
RI 02025 15 January 2003 Computer Science

IBM Research Report

PlanSP: A Framework to Automatically
Analyze Software Development and

Maintenance Choices

Biplav Srivastava

IBM Research Division

IBM India Research Lab

Block I, I.I.T. Campus, Hauz Khas
New Delhi - 110016. India.

IBM Research Division

Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo -

Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for

publication outside of IBM and will probably be copyrighted is accepted for publi-

cation. It has been issued as a Research Report for early dissemination of its con-

tents. In view of the transfer of copyright to the outside publisher, its distribution

outside of IBM prior to publication should be limited to peer communications and

speci�c requests. After outside publication, requests should be �lled only by reprints

or legally obtained copies of the article (e.g., payment of royalties). Copies may be

requested from IBM T.J. Watson Research Center, Publications, P.O. Box 218, York-

town Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are avail-

able on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

PlanSP: A Framework to Automatically Analyze

Software Development and Maintenance Choices

Biplav Srivastava

IBM India Research Laboratory

Block 1, IIT Campus, Hauz Khas

New Delhi 110016, India

sbiplav@in.ibm.com

Abstract

In software engineering, a piece of software is assembled from compo-
nents or modules and these components in turn can be recursively made
up from smaller sub-components. The management of a software project
involves tracking the development and maintenance of the individual com-
ponents. However, this brings to fore the crucial issue of how to man-
age components in such a way that they could be leveraged e�ectively
{ reusing existing components and monitoring their evolution during the
life cycle of the software. Currently, when a new piece of software is being
created, the user manually has to evaluate the relevance of existing com-
ponents based on her development objectives like time available and ex-
pected performance metric. Similarly, when a software has been released
and is now being maintained, any updates to the dependent components
is evaluated, either manually or blindly (through timestamps), to decide
if a new build of the software is necessary. Though tools exist to track
component dependencies and historical changes, the key software manage-
ment hurdle is the manual evaluation of the trade-o�s. With the growing
trend in software engineering to build and distribute software components
as web services that can be invoked across platforms and languages in a
distributed environment, there is a real need of automated solutions to
guide the developer in building and maintaining complex applications.

We introduce an automated decision-support framework for software
development and maintenance called PlanSP that can analyze di�erent
choices and assist the user in making cost-e�ective decisions. Our ap-
proach is to build a formal model of the software and use automated
planning/ reasoning techniques to produce alternative choices (\plans")
to develop or maintain the software under consideration while respecting
the user's e�ort and performance objectives. We have built a proof-of-
concept prototype to demonstrate that the PlanSP framework is both
useful and practical for software project management.

2

1 Introduction

As software systems[Pressman1996] become complex, organizations have to put
signi�cant investment in their development and maintenance (i.e., software life
cycle). Any piece of software is usually organized as a collection of components
or modules. A key challenge in management of a software life cycle is how to
e�ectively leverage existing software components while injecting resources to:
(a) develop and support software that perform to required speci�cation and (b)
deliver the software in a timely manner.

Consider a typical software project management scenario. Humans devise
the Work Breakdown Structure (WBS)[Moder & Phillips1964] to identify the
di�erent tasks at some granularity and input this information to a project man-
agement tool along with estimates on time and resources for each task. Microsoft
Project[Microsoft1998] is a standard tool used in industry for scheduling activ-
ities. It has elaborate guidelines on how to reason about a project - �nd the
critical path in the project, compute slack time for individual tasks, evaluate
tasks to identify over-allocated resources, etc. It is not hard to see that the
user, who may be a project manager or software architect, has to evaluate the
relevance of existing components manually based on the project objectives like
expected software functionality, performance and development time. This anal-
ysis also helps the user scope out new development in the project and estimate
the overall integration e�ort involved.

Now consider the case when a software has been released and is now being
maintained. If any updates/patches are available for the software components
that were reused in the project, their impact is manually evaluated to decide
if a new build of the software is necessitated. Though there are some tools to
track component dependencies and record history of component releases, the
key software management hurdle still remains that the trade-o� choices have to
be manually evaluated.

Our contribution relates to this general area of software project management.
We propose a framework to analyze di�erent project management choices auto-
matically in the following reasoning problems and thereby assist the user make
informed decisions.

� Scenario 1: When creating a new piece of software Snew, help the user:

[Problem 1] Reuse: Find existing components Bi that can accomplish
part of the functionality needed in Snew. Hence, �nd components that are
candidates for reuse in the project.

[Problem 2] Reduce: Identify existing components Bi that reduce scope
and complexity of any new development on Snew without sacri�cing on
Snew's functionality.

� Scenario 2: While an existing software Snew is being maintained, help the
user:

[Problem 3] Aware: Identify (sub-)components Bi whose newly released
enhancements can a�ect the functionality of Snew.

Software
Component

Model User Objective

Reasoning Problem
[Reuse, Reduce,
Detect, Upgrade]

Solution
[Plan, Components]

PlanSP Framework

Formulate

Solve

Figure 1: PlanSP approach of decision support in software project management.

[Problem 4] Upgrade: Evaluate and incorporate new enhancements of
(sub-)components Bi that are necessary for enhancing the objective of
Snew.

