
RI03-008 June, 2003 Subject: Computer Science

IBM Research Report

Descending Price Multi-Item Auctions

Debasis Mishra Rahul Garg

Department of Industrial Engineering IBM, India Research Laboratory

University of Wisconsin, Madison New Delhi, India

dmishra@cae.wisc.edu grahul@in.ibm.com

IBM Research Division,

IBM India Research Lab,

Hauz Khas, New Delhi - 110016. INDIA.

Phone: +91-11-2686-1100, Fax: +91-11-2686-1555

IBM Research Division

Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM

and will probably be copyrighted is accepted for publication. It has been issued as a Research Report for early

dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution out-

side of IBM prior to publication should be limited to peer communications and specific requests. After out-

side publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment

of royalties). Copies may be requested from IBM T.J. Watson Research Center, Publications, P.O. Box 218,

Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at

http://domino.watson.ibm.com/library/CyberDig.nsf/home



RI03-008 June, 2003 2



Descending Price Multi-Item Auctions

Debasis Mishra Rahul Garg

Department of Industrial Engineering IBM, India Research Laboratory

University of Wisconsin, Madison New Delhi, India

dmishra@cae.wisc.edu grahul@in.ibm.com

Abstract

We propose a simultaneous descending price auction mechanism to sell multiple heterogeneous items

to a number of buyers. Buyers have different known private valuation on each of the items, and each

buyer wants at most one item. We show that if sellers follow a descending price offer procedure and the

buyers follow a greedy strategy for accepting the offers, the auction mechanism results in a nearly efficient

allocation with the final selling prices converging close to a competitive equilibrium price. The seller’s

descending price offer strategy is close to a Nash equilibrium. We also discuss the equilibrium strategy

for the buyers. We show the buyers are better off waiting and there is a maximum limit (corresponding

to the minimum competitive equilibrium price) till which they can wait without running into risk of

loosing an item. Further, we prove that if the buyers wait within this limit, the prices can be brought

arbitrarily close to a uniquely defined competitive equilibrium price.

Keywords: Competitive equilibrium; Dominant strategy; Dutch auction; English auction; Nash equilib-

rium
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1 Introduction

Commerce on the Internet has increased in the last couple of years. The mechanisms for doing commerce

have also received a lot of attention by researchers. Auction is becoming one of the most popular forms of

trading on the Internet, as it allows competitive price discovery and fair and efficient allocation of resources.

This has sparkled renewed interest in the theory of auctions.

Most of the auctions on the Internet are currently conducted in isolation from one another leading to

fragmented markets and inefficient allocations. The theory of multi-item auctions (Bansal and Garg, 2000)

can be used to integrate these fragmented markets into a single unified market, thereby resulting in efficient

allocations, and more competitive price discovery.

Consider a set of n buyers having known private valuations on a set of m items. Assume, that each buyer

is interested in getting at most one item from this set of m items. How should the items be assigned to the

buyers? What is a fair and competitive price of these items? What market mechanism can be designed to

discover these prices and assignment? What is the impact of different strategies of buyers and sellers on the

outcomes of these mechanisms? The theory of multi-item auctions has answers to some of these questions.

The earliest study on this problem was done by Koopmans and Beckmann (1957) who established the

existence of Walrasian equilibrium for the above assignment problem. Later, Shapley and Shubik (1972)

studied the properties of the core of the above problem and showed that the core forms a complete lattice.

As a result, there exists a unique minimum and a unique maximum competitive price vector that forms a

Walrasian equilibrium for the assignment problem. Recently, Gul and Stacchetti (1999) have extended these

results to the general case when instead of single unit demand, the buyer demands are gross substitutes over

sets of items.

Under the same conditions, Leonard (1983) has considered a sealed bid mechanism for allocating items

to bidders. He showed that if the bidders are charged prices for items equal to their minimum competitive

equilibrium prices and are assigned items according to the minimum competitive equilibrium assignment,

then the resulting allocation is efficient. In this case, the resulting mechanism becomes incentive compatible

(i.e. bidders have no incentive to misrepresent their valuations). Compare this with the “second price”

auction mechanism of Vickrey (1961) for sealed bid auction of a single item. Here, the item is assigned to

the bidder with the highest bid, but at a price equal to the second highest bid. Leonard’s mechanism can be

thought as a generalization of the “second price” auction mechanism to the case of multiple heterogeneous

items.

