that two small
toruses may be interconnected (see Figure 2) in a way that
their relative orientations mismatch. For example, the pos-
itive x-axis of a torus may be connected with the negative
y-axis of the adjacent torus. So a request by a node in one
torus to pass message along x-axis may be interpreted as
passing along y-axis by nodes in the adjacent torus. Note
that the smaller torus can be collapsed into a node and the
self discovery problem can be solved on the big torus consid-
ering each small torus as a single node. However, we have
retained the details for the small toruses for two reasons:
(i) it is closer to the BG/L machine, and (ii) collapsing the
torus loses a spatial relation between nodes on interconnect-
ing faces of two different toruses.

In order to carry out routing of the messages in the torus,
the routing sub-system needs to know the spatial coordi-
nates, the size and the extent of the system. Therefore, we
do not make use of the routing sub-system to carry out the
self discovery. We assume that every node is capable of com-
municating only with its immediate neighbors by specifying
the local direction in which the message should be sent.

Such a large system is expected to suffer node, and link fail-
ures that could partition the system into disjoint connected
components. In the independent fault model, the probabil-
ity of such an event is very small. We therefore assume that
the system forms a single connected component. We also
assume that every node is in-built with a unique identifier.
It can be achieved either during processor manufacture or
by generation of large random numbers.

Our algorithm works in two phases. It assumes that the

big torus is constructed using small toruses each of which
know the size, extent and have a consistent spatial coordi-
nate assignment locally. The first phase resolves the dis-
orientation between every neighboring small toruses (also
called S-torus). The algorithm is distributed, fault toler-
ant and has no central point(s) of failure. We show that
this phase has a very high probability of success for such
high fault-rates as 15%. Our second phase assigns unique,
and consistent spatial coordinates in the big torus through a
leader election algorithm. We note that the same algorithm
can be shown to be self-stabilizing as well, i.e., it tolerates
transient faults such as memory corruption, and corrupted
messages. In the absence of transient faults, which is the
setting we are in, our algorithm runs in O(d) where d is the
diameter of the network connecting the system nodes. Our
algorithm has very minimal space requirement at each node,
which is O(1).

3. RESOLVING DISORIENTATION

Consider two S-toruses which are connected to each other
through a face (i.e. an 8x8 plane). We show that two pairs
of adjacent nodes in these two toruses are sufficient to re-
solve the disorientation between these toruses. We use it to
develop a fault-tolerant technique to orient all the toruses.

Figure 2 shows interconnection of two S-toruses with dis-
orientation. The yz-plane on the right of an S-torus is con-
nected with the xz-plane on the left of another S-torus. Note
that though a node does not know its absolute orientation
of its (z,y,2) axis, it knows their relative orientations. So,
a node (say (1,1,1)) receiving a message traveling in a di-
rection (say from node (0,1,1)) can forward it along the
same direction (to the node (2,1,1)) without knowing the
absolute orientation of its axes.

If two adjacent nodes say a on S1, and @’ on S2 are both
functioning, then by exchanging one message each they can
resolve the relative orientation along the link which connects
them. For example, the node a on S1 can send a message
containing its coordinates (say (z, v, 2)), and the coordinates
of o' relative to S1 (i.e. (z+1,%,2)). The node a’ receives
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this message along the negative Y axis of $2. Hence, o’
can conclude that the positive X axis of S1 is aligned with
the negative Y axis of S2. Let us call such a message with
local coordinate, and relative coordinate of its neighbor as
increment messages.

Define the two pairs (a,a’) and (b,b') as satisfying quadru-
ples if and only if: (i) nodes a, b are in S1, nodes a’, b’ are in
$2, (ii) node a is connected to @', b is connected to b', (iii)
dy(a,b) = y(a) —y(b) # 0,6.(a,b) = 2(a) — 2(b) # 0, and
(iv) |6y (a,b)| # |0:(a,b)|. Note that the definition is with
respect to nodes on a yz-plane, and easily generalizes to any
face.

If all the four nodes in the satisfying pair (a,a’), (b,b’) are
functioning (and the links connecting them are functioning),
then all four nodes a,a’, b,b' can resolve all their orientations
with respect to S1 and S2. For this, the nodes (a,a’) and
(b,¥') orient themselves along the axis connecting them as
described earlier. Now, all the nodes exchange their local
coordinates. Each of these nodes can see than d,(a,b) =
d;(a’, V). Therefore, the positive Y axis of S1 is oriented
with the positive X axis of S2 (see Figure 3). Similarly, since
d.(a,b) = §,(a’,b") the positive Z axes of S1 and S2 are
aligned. This procedure to discover the relative orientation
of two adjacent toruses is called OrientAdjacent.