Our solution approach is to build a formal model about the capabilities
of software components and consider listed project management problems as
shown in Figure 1. The model is based both on the structured information that
is available about a software at its release time (like dependency information
used byMake) and optionally, measurements such as performance/ cost metric
and expected integration e�ort (time). The latter will be used to automatically
reason with usage tradeo�s and hence, it makes sense for the user to leverage
any historical information gained in this regard. The formal model for software
components is stored and appropriately referenced by PlanSP.

Given the software model of components and user objective, the decision-
support issues are cast into reasoning problems and solved. We use automated
AI planning [Weld1999]/ reasoning techniques to produce alternative choices
(\plans") to develop or maintain the software under consideration. The novelty
of the paper is in how the problems are created for tackling the speci�c decision-
support issues and the adaptation of planning algorithms to solve them. The
goal is not only to support the functionality of the software but also to respect
the user's e�ort and performance objectives. We demonstrate that the PlanSP
framework is both useful and practical for software project management.

There has not been much use of automated reasoning techniques in software

reuse and maintenance. Previously, [Hu� & Lesser1988] had proposed using
planning techniques to automate the software development process. However,
their main focus was on automating the compile/ build, test and release cycles
rather than software reuse. A limited search-based component retrieval solution
has been proposed by Hall[Hall1993] but the search space is restricted to depth
3. More related work is discussed at the end.

The paper is arranged as follows: we start with illustrative examples of how
an automated tool can help reason with choices over the course of software life
cycle and assist a user in project management. We then describe the details
of how a formal model of the software is built and describe the automated
reasoning/ planning techniques. Next, we discuss the inputs and assumptions of
our framework and present algorithms for solving the decision support problems.
We demonstrate that PlanSP is reasonable from a practical standpoint with
examples increasing in domain expressivity. We conclude with a discussion of
related work, contributions and future challenges.

2 Some Example Scenarios

Consider a �ctitious software company named WordSoft that builds multi-
lingual text analysis applications. Now a developer at WordSoft, whom we
will call Jack, wants to avail of decision support for project management.

2.1 Example: Module Selection for Multi-Lingual Text

Analysis

In text domain, WordSoft, has built 4 types of language speci�c reusable com-
ponents in a library: tokenizer, which identi�es tokens in a text document,
lemmatizer/stemmer, which given tokens, can �nd the lemma and inection
variants, synonym-lookup, which �nds synonyms of a lemma and thesaurus-
lookup, which �nd thesaurus details for a lemma. Suppose the current set of
supported languages are English, German, Spanish and Hindi, making a total
of 16 components in the reuse library. Figure 2 shows the domain pictorially.
Information about a component is represented as ground predicates and the con-
vention is that dependencies (preconditions or inputs) are shown at the lower
left side of a box while the functionalities (e�ects or outputs) are shown at the
upper right corner.

Now Jack has to implement the following functionality in a new software
Snew: given a multi-lingual document set, �nd lemmas in Spanish and the-
saurus entries in German. Jack wants to determine if there are components in
the library that can collectively ful�ll the requirement. If this is not possible,
he is interested in leveraging the exisiting components to reduce any new devel-
opment for Snew . Figure 3 shows how PlanSP can automatically meet Jack's
requirement.

Now consider the case when some component in the library (e.g., tokenizer
for English) gets modi�ed and released. Jack would want to know if there is an

TAF Example– multi-language module selection

Tokenizer ?X
<NULL>

TAF_Token ?X

Tokenizer ?X
<NULL>

TAF_Token ?X

Lemmatizer-
Stemmer ?X

TAF_Token ?X

TAF_Lemma ?X, TAF_Inflections ?X

Lemmatizer-
Stemmer ?X

TAF_Token ?X

TAF_Lemma ?X, TAF_Inflections ?X

Synonym-
Lookup ?X

TAF_Lemma ?X

TAF_Synonym ?X

Synonym-
Lookup ?X

TAF_Lemma ?X

TAF_Synonym ?X

Available Modules =4 * # Languages

Thesaurus-
Lookup ?X

TAF_ThesEntry ?X

TAF_Lemma ?X

Thesaurus-
Lookup ?X

TAF_ThesEntry ?X

TAF_Lemma ?X

<NULL>

TAF_Lemma SPANISH, TAF_ThesEntry GERMAN
Find modules:
Given a multi-lingual document set, how
to get lemmas in Spanish and find
thesaurus entries in German ? X = {ENGLISH,GERMAN,SPANISH,HINDI}

<NULL>

TAF_Lemma SPANISH, TAF_ThesEntry GERMAN
Find modules:
Given a multi-lingual document set, how
to get lemmas in Spanish and find
thesaurus entries in German ? X = {ENGLISH,GERMAN,SPANISH,HINDI}

Figure 2: The domain on multi-lingual module selection.

existing software Sold which is being maintained and is likely to be impacted.
If Sold was the Snew of above, no update is needed since no English tokenizer is
part of the released software.

2.2 Example: Cost-E�ort Reasoning with Text Mining

Components

Let us now focus on some software components that WordSoft has built for Text
Mining (TM) in Figure 4. The available software components are a clustering
algorithm, Clusterer-1, with two reusable sub-components, C1

1
that takes nu-

meric input and produces an hierarchical cluster, and C1

2
, which takes a cluster

hierarchy and displays it; Wordconv-1, a converter for words to numeric form
(W 1

1
) and a text miner, TextMP-1 with two sub-components T 1

1
, which takes

text input and returns patitioned clusters and T 1

2
, which displays partitions.