Crawford and Knoer (1981) have studied a generalized version of this problem in the context of firms and

workers where workers have to be assigned to firms. They described a mechanism (called salary adjustment

process) that converges to the equilibrium assignment and competitive prices (salaries). Kelso and Crawford

(1982) extended this to the case where the bidders have more general demand (called gross substitute). The

salary adjustment process requires that the individual valuations be an integral multiple of the discrete bid

increment and bidders participate in the mechanism in a manner that is significantly different than the

conventional auction mechanisms.

Demange et al. (1986) have described a mechanism based on traditional ascending English open-cry

auctions. In this mechanism, each item is auctioned independently as an ascending open-cry auction, but all

the auctions open and close at the same times. The bidders place bids on items that give them maximum
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surplus. Demange et al. showed that this mechanism leads to a final allocation that can be made arbitrarily

close to the minimum price equilibrium. Further, Bertsekas (1992) showed that such an auction leads to

nearly efficient allocation. Miyake (1998) has studied the strategic behavior of bidders in this mechanism

and showed that under certain assumption on bidding behavior, the simple greedy truth-telling strategy is

a dominant strategy. Bansal and Garg (2000) later showed that under no restrictions on bidding behavior,

the greedy strategy ceases to be a dominant strategy but still constitutes a Nash equilibrium. Therefore,

the progressive auction mechanism of Demange et al. (1986) may be seen as a natural generalization of

ascending English open-cry auctions for the case of multiple items.

While second price sealed bid auctions and ascending English auctions have been generalized to the case

of multiple heterogeneous items, descending price Dutch auction have not yet been. Many times sellers prefer

to auction their items using a descending price Dutch auction for a variety of reasons. Most of the auctions

on the Internet are ascending-price in nature. Since, Dutch auctions are inherently faster than the English

auctions, this can save costs of the customers, on time spent. For example, some ascending-price auctions

on the Internet go on for weeks, but in case of a descending-price auction, the buyer can end the game much

more rapidly. On the other hand, descending-price auctions need a natural upper price to start whereas

ascending-price auctions do not require this. But the model which we consider in this paper, the sellers have

reserve prices on items which can be used as a natural starting price in descending-price auctions.

In this paper we propose a multi-item generalization of descending price Dutch auctions and discuss its

properties. In a Dutch auction, a seller initially announces a high price for his item and then reduces it

progressively until he finds a buyer ready to buy his item. In the multi-item generalization, the sellers offer

their items to each buyer starting with a high price initially. The sellers progressively reduce their prices by

a small amount (say ε) until they find a buyer who tentatively accepts their offer. A buyer accepts an offer

tentatively only if it gives her a positive surplus. The auction rules permit a buyer to reject an accepted

offer and switch to a different offer. A buyer switches to a new offer if it gives her a surplus better than the

surplus on the current offer. The auction ends when no more offers are made and then the buyers and sellers

are obliged to honor their current commitments and offers.

We show that the multi-item generalization of Dutch auctions, results in a nearly efficient allocation.

We discuss the buyers’ and sellers’ strategic behavior in this auction. We show that if all the sellers follow

the above offer procedure then, a seller cannot increase his surplus significantly by unilaterally following

a different strategy. The suggested offer procedure approaches close to a Nash equilibrium for the sellers

as ε approaches zero. For the buyers, committing to an item as soon as its surplus becomes positive has

strategic disadvantages. The buyers can derive a better surplus if they wait for the prices to fall further.