Now, we use OrientAdjacent to resolve orientations in a
fault-tolerant manner. Every node on the face of a torus
exchanges its local coordinates with its adjacent node in the
adjacent torus. Every node a on the face of a torus with
the adjacent node a’ on the other torus, broadcasts the pair
(z(a),y(a), 2(a)), (z(a’),y(a'),2(a’)) to every other on the
same face. Any other node b on the same face that can form
a satisfying pair (a,a’), (b,b") using the broadcast messages
that reach b uses OrientAdjacent to resolve the relative
orientation between the two toruses. Any node that has
resolved the orientation, broadcasts the orientation map to
rest of the nodes in its local torus. Note that the algorithm
takes at most 2d+2 steps to to resolve the orientation, where
d is the diameter of the local torus. So, if a node does not re-
ceive the orientation map in 2d+ 2 steps it can conclude that

the torus cannot be aligned using the FaultTolerantOri-
ent algorithm. When this happens, the node broadcasts the
failure signal.

As we assume that our machine is connected, we can accom-
plish broadcast among nodes in an S-torus by techniques
such as reverse path forwarding, time linear with size of
S-torus. The nodes on a face resolve orientations using
FaultTolerantOrient, and then the resolved orientations
are broadcast to other nodes on the same face. To eliminate
any confusion about messages from different faces, messages
can be tagged with face identification.

3.1 A lower bound on the probability of suc-

cess
We will place a lower bound on the probability that Fault-
TolerantOrient succeeds. We assume that a node on a
face has failed if (i) it has failed, or (ii) its link connecting
to its corresponding node has failed. Let us assume that
every node fails with a probability ¢, and a link is func-
tioning with a probability . Our algorithm fails to resolve
orientations only when it fails to find satisfying quadruples.
We calculate upper bound on the probability that no such
satisfying quadruples is found. The probability that a node
is functional is given by p = 1 —¢q. We consider the gen-
eral case when two cubes of size N° are interconnected. So
the faces are of six NV x N. Consider a node a on face S1

Figure 4: Illustration of lower bound calculation

as shown in Figure 4. All the nodes on the straight lines
11, 12, 13, and l4 have either 0 displacement along one of
the dimensions or have equal displacements on both. We
will call these lines as unallowed lines for node a. All other
nodes (N? —4N + 3 of them) satisfy d1, and d2 property. So,
the probability that we do not find a satisfying quadruple
involving a when both a, and o’ are alive is given by

rp?(1— (1 — rp?) NV 4N +3) (1)

Suppose one of a or a’ was down, then let us look at the
probability of finding a satisfying quadruple with the next
node on the line /1. This is given by

(1= rp?)rp*(1 — (1 — rp?) ¥ —4N+3) 2)

Similarly, we can calculate for the (i + 1)st node on /1 when
no node upto i is involved in a satisfiable quadruple is

(1 —rp?)irp?(1 — (1 —rp?)N —4N+2) 3)

Suppose that we are not able to find a satisfiable quadruple
involving any node on /1, then we try to find a node on line
13 with node a as the first node at the beginning. Note that
for the nodes on the line I3 some of the nodes on /1 are
among the N? — 4N + 3 nodes satisfying the ds property.



But there are at most N — 2 of them as two of the nodes on
11 fall on its unallowed lines. So the probability is

(1 —rp?) N p? (1 — (1 —rp?)V TN (4

We try to find a satisfying quadruple along 2 if we fail to
find any such quadruple along I1, and [3. For the (7 + 1)st
node on /2, among N2 —4N+3 nodes that can be considered,
2N — 4 belong to 1, and I3 because 4 nodes on /1, and I3
are along its unallowed lines. Hence the probability is

1- sz)i+2N—2rp2(1 1 rp2)N2—6N+7) (5)

From 3, 4, and 5 we have a lower bound on the probability
of success given by
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For a machine with k inter-face connections, the lower bound
on overall fault tolerance is given by

FTLB >= LB* (7)

A BG/L machine is a 32x32x64 torus composed of 128 mid-
planes of size 8x8x8. This can be viewed as a 2x2x4 torus,
hierarchically constructed from sixteen smaller tori, where
each of these smaller torus is a 2x2x2 torus constructed from
eight 8x8x8 tori (midplane). Applying Eq. 6 and 7 hierar-
chically for the BG/L machine we get

LB > (1 —-2™)(1-a™) (1 —2"")(1 =2"))™, (8)

where

z=1-—rp°. (9)

So from 8, and 9 even such high fault rate as p = 0.85,
and ¢ = 0.15, and r = 0.85 yields a lower bound on the
probability of correct operation of the algorithm as 1—1078.

4. ASSIGNING SPATIAL COORDINATES

To assign spatial coordinates, a global leader is elected which
becomes the origin (coordinate (0,0,0)). Now, the system is
hierarchically partitioned into 32x32x64 torus (the system),
16x16x16 tori (small torus) and 8x8x8 tori (midplane). A
local leader is elected in each of the 16x16x16 torus and
each midplane aligns its orientation with respect to its local
leader using the FaultTolerantOrient algorithm discussed
in Section 3. Now, the midplanes re-align their orientation
with respect to the global leader using the FaultToleran-
tOrient algorithm on tori of size 16x16x16. After aligning
their orientation with the global leader, the coordinate of
nodes are set to their displacement form the leader. This

is done by locally exchanging and updating coordinate in-
formation among neighbors. The algorithm is distributed,
fault tolerant, and self-stabilizing. Figure 5 describes the
details of this algorithm.