The performance and e�ort estimates of each component is shown in brackets,
respectively.

Jack's objective is to build a new text miner software that can take text as
input and shows a hierarchical view of the clusters with the constraint that its
performance be within 5 seconds and not take more than 10 hours to build. He
will like to know the various options for component reuse, and also �gure out
the scope of any new development.

3 Towards a Formal Model for Reasoning

We begin by discussing the foundational issues in representation of software
components and automated reasoning. In the next section, we use this back-
ground while solving the 4 decision-support problems.

TokenizerSPANISH

<NULL>

TAF_TokenSPANISH

Lemmatizer-
StemmerSPANISH

TAF_TokenSPANISH

TAF_LemmaSPANISH,
TAF_InflectionsSPANISH

TokenizerGERMAN

<NULL>

TAF_TokenGERMAN

Lemmatizer-
StemmerGERMAN

TAF_TokenGERMAN

TAF_LemmaGERMAN,
TAF_InflectionsGERMAN

Initial

Goal

Thesaurus-
Lookup GERMAN

TAF_ThesEntry GERMAN

TAF_Lemma GERMAN

TokenizerSPANISH

<NULL>

TAF_TokenSPANISH

TokenizerSPANISH

<NULL>

TAF_TokenSPANISH

Lemmatizer-
StemmerSPANISH

TAF_TokenSPANISH

TAF_LemmaSPANISH,
TAF_InflectionsSPANISH

TokenizerGERMAN

<NULL>

TAF_TokenGERMAN

TokenizerGERMAN

<NULL>

TAF_TokenGERMAN

Lemmatizer-
StemmerGERMAN

TAF_TokenGERMAN

TAF_LemmaGERMAN,
TAF_InflectionsGERMAN

Initial

Goal

Thesaurus-
Lookup GERMAN

TAF_ThesEntry GERMAN

TAF_Lemma GERMAN

STATUS: Domain file parsed successfully !
STATUS: Problem parsed successfully !
STATUS: Bookkeeping complete. Ready for planning !
STATUS: The problem has been solved !
STATUS: End of planning !

Solution is:
0: tokenizer_SPANISH
1: tokenizer_GERMAN
2: lemmatizer-stemmer_GERMAN
3: thesaurus-lookup_GERMAN
4: lemmatizer-stemmer_SPANISH

Search Statistics:
Search time: 231
States explored: 1310
States searched: 180

Figure 3: Finding the relevant components from the library.

Example– creating a new annotator

C1_1 C1_2Clusterer-1
Numeric_ip An_hierarchy

An_hierarchy Fig_hierarchy

Wordconv-1
W1_1

Text_ip

Numeric_ip

TextMP-1 T1_1 T1_2

Text_ip A_partition

A_partition Fig_partition

Text_ip

Fig_hierarchyBuild annotator:
A Text Miner whose performance is within
5 time units but does not take 10 hours
to build.

(clustering)

(converter from word to
numeric representation)

(text miner which shows
partitions on text input)

available
Annotators

[3, 1]

[5, 1] [2, 1]

[1, 1] [2, 2]

[5, 10]

Figure 4: A domain for software components with cost and e�ort information.

all: c1 c2 link

c1:
gcc -c foo.c

c2:
gcc -c moo.c

link:
gcc foo.o moo.o -o software

Figure 5: Dependencies speci�ed in a Make�le.

3.1 Representation of Software Components

We characterize a piece of software by the functionalities it provides, the other
software components that it depends on, a measure to gauge its performance
(like runtime) and the amount of e�ort that is needed to build it. We elaborate
on how these inputs may be obtained.

3.1.1 Functionality

The functionality about a piece of software component, i.e. its e�ects, is rep-
resented by predicates. Predicate, a construct from logic, refers to relationship
among objects where the latter are represented by terms (constants or vari-
ables). If any term in a predicate is a variable, the predicate is also called
a parameterized or lifted predicate, else it is a ground predicate. Example of
a parameterized predicate is (Document ?x) and its instantiation, (Document
ENG), is a ground predicate refering to a document in English. Semantics, or
the meaning of a predicate, is both assigned by, and meant for the humans/
applications in the domain.

Since functionality about a piece of software is known to the software cre-
ators, often as part of their requirement gathering step, one way to obtain it
can be from the software developers as part of the software release information.
Another source is the user groups which collect data about practical usage of
components.

3.1.2 Dependency

We represent dependencies of a piece of software component, i.e. its precondi-
tion, by predicates. An important source of this information is the Make �les
used to build the software. This is illustrated in the simple example of Figure 5.
The example shows that to build this software ("all"), the build dependency is
on C1, C2 and link steps. C1 and C2 are potential software dependencies.

Eventually, the precise software dependencies is known completely only to
the software creators. Hence, another way to obtain it can be by requiring it
from them as part of the software release information.

3.1.3 Performance or Cost

The performance measure of a software depends on a variety of factors ranging
from the context in which the software is used to the time it takes to complete
its activity. One can generalize this measure as some numeric cost of executing
the software where the cost information is of importance to the decision maker.

One simple cost measure can just be the estimated execution time on a
typical data size like "1sec for XML parser on 1MB XML data". Such data can
be obtained from performance testing or �eld trials. Another example is the
precision information about data mining components on speci�c types of inputs
- \label persons in a document with 0.9 accuracy".