However, the buyers run into the risk of loosing the item if they wait long. We show that the maximum

achievable surplus for a buyer corresponds to her surplus in minimum competitive price vector. If a buyer

waits for her surplus to become equal to the maximum achievable (minus mε), she is guaranteed to get an

item irrespective of how long other buyers are waiting. On the other hand, if all the other buyers do not

wait after their surplus becomes equal to their maximum achievable surplus, then a buyer is guaranteed to

loose her item in case she waits longer after her surplus becomes equal to the maximum achievable surplus

(plus mε). So the strategy of waiting till a buyer gets her maximum achievable surplus approaches close to

a Nash Equilibrium for buyers. These results on strategic behavior are closely related to those of Demange

and Gale (1985) and Demange et al. (1986). While Demange and Gale(1985) consider strategy structure of
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a continuous matching market in a sealed-bid auction scenario(where buyers submit their valuations to a

referee), we consider a progressive auction scenario where the prices are successively brought down by finite

decrements. Therefore, the strategic behavior results of (Demange and Gale, 1985) are only approximately

valid in the discrete market. We provide the bounds within which the payoffs and prices may vary in the

discrete market. Demange et al. (1986) discuss progressive auctions with finite bid-increments, but they only

consider ascending price auctions and do not consider strategic behavior of agents.

We show that the final prices in the auction mechanism converges close to the maximum competitive

equilibrium price if the buyers follow the safest strategy of committing to an item as soon as they get a

positive surplus on it. If the buyers wait till their surplus becomes equal to their maximum achievable

surplus, then the prices converge close to the minimum competitive equilibrium price. In general, the prices

converge (nearly) to a uniquely defined competitive equilibrium price even if buyers decide to wait suitably

and we characterize this price.

Our results on prices may be seen as a generalization of results of (Shapley and Shubik, 1972), who show

that maximum competitive equilibrium prices are unique. We extend this notion while taking the buyers

strategies into account(seller’s in case of ascending price auctions). We show that maximum competitive

equilibrium prices corresponding to a buyers surplus vector is unique and the auction mechanism converges

close to these prices.

Our results indicate that for the same set of buyers, sellers and valuation functions, our auction may

produce different prices. This variation in prices is due to the use of finite bid decrements (ε) and the

random nature of tie-breaking procedure in the buyers’ and sellers’ strategies. We provide bounds on such

price variations. We also conducted simulations to see the variation of prices. In a real-world setting, a buyer

will have value on small subset of available items and the number of buyers will be more than the number

of items. Under these settings, our simulations show that for about 100 buyers and 80 items, 75% of the

items have price variations less than 10ε. As the number of buyers are increased (and the number of sellers

increased proportionately too), this percentage increases, i.e. with larger market sizes, the number of items

having price variations less than 10ε increase. In general, the price variations are of the order of m
5

ε, where

m is the number of items. This is well below the theoretical bound of 2mε provided in theorems 6 and 7.

The rest of the paper is organized as follows. In Section 2 we begin with describing our proposed

descending price auction mechanism, the seller’s offer procedure and the buyer’s response. In Section 3 we

discuss the optimality properties of this mechanism. In Section 4, we discuss the strategic behaviors of buyers

and sellers in our mechanism. In Section 5, we investigate the equilibrium properties of this mechanism.

We comment on multi-item ascending English auctions in Section 6. In section 7 we report some simulation

results of our auction and we conclude in section 8.

2 The Auction Mechanism

We propose a multi-item generalization of descending price Dutch auctions. In the multi-item generalization,

all the buyers enter the auction at the same time. The sellers may however join the auction any time. We

call this Simultaneous Descending Price Auction Mechanism (SDPAM).

Let A = {α1, α2, α3, . . . , αm} be the set of m items available for sale by m different sellers and B =

{β1, β2, β3, . . . , βn} be the set of n buyers. Assume that each buyer is interested in buying at most one item
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from A. Also, let vβiαj
denote the valuation of buyer βi on item αj . If a buyer βi is not interested in buying

an item αj , then vβiαj
= 0. Let vα1

, vα2
, . . . , vαm

be the valuation of sellers on their respective items and

rα1
, rα2

, . . . , rαm
be their respective reserve prices.

2.1 Auction Rules

The auction is conducted as follows. A seller may offer his item to any buyer at any price. The buyer can

either tentatively accept or reject the offer. If a buyer tentatively accepts an offer, the seller and the buyer

are said to be committed to each other. Similarly other sellers may also offer their items to buyers, including

those buyers who are already committed to other sellers. In case a buyer who is already committed receives

an offer and prefers it to her existing commitment, she can switch from earlier offer (by rejecting it) to the

new offer (by tentatively accepting it). The buyer remains committed in the process whereas the seller of

earlier offer becomes uncommitted. An offer is binding for the seller. Unlike the buyers, a seller cannot

withdraw his offer unless it is rejected by the buyer. A seller may offer his items to buyers only if he is not

committed (i.e. all his earlier offers have been eventually rejected).