Every node executes local steps, and use logical direction
variables to propagate relative orientation information. Val-
ues of £1,+2, +3 denote the £z axis, +y axis and +z axis.
For example logicalDir[1] = -2 means that the logical pos-
itive x-axis it towards physical negative y-axis. The local
steps try to follow a node who with higher leader id. When
a node discovers that its neighbor has a higher leader id,
it orients itself according to its neighbor and assigns coor-
dinates that are consistent with that of its neighbor. We
assume that all the variables used by the program are free
from corruption. This algorithm can be extended to deal
with memory faults by employing techniques in [4], [1]. The
variables of node ¢ are accessed as if 7 is a structure.

The algorithm terminates when no node receives a message
in K steps. If K is at least d + 1 where d is the diameter
of the network, then the algorithm assigns the coordinates,
and logical directions correctly. K can be set to a suffi-
ciently large estimate of the network diameter (in presence
of faults). It should be noted that, the coordinates assigned
can have negative components as well. If a node ¢ has a neg-
ative coordinate, then it can set it to corresponding positive
coordinate by just adding the extent of the network in that
dimension.

LEMMA 1. The leader node will always be the origin.

Proof. As our, variables are not prone to corruption, the
leader node with the highest id will never follow any other
node. O.

LEMMA 2. For every node i at a distance d from the leader
will discover its coordinates with respect to the leader in d
steps.

Proof. We prove by induction. The base case is d = 0.
Assume that it is true for all nodes at a distance d — 1, and
less. Any node at distance d is adjacent to a node nbr at
distance d — 1 from the leader. At time step d, nbr has a
lid estimate which is greater than that of 7. So ¢ decides to
follow nbr. O.

LEMMA 3. If a node i does not execute a follow move in
Amaz Steps, where dmaz %S a Teasonable upper bound on the
diameter of the torus, then node i has discovered the leader
and assigned its coordinates consistently.

Proof. Follows from Lemma 2 O.

THEOREM 1. Our algorithm terminates with correct co-
ordinates assigned to all nodes. It runs in O(dmaz) time,
and requires constant space at each node.



Variables: Each node maintains the following variables.

lid: Leader id.
coords|[3]: Global (z,y, 2) coordinates.
map(j)[3]: The relative orientation map w.r.t. the neighboring node j.
logicalDir[3]: The logical z,y, z directions.
dir(i, j): The physical link on which j is connected to 3.
Initialize(i)
Llid = id;

i.coords = {0, 0, 0}
logicalDir = {+1, +2, +3}
dir(i, j) = physical link on which j is connected to i
map[j] = FaultTolerantOrient(j)
end Initialize

Local action for node ¢ with a neighbor j:
do
if (i.lid < j.lid) // According to j, leader has a higher id
follow(i, j) // Orient and assign coordinates consistent with node j’s view
Send messages to neighbors
endif
while (there is no message for K steps)

follow(i, j)
ilid = j.lid
if (i and j are on different toruses) then // Orient axes according to node j’s orientation
for (k =1 to 3)
if (j.logicalDir[k] > 0)
ilogicalDir[k] = i.map(j)[j.logicalDir[k]]

else
ilogicalDir[k] = - i.map(j)[- j.logicalDir[k]]
endif
endfor
endif
// Assign coordinates consistent with node j’s view
Let k be such that | logicalDir[k] | = | dir(i, j) |

if (i.logicalDir[k] = dir(i, j))
i.coords[k] = j.coords[k] - 1
else
i.coords[k] = j.coords[k] + 1
endif
end follow

Figure 5: Algorithm to assign unique (z,y,2) coordinates



The time, and space complexity of our algorithm is optimal,
because just a communication between any two nodes in a
network requires O(dmqz) time.

4.1 Discovering Extent

In order to discover extent, a slight modification of the algo-
rithm in Figure 5 is required. Upon receiving a message from
the neighbor with the same leader id as that of the node,
the node computes its coordinates as in follow. If these co-
ordinates are different than that stored with the node, then
subtracting the two gives an integer multiple of the extent.
This number is then broadcast to all the nodes. The ex-
tent of the network along each of the axis is the greatest
common divisor (GCD) of these multiples of extents. Af-
ter discovering the extent, each node can set its coordinates
to be non-negative (by adding appropriate extent to their
negative coordinates).

5. CONCLUSIONS

In this paper, we have described a distributed and fault-
tolerant algorithm to discover the initial configuration of
a massively parallel hierarchically organized torus network,
and also assign consistent, and unique spatial coordinates to
all the nodes of the torus. Such an algorithm is very critical
in initializing of large parallel systems.

An interesting generalization of the problem is to maintain a
consistent configuration when the variables (memory) used
by the programs are prone to corruption. Such an algorithm
will be self-stabilizing, and we plan to comnsider it in our
future work.
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