3.1.4 E�ort

The e�ort required in integration of a software component with other software
pieces depends on a variety of factors like the software development methodol-
ogy, the organization of the software reuse library, the skill of the developers,
the details of the components, etc. However, over time, e�ort information as a
temporal quantity (e.g., 1 week) can be collected from actual usage of the com-
ponents and provided to solve the software decision problems. Another source
for obtaining this information are the experienced software developers who have
used similar components in their projects before.

3.1.5 Example

Figure 6 shows the representation of domain for the module selection example
of Section 2.1. The representation is expressed in Planning Domain Description
Language (PDDL[Fox & Long2002]) with STRIPS[Fikes & Nilsson1990] seman-
tics. This means that software components are modeled as deterministic actions
with preconditions that must hold for the actions to be applicable, and instan-
taneous e�ects. Moreover, there are no additional actors in the modeled domain
(world).

3.2 Automated Reasoning

A planning problem[Weld1999] P is a 3-tuple � I;G;A � where I is the com-
plete description of the initial state, G is the partial description of the goal
state, and A is the set of executable (primitive) actions. A state T is simply
a collection of facts with the semantics that information corresponding to the
predicates in the state holds (is true). An action Ai is applicable in a state
T if its precondition is satis�ed in T and the resulting state T

0

is obtained by
incorporating the e�ects of Ai. An action sequence S (a plan) is a solution to
P if S can be executed from I and the resulting state of the world contains
G. A type of planners, called state-space planners because they search in the
space of possible world state, is shown in Figure 7. As shown, FindSequence
can handle problems where information represented as predicates. We will use
it as the base planner to illustrate the various algorithms but the paper is also

;; An text domain of TAF
(define (domain text)

(:requirements :strips)

;; Types hierachy
(:types object)

;; Predicate list
(:predicates (TAF Token ?x) (TAF Lemma ?x)

(TAF Inflections ?x)(TAF Synonym ?x)
(TAF ThesEntry ?x))

;; Action list
(:action TOKENIZER

:parameters (?x)
:precondition
:effect (TAF Token ?x))

(:action LEMMATIZER-STEMMER
:parameters (?x)
:precondition (TAF Token ?x)
:effect (and (TAF Lemma ?x) (TAF Inflections ?x)))

(:action SYNONYM-LOOKUP
:parameters (?x)
:precondition (TAF Lemma ?x)
:effect (TAF Synonym ?x))

(:action THESAURUS-LOOKUP
:parameters (?x)
:precondition (TAF Lemma ?x)
:effect (TAF ThesEntry ?x)))

Figure 6: The speci�cation of components for multi-module selection in PDDL.

applicable to the other types of planners called the plan-space planners (i.e.,
planners which reason in the space of plans { partial solutions).

The insight in posing a software project as a planning problem is that the
initial state I is nothing but input data speci�cation while goal state G is the
functionality desired from the software. Each component present in the software
library is an action Ai with its inputs being the preconditions and its outputs
being the e�ects.

Now any suitable planner that can handle the particular information repre-
sentation can be used to synthesize the sequence of actions to achieve the goal.
The possibilities are:

� If only functionality and dependency information is available, a planner
like FindSequence can be used. We will use our Java implementation
called ParamC which takes input in the STRIPS[Fikes & Nilsson1990] no-
tation (predicates) and uses goal distance heuristics to guide its search.
It can build the solution plan either in the forward or backward direc-
tion1. However, we could have used any planner that supports STRIPS
like Graphplan[Blum & Furst1995] for equivalent results.

� If performance and time estimates are additionally available about compo-
nents, a cost-metric planner can be used to select among potential plans to
meet some optimization criteria. Example: How to build a software such
that its performance is within 5 seconds but it does not take 10 hours to
build ? We will consider this situation in Section 5.

1All results use forward direction.

FindSequence(I, G, A)
1. If G � I
2. Return
3. End-if
4. Ninit.sequence = fg; Ninit.state = I
5. Q = Ninit
6. While Q is not empty
7. N = Remove an element from Q (heuristic choice)
8. Let S = N.sequence; T = N.state
9. For each component Ai in A
10. If precondition of Ai is satisfied in state S

11. Create new node N
0
with:

N
0
.state = Update(S, effects of Ai) and

N
0
.sequence = Append(N.sequence, Ai)

12. End-if

13. If N
0
.state � G

14. Return N
0
// Return a plan

15. End-if

16. Q = Q [N
0

17. End-for
18. End-while
19. Return FAIL // No plan was found

Figure 7: Template of a standard state-space planner that can reason with in-
formation of components (actions) represented as predicates.

Insight from incomplete plans: If no complete sequence of components
(plan) is possible from the library for a given requirement, planning can still
help the user scope down the requirement of any new development that must be
done to attain all the functionalities. To get estimate of new development, the
planner has to sort the search space of non-solutions based on heuristic distance
to goal. The plan with the lowest such heuristic gives us the candidate plan
requiring new development.

4 Solving Project Management Decision-Support
Problems

We elaborate how decision-support problems that arise during software life cy-
cle are managed in PlanSP. We will use the module selection example (see
Section 2.1) in this section.