An uncommitted seller may withdraw his item from the auction at any point of time if he is unable to sell

it at the desired price. The auction closes when no more offers are made i.e. every seller is either committed

or has withdrawn his item from the auction. After the auction closing, the committed buyers are required

to buy their item from their respective committed sellers at the last offer price.

2.2 Offer Procedure

We now describe a simple offer strategy called the Decreasing Price Offer (DPO) strategy that is a general-

ization of seller’s behavior in Dutch auctions.

Each seller carries out his offer to the buyers independently. He starts with a high price and lowers it by

the minimum price decrement (say ε) if there is no demand on his item. At each price, the seller takes the

item to each of the buyers one by one. The order in which he makes offers to the buyers is arbitrary and

does not affect the results of this paper. As soon as a buyer accepts his offer, he becomes committed and he

stops offering his item. If the committed buyer switches from his item, he again starts offering the item at

the current price to rest of the buyers. If no one accepts his offer at the current price, he lowers the price

by ε and makes the offers again. The seller withdraws the item from auction if its price reaches the reserve

price and no buyer commits to the item.

Alternatively, the seller may publicly announce a price for his item which amounts to making an offer

to every buyer in the system. Any buyer who does not respond to the offer is assumed to have rejected the

offer. The buyer who intends to tentatively accept the offer is expected to respond to the offer within a fixed

time period. The seller may arbitrarily choose and notify one of the buyers who respond to his offer. The

buyer who gets the seller’s notification gets committed to him. In case the buyer was committed earlier,

she uncommits from her earlier seller by sending him a notification. The uncommitted seller announces the

same price again to make sure that no buyer is interested in his offer. The seller lowers the price by ε and

announce the price again if no one accepts his earlier offer. The seller withdraws the item from auction if its

price reaches the reserve price and no buyer commits to the item.

A seller may set a reserve price that is different from his valuation on the item. If a seller wants a
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minimum surplus of t, he will set a reserve price that is t more than his valuation. We denote the strategy

followed by seller of item α as DPO(t) if rα = vα+t. If a seller sets a reserve price equal to his valuation, then

the corresponding DPO strategy is DPO(0). So DPO refers to a class of strategies with different minimum

surplus amounts.

2.3 Buyer’s Response

A buyer βi is said to have a surplus of vβiαj
− pt(αj) at time instant t on item αj , where pt(αj) is the price

of the item αj at that time instant. Let us associate with buyer βi ∈ B a starting surplus amount ŝβi
. If a

buyer is not committed to any item, she accepts any offer that provide at least ŝβi
surplus. However, if a

buyer is committed to an offer, then she accepts an offer on an item while rejecting the earlier offer, if the

new offer gives her more surplus. If a buyer does not reject the earlier offer, she gets committed to more

than one offer at a time. If the auction ends at this instant, she will have to buy both the items, which she

will never like to do in our model. Note that the only information available to a buyer at a given instant is

the current price vector of the items (which is a public information) and her own valuation of these items

(which is private information). Therefore buyers cannot accurately predict the ending of auctions. Also,

there is no strategic advantage in holding onto two items at a time, as it only serves to stop the prices of

items from falling further.

As can be seen, by following this strategy, the buyer always increases her surplus by positive amounts with

every offer she accepts. We call this strategy, Local Surplus Increasing (LSI) strategy. More specifically,

if a buyer βi has a starting surplus amount of ŝβi
, we call her strategy, LSI(ŝβi

). If ŝβi
= 0, then the

corresponding strategy of the buyer is LSI(0). So when we say simply LSI, we refer to a class of strategies

with any starting surplus amount possible.

According to the auction rules, a buyer cannot be committed to more than one item at any time instant.