4.1 Scenario 1 - Software Development

Suppose the user wants to build a new software Snew and has a software com-
ponents library.

4.1.1 Reuse

In this case, the user wants to evaluate the existing components Bi that can
accomplish part of functionality of Snew. Hence, he wants to �nd components
that are candidates for reuse from the library. Figure 8 shows the formulation
of the solution and Figure 9 presents an algorithm to �nd relevant components.
FindRelevantComponent determines relevant components by starting from the

Input=
I,G,A

FindRelevantComponents
(I,G,A) Output=

{B1,B2,..}

Figure 8: The solution to Reuse problem.

FindRelevantComponent(I, G, A)
1. RelevantComps = fg
2. If G � I
3. Return RelevantComps
4. End-if
5. T = G; Tlast = fg
6. While T not equal to Tlast // Loop while T grows

7. Select a component Ai in A
8. If e�ect of Ai is satis�ed in state T
9. RelevantComps = RelevantComps [Ai

10. Tlast = T
11. T = T [A.precondition // Update T

12. End-if
13. End-while
14. Return RelevantComps

Figure 9: An algorithm to �nd related components for achieving G.

goal speci�cation and �nds components that possibly support the goals or iter-
atively other components that in turn supports the goal.

Figure 10 shows the planning speci�cation of the module selection problem
of Section 2.1 and the solution to the Reuse using FindRelevantComponent

algorithm. It lists the speci�c modules and their languages in the library which
are relevant to the given problem. No other modules are provably relevant other
than the 5 listed for this example.

4.1.2 Reduce

In this case, the user wants to evaluate the existing components Bi that can
accomplish maximum functionality of Snew. However, she wants to optimize
development by �nding how to use relevant Bi to minimize scope and complexity
of the new software development for Snew. Figure 11 shows the generalized
formulation of the Reduce solution (optional formulation in the presence of
cost and e�ort metric is in brackets) and Figure 12 gives the algorithms to
solve the simplest case (without any cost and e�ort information). In algorithm
FindEffectiveSequence, �rst an attempt is made to produce a plan which

;; Find the multi-lingual modules
(define(problem simple)

(:domain text)
(:objects ENGLISH GERMAN

SPANISH HINDI)
(:init)
(:goal (and (TAF Lemma SPANISH)

(TAF ThesEntry GERMAN))))

STATUS: Domain file parsed successfully !
STATUS: Problem parsed successfully !
** Relevant components *** :

[lemmatizer-stemmer SPANISH,
lemmatizer-stemmer GERMAN,
tokenizer SPANISH,
tokenizer GERMAN,
thesaurus-lookup GERMAN]

Figure 10: Planning problem for module selection example and the result for
Reuse scenario.

Input =
I, G, A,
[CostMax,
EffortMax]

FindEffectiveSequence(I,G,A)
[or, FindCostEffectiveSequence

(I, G, A, CostMax, EffortMax)]

Output = Effective Plan
[or, Optimal Plan and
Cost/Effort measure]

Plan
Exists

FindPartialSequence(I,G,A)
[or , FindBestNewDevlopmentSpec
(I, G, A,CostMax, EffortMax)]

Output = Closest
Partial Plan[and
Cost/Effort measure]

Yes

No

Figure 11: The solution to Reduce problem.

can meet the desired functionality from the library components2. If no plan is
possible, the partial plan leading to the closest state to the goal is returned as
this corresponds to the minimum development overhead (with respect to the
distance metric).

For the multi-module problem, we use the goal metric that minimum number
of components (actions) should be utilized. Figure 3 shows plan returned by
FindEffectiveSequences. It gives the actual plan of how the tokenizer and
lemmatizer in Spanish, and the tokenizer, lemmatizer and thesaurus module in
German can achieve the objective. Though it is not evident in this example, it
is very likely that the number of components in the plan shown by Reduce is
di�erent (and smaller) from that returned by Reuse since the latter only gives
a set of relevant components while Reduce shows a de�nite ordering among a
subset of them.

In the general case, we envisage that the developers can optionally give ad-
ditional information about the performance of the component and expected in-
tegration e�ort (time) with it. Given this information, we present algorithms in
Section 5 about how automatic reasoning about performance v/s e�ort tradeo�

2By default, a heuristic planner searches states in the order of their heuristic value and
any metric/heursitic function can be supplied.

Let Metric denote a state distance measuring function.

FindE�ectiveSequence(I, G, A)
1. If G � I
2. Return fg
3. End-if
4. Plan = FindSequence(I, G, A)
5. If Plan != FAIL
6. Return Plan
7. Else
8. Return FindPartialSequence(I, G, A)
9. End-if

FindPartialSequence(I, G, A)
1. Call FindSequence(I, G, A) but return partial plan

in the search queue with lowest distance to the goal,
as measured by the default goal metric.

Figure 12: An algorithm to solve Reduce problem.

Input =
I, G, Plan

FindDependentComponents
(I, G, Plan)

Output =
{B1, B2…}

Figure 13: The Aware problem.

can be performed.

4.2 Scenario 2 - Software Maintenance

This scenario occurs when a software Sold has been released and is now being
maintained.

4.2.1 Aware

In the Aware case, the user is given the formal speci�cation of software Sold and
the plan used to create it. The user wants to detect sub-components Bi whose
enhancements can be of possible interest while maintaining Sold. Figure 13
shows the formulation of the solution and an algorithm is shown in Figure 14
to �nd the dependent components. Dependent components are nothing but the
components that come together to make up the functionality of a software.

In the module selection example, the dependent module are shown in Fig-
ure 15. Hence, they are the component that the application has to be aware of
for releases.

FindDependentComponents(I, G, Plan)
1. DependentComps = fg
2. For each component Ci in Plan
3. DependentComps = DependentComps [Ci

4. End-for
5. Return DependentComps

Figure 14: An algorithm to solve the Aware problem.

STATUS: Domain �le parsed successfully !
STATUS: Problem parsed successfully !
** Dependent components *** :

[tokenizer SPANISH,
tokenizer GERMAN,
lemmatizer-stemmer GERMAN,
thesaurus-lookup GERMAN,
lemmatizer-stemmer SPANISH]

Figure 15: Dependent components for the module selection problem.

Input =
I, G, A,
OldPlan,
delta,
[CostMax,
EffortMax]

FindMustUpgradeComponents
(I, G, OldPlan, NewPlan, delta)

Output =
{B1, B2, }

NewPlan = FindSequence(I,G, A)
[or , FindCostEffectiveSequence
(I, G, A, CostMax, EffortMax)]

Figure 16: The solution to the Upgrade problem.

FindMustUpgradeComponents(I, G, OldPlan, NewPlan, delta)
1. UpgradeComps = fg
2. If G � I or OldPlan = NewPlan or

Di�erenceMetric(NewPlan, OldPlan) � delta
3. Return UpgradeComps
4. End-if
5. For each component Ci in NewPlan
6. If Ci is not present in OldPlan or

Di�erenceMetric(Ci, OldPlan.Ci) � delta
7. UpgradeComps = UpgradeComps [Ci

8. End-if
9. End-for
10. Return UpgradeComps

Figure 17: An algorithm to solve the Upgrade problem.

4.2.2 Upgrade

In this case, the user is given the formal speci�cation of software Sold and the
plan used to create it. The user wants to detect sub-components Bi whose
enhancements must be incorporated while maintaining Sold because it a�ects
the functionality of Sold. Note that the action (component) library A used to
create Sold may have changed now.

Figure 16 shows the formulation of the solution and Figure 17 gives an
algorithm to �nd components that necessarily must be upgraded. The algorithm
relies on the DifferenceMetric function to compare software components in
plans based on their capabilities. The plans can be compared on the same metric
that was used to create them in the �rst place (e.g., plan length, cost and e�ort
information, precision information, etc.).

5 Decision Support with Cost / Performance
and E�ort Measures

The model of the software component can be generalized to include a mea-
sure to gauge the component's performance (like precision or runtime) and the
amount of e�ort needed to integrate it. Refering to the text mining example in
Section 2.2, Jack (the user) wants to build a new text miner software and has
requirements for both the functionality (Snew will take text as input and show
hierarchical view of the clusters), and constraints (it should perfom within 5
time units and take less than 10 hours to build).

The formulation of the Reduce problem with cost and performance infor-
mation is also shown in Figure 113. Figure 18 and Figure 19 show algorithms

3Another formulation could be that the user is interested in a set of plans within a [CostMin,
CostMax] and [E�ortMin, E�ortMax] range. Now, both existing possibilities and partial plans

FindCostEffectiveSequence(I, G, A, CostMax, EffortMax)
1. If G � I
2. Return fg
3. End-if
4. MetricMax = CalculateMetric(CostMax, EffortMax)
5. Ninit.sequence = fg; Ninit.state = I; Ninit.cost = 0; Ninit.effort = 0
6. Q = Ninit
7. While Q is not empty
8. N = Remove an element from Q
9. Let S = N.sequence; T = N.state
10. For each component Ai in A
11. If precondition of Ai is satisfied in state S and

CalculateMetric(Ninit.cost, Ninit.effort) � MetricMax

12. Create new node N
0
with:

N
0
.state = Update S with result of effect of Ai and

N
0
.sequence = Append(N.sequence, Ai)

N
0
.cost = update(N.cost, Ai.cost)

N
0
.effort = update(N.effort, Ai.effort)

13. End-if

14. If G � N
0
.state and

CalculateMetric(Ninit.cost, Ninit.effort) � MetricMax

15. Return N
0
// Return a plan

16. End-if

17. Q = Q [N
0

18. End-for
19. End-while
20. Return FAIL // No plan was found

CalculateMetric(cost, effort)
1. Return evaluation on the desired function combining

cost and effort measures

Figure 18: One formulation of the reduce problem where a single plan is output.

FindCostE�ectiveSequence and FindBestNewDevlopmentSpec to �nd existing
and partial plans, respectively, with the new information. They use routine
CalculateMetric to derive a metric from the performance and e�ort estimates,
and use this metric to guide search. In FindCostE�ectiveSequence, the search
progresses in a branch-and-bound manner over the space of possible action se-
quences. Hence, it is guaranteed to give optimal plan with respect to the input
metric. In FindBestNewDevlopmentSpec, the partial plans are sorted according
to the metric so that the incomplete plan with minimum development overhead
(with respect to the metric) is returned.