With LSI strategy, as soon as a buyer gets an offer with better surplus, she uncommits from her item and

accepts the new offer. In case the offer has lower surplus she rejects the offer and waits for the prices of

items to fall. Therefore, she is guaranteed to get a surplus equal to her starting surplus amount if she gets

an item.

2.4 Total Global Surplus

Let us denote the final price vector in the mechanism by p̂. So, item αi has a final price of p̂αi
. Let buyer βj

be the winner of αi. So, the surplus of the buyer on the item αi is vβjαi
− p̂αi

. Surplus of the seller on this

item is p̂αi
− vαi

. Therefore, surplus of the system due to this item is vβjαi
− vαi

. If we denote winner of

item αi as wi, we can define the total global surplus as SG =
∑m

i=1
(vwiαi

− vαi
)(assume vwiαi

= vαi
, when

αi is not assigned) . Thus, the total global surplus of the system is independent of the final price vector. It

only depends on the final assignment of items to buyers.

3 Optimality Properties

In this section we discuss about the optimality properties of SDPAM. We will denote the final price of αi

(αi ∈ A) in SDPAM as p̂αi
. We assume buyers always follow LSI strategy and sellers always follow DPO
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strategy in SDPAM. Since price decrements are finite, positive and fixed, final prices cannot be less than

zero, the auction mechanism terminates.

Proposition 1 If a buyer βi following an LSI strategy gets an item αi in SDPAM and does not get the item

αj , then vβiαi
− p̂αi

> vβiαj
− p̂αj

− ε.

Proof : Consider an instant when the price of αj is about to drop from p̂αj
+ ε to p̂αj

. Since the price is

dropping (as sellers follow DPO strategy), the item must have been offered to βi at the price p̂αj
+ ε and

she would have rejected the offer. This means either she had a surplus less than ŝβi
on αj at that price or

she was committed to an item that was giving her higher surplus than αj . In the first case, the proposition

is true (since vβiαi
− p̂αi

≥ ŝβi
> vβiαj

− (p̂αj
+ ε)). In the second case, let us assume she was committed to

αk at that instant with a price pk. But finally she switched to αi. Since offers get only better in terms of

surpluses to buyers if LSI strategy is followed, we can write the following:

vβiαi
− p̂αi

> vβiαk
− pk.

Also, since βi did not accept the offer of αj at the price p̂αj
+ ε, we have the following:

vβiαk
− pk ≥ vβiαj

− p̂αj
− ε.

Adding last two inequalities we have vβiαi
− p̂αi

> vβiαj
− p̂αj

− ε.

Proposition 2 If a buyer β1 following an LSI strategy has a surplus of at least ŝβ1
+ ε on any item, she

should get an item in SDPAM.

Proof : Consider the item α1 on which the buyer has surplus greater than or equal to ŝβ1
+ ε. Let the

price of α1 be p1. Consider the instant when the price of α1 was p1 + ε. At this instant, β1 should have a

surplus of at least ŝβ1
on α1. Since price of α1 drops and β1 follows LSI once her surplus reaches ŝβ1

, she

should have been offered the item α1 at price p1 + ε (by DPO strategy of sellers). She would have eventually

rejected the offer of α1 since its price drops further. This means she should be committed to some other

item. By the rules of SDPAM, once a buyer commits to an item she is guaranteed to get some item. Hence

the proposition.

Theorem 1 (Efficiency) Let SOPT denote the maximum total global surplus under any optimal allocation

and SSY S denote the total global surplus for the system in SDPAM. If all buyers follow LSI(0) strategy and

all sellers follow DPO(0) strategy, then SOPT − SSY S < mε.

Proof : For simplicity assume that if an item αi is not sold there is a dummy buyer who values αi at vαi

and wins it at vαi
(vαi

= rαi
, as sellers follow DPO(0) strategy). We can divide the set of winning buyers

into two main categories, BOPT and BSY S , where BOPT represents the set of buyers who win an item in the

optimal allocation and BSY S represents the set of buyers who win an item in the SDPAM following LSI(0)

strategy. Let us denote the item won by buyer βi in optimal allocation by wβi
and in SDPAM by w̄βi

. We

can write the following two equations:
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SOPT =
∑

βi∈BOP T

(vβiwβi
− vwβi

), (1)

SSY S =
∑

βi∈BSY S

(vβiw̄βi
− vw̄βi

). (2)

Subtracting (2) from (1), the valuation of sellers on items will cancel out (since every item is sold because

of dummy buyers). So we can write the following equation:

SOPT − SSY S =
∑

βi∈BOP T

vβiwβi
−

∑

βi∈BSY S

vβiw̄βi
.