PlanSP shows the solution choices for the text mining example in Figure 20.
Only using the components in the library, choice S1 is not feasible because
it violates the performance requirement of 5 time units for Snew . The other
choice is to go for new development and S2 describes this further. It shows that
that the two sub-components of TextMP-1 (T 1

1
and T 1

2
) could be used with a

new software piece developed to �ll in the missing visualization need (create a
hierarchical view from a partitioned cluster view). Moreover, it should not take
more than 2 time units (seconds) and be integratable in applications within 7
hours or less.

that fall within the range can be returned.

FindBestNewDevlopmentSpec(I, G, A, CostMax, EffortMax)
1. CurrentCost = 0; CurrentEffort = 0;

BestMeasure = CalculateMetric(CurrentCost, CurrentEffort);
BestPlan = fg; MinSpec = I, G

2. If G � I
3. Return BestPlan // No new development is needed

4. End-if
5. Ninit.sequence = fg; Ninit.state = I;

Ninit.cost = 0; Ninit.effort = 0;
6. Q = Ninit
7. While Q is not empty
8. N = Remove an element from Q
9. Let S = N.sequence; T = N.state
10. For each component Ai in A
11. If precondition of Ai is satisfied in state S and

Ninit.cost � CostMax and Ninit.effort � EffortMax

12. Create new node N
0
with:

N
0
.state = Update S with result of effect of Ai

and N
0
.sequence = Append(N.sequence, Ai)

N
0
.cost = update(N.cost, Ai.cost)

N
0
.effort = update(N.effort, Ai.effort)

Measure = CalculateMetric(N
0
.cost, N

0
.effort);

13. End-if

14. If G � N
0
.state and Ninit.cost � CostMax

and Ninit.effort � EffortMax

15. Return N
0
// Return a plan

16. End-if

17. Q = Q [N
0
in sorted order according to Measure

18. End-for
19. End-while
20. Return FAIL // No plan was found

CalculateMetric(cost, effort)
1. Return evaluation on the desired function combining

cost and effort measures

Figure 19: An algorithm to �nd the partial plan with the minimum metric mea-
suring performance/cost and e�ort of the new development to reach G.

Candidate Solutions with performance and effort estimates(generated automatically)

Text_ip

Fig_hierarchy

Build annotatorsuch that

its performance is within 5 time
units but does not take 10 hours
to build:

S1: W1_1
Text_ip

Numeric_ip

C1_1 C1_2
Numeric_ip An_hierarchy

An_hierarchy Fig_hierarchy

S2: T1_1 T1_2

Text_ip A_partition

A_partition Fig_partition

New
Development

Fig_hierarchy

Fig_partition

[3,1] [5,1] [2,1]

[1,1] [2,2] [2,7]

[5,10]

Performance = 10
Effort = 3 hrs

Performance = 5
Effort = 10 hrs

Figure 20: Choices generated automatically with performance v/s integration
e�ort tradeo�.

6 Discussion and Related Work

Software reuse has been prominently investigated in software engineering. The
key issue here is how to model the software components so that they could be
reused with di�ering requirements. Our decision of representing components
with predicates is essentially attribute-value based. A comprehensive study of
software representation techniques in software reuse libraries on the basis of
precision and recall found no statistical di�erence between attribute-value and
other alternative representations studied but noted that the result sets could be
di�erent based on the reasoning methods used[Frakes & Pole1994].

Separation of concerns techniques like Mixin layers[Smaragdakis & Batory1998],
Aspect-oriented Programming[Kiczales et al1997] and Hyperspaces[Tarr et al1999]
build artifacts (aspect, layer, etc.) around the core software components so that
the components could be selectively reused. Researchers have also looked at
dynamic composition of object behavior based on context[Seiter et al1998] or
composition policies[Truyen et al2001]. However, our main focus is a decision-
support role where the aim is to automatically identify good candidates/ com-
positions (in some objective sense) for reuse rather than customize existing
components during invocation. Component customization is an optional4 and
complementary feature of the reuse library that a�ects how the capability of the
software component is published, and is useful while invoking the components.
PlanSP is transparent to it because it accepts the published capabilities and
reasons about their appropriateness over all possible compositions with respect
to the user's goal.

To clarify the point further, it is insightful to illustrate the decision sup-
port using web services. Web services are platform and language independent
software components that can be invoked over the web to ful�ll some needs
(or goals). An application will use a composition of web services to �nd the
relevant set of given services and how they could be invoked (the \ow") to
achieve the goals. PlanSP helps in discovering the right set/sequence of services
while reuse work in software engineering lead to adaptation during runtime
invocation of the services. The work closest to PlanSP is [Mudiam et al2002]
where Java's JINI technology is used to discover set of services based on their
architectural description. However, it does not return information about how
the identi�ed services have to be used (composition sequence) or cover main-
tenance scenario. Early e�orts towards automatic web services composition
[Ponnekanti S. & Fox2002, Srivastava2002] are also related to PlanSP.

Though the project management scenarios identi�ed in the paper form the
crux of any successful software life cycle, there is no available method that can
address both of them. Moreover, although there are approaches for handling
the individual scenarios, they are not automatic - the user essentially has to
herself �gure out the tradeo�s as shown below.

Existing methods for Scenario 1:

4If customization is not supported, all possible customizations can be listed in the library
as separate components for the same e�ect. But this is clearly not a compact and desirable
representation.

� Reusable software libraries exist to organize software components and fa-
cilitate their later reuse. However, the user has to manually explore them
for possible candidates that can be used in their project. There is no sup-
port to the user to reason with the tradeo� between the integration time
of the software component into her project and its potential performance.

� Tools like Microsoft Project[Microsoft1998] show timelines/ deadlines for
tasks and their dependency as entered by the user. Later, the user her-
self has to �gure out the choices among software components so that the
project can be brought to timely completion.

Existing methods for Scenario 2:

� Make �les provide a simple way to detect changes in dependent com-
ponents and rebuild a software selectively based on need. But since it
considers timestamp of the component rather than any change in its func-
tionality for rebuilding the software, Make forces unnecessary builds that
the software may not a�ect the software.

PlanSP is an attempt to address both the project management scenarios
together. We have implemented the algorithms presented in the paper in two
AI planners, ParamC for pure STRIPS domain and ParamM for metric do-
mains (ongoing). However, the work is still early and no large scale real-world
evaluation of PlanSP has yet been performed. However, even in the small ex-
amples of Section 2 presented, it is evident that the alternatives returned after
automatic reasoning are non-obvious. Moreover, performance is in the order of
milliseconds.

7 Conclusion

In this paper, we identi�ed 4 common problems for which decision-support is
sought during a software's life cycle and introduced a decision-support frame-
work for software development and maintenance called PlanSP. PlanSP uses
AI planning/ reasoning techniques to automatically analyze the di�erent alter-
natives and assists the user in taking decisions with are good with respect to
their metric. The novelty of the paper is in how the problems are created for
tackling the speci�c decision-support issues and their solutions. The goal is not
only to support the functionality of the software but also to respect the user's
e�ort and performance objectives. Using examples, we demonstrated that the
PlanSP framework is both useful and practical for software project manage-
ment. In future, we intend to perform real-world evaluation of PlanSP on large
projects and signi�cant software libraries .

References

[Blum & Furst1995] Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. Proc IJCAI-95 1636{1642.

[Fox & Long2002] Fox, M., and Long, D. 2002. PDDL2.1: An Exten-
sion to PDDL for Expressing Temporal Planning Domains. Available at
http://www.dur.ac.uk/d.p.long/competition.html.

[Fikes & Nilsson1990] Fikes, R., and Nilsson, N. 1990. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem Solving. Readings
in Planning. Morgan Kaufmann Publ., San Mateo, CA.

[Frakes & Pole1994] Frakes, W. B., and Pole, T. P. 1994. An empirical study
of representation methods for reusable software components. IEEE Trans. on
Software Engineering, 20(8):617{630, August.

[Hall1993] Hall, R. J. 1993. Generalized Behavior-based Retrieval. Proc. 15th
Intl Conf. on Software Engineering (ICSE), IEEE Computer Society.

[Hu� & Lesser1988] Hu�, K. E. and Lesser, V. R. 1988. A Plan-Based Intelli-
gent Assistant That Supports the Process of Programming. ACM SIGSOFT
Software Engineering Notes, 13:97{106, November.

[Kiczales et al1997] Kiczales, G., Lamping, J., Mendhekar, C., Lopes, C., Lo-
ingtier, J., and Irwan, J. 1997. Aspect-Oriented Programming. Applications.
Proc. ECOOP'97, June.

[Microsoft1998] Microsoft. 1998. Microsoft Project Version 4.0 User Guide.
Microsoft Press.

[Moder & Phillips1964] Moder, J. J., and Phillips, C. R. 1964. Project Manage-
ment with CPM and PERT. Reinhold Publ., Chapman & Hall Ltd., London.

[Mudiam et al2002] S. Mudiam, G. Gannod, and T. Lindquist. 2002. A Novel
ServiceBased Paradigm for Dynamic Component Integration. AAAI 02 Work-
shop on Intelligent Service Integration.

[Ponnekanti S. & Fox2002] Ponnekanti S. and Fox, A. 2002. SWORD: A De-
veloper Toolkit for Web Services Composition WWW Conference, Hawaii.

[Pressman1996] Pressman, R. 1996. Software Engineering: A Practitioner's
Approach. McGraw-Hill, 4th Edition, ISBN 0070521824.

[Seiter et al1998] Seiter L., Palsberg, J., and Lieberherr, K. 1998. Evolution
of Object Behavior using Context Relations. IEEE Trans. on Software Engi-
neering, 24(1).

[Smaragdakis & Batory1998] Smaragdakis Y., and Batory, D. 1998. Imple-
menting Layered Designs with Mixin Layers. Proc. ECOOP'98.

[Srivastava2002] Srivastava, B. 2002. Automatic Web Services Composition
Using Planning. Proc. Knowldge-Based Computer Systems (KBCS), Mumbai,
pg 467{477.

[Tarr et al1999] Tarr, P., Ossher, H., Harrison, W., and Sutton, S. 1999. N
Degrees of Separation: Multi-Dimensional Separation of Concerns. Proc.
ICSE'99.

[Truyen et al2001] Truyen, E., Vanhaute, B., Joosen, W., Verbaeten, P., and
Jorgensen, B.N. 2001. Dynamic and Selective Combination of Extensions in
Component-Based Applications. Proc. 23rd ICSE.

[Weld1999] Weld, D. 1999. Recent Advances in AI Planning. AI Magazine,
Volume 20, No.2, pp 93-123.