Further, BOPT and BSY S be divided into 3 disjoint sets of buyers. BBOTH be the set of buyers defined as

B̄OPT

⋂
B̄SY S . B̃ = BOPT − BSY S and B̂ = BSY S − BOPT . So, the above equation reduces to the following

form:

SOPT − SSY S =
∑

βi∈BBOT H

(vβiwβi
− vβiw̄βi

) +
∑

βi∈B̃

vβiwβi
−

∑

βi∈B̂

vβiw̄βi
. (3)

Let |BBOTH | = q. So |B̃| = |B̂| = t (say). If wβi
= w̄βi

then vβiwβi
− vβiw̄βi

= 0. Otherwise from

proposition 1 we have:

vβiwβi
− vβiw̄βi

< p̂wβi
− p̂w̄βi

+ ε.

Summing it over all βi ∈ BBOTH we get:

∑

βi∈BBOT H

(vβiwβi
− vβiw̄βi

) <
∑

βi∈BBOT H

(p̂wβi
− p̂w̄βi

) + qε. (4)

Consider βi ∈ B̃. From definition of B̃, βi does not get any item in SDPAM. Using proposition 2 and the

fact that ŝβi
= 0 we have:

vβiwβi
− p̂wβi

< ε. (5)

Adding it for all t elements in B̃, we get:

∑

βi∈B̃

vβiwβi
<

∑

βi∈B̃

p̂wβi
+ tε. (6)

Since all the buyers in SDPAM who get some item have non-negative surplus on that item, we can write

vβiw̄βi
− p̂w̄βi

≥ 0, where βi ∈ B̂. Summing it over all the elements in B̂, we have the following:

∑

βi∈B̂

vβiw̄βi
≥

∑

βi∈B̂

p̂w̄βi
. (7)

Combining (3), (4), (6) and (7) we get:

SOPT − SSY S <
∑

βi∈BBOT H

(p̂wβi
− p̂w̄βi

) + qε +
∑

βi∈B̃

p̂wβi
+ tε −

∑

βi∈B̂

p̂w̄βi
.
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Since all items are always sold, the prices cancel out and this implies SOPT − SSY S < (q + t)ε or,

SOPT − SSY S < mε.

The consequence of this theorem is that if ε is kept really small with buyers following LSI(0) strategy and

sellers making offers by following DPO(0) strategy, our mechanism will lead to nearly efficient allocation.

Note that the total inefficiency introduced due to finite bid decrement (ε) is mε. Therefore average inefficiency

per item is only of the order of ε. Therefore the system is scalable from the efficiency point of view.

4 Strategic Behavior

Incentive properties of a mechanism are as important as the optimality properties. We showed that SDPAM

with buyers following LSI(0) strategy and sellers following DPO(0) strategy converges close to an efficient

allocation if ε is kept small. But whether there exists any incentive for buyers to follow LSI(0) and sellers to

follow DPO(0) is a critical question. This section will try to address this question.

Since the price decrements are finite and fixed, the order in which the offers are made to the buyers

(or if the offers are made publicly, then the order in which buyers respond to offers) may make a difference

in the final allocation and small difference in the prices and surpluses. We show that this difference is

a linear function of ε and can be made arbitrarily small. To discuss this, concepts like Nash equilibrium

and dominant strategies need to be adapted. We therefore suggest the notion of δ-Nash equilibrium and

δ-dominant strategy which can be used to approximate Nash equilibrium and dominant strategies within a

small neighborhood. Let ui(σ, σ−i) represent the utility of player i when it adopts the strategy σ and all the

other players adopt the strategy σ−i.

Definition 1 (δ-Nash equilibrium) A strategy profile σ∗ constitutes a δ-Nash Equilibrium if, for every

player i,

ui(σ
∗
i , σ∗

−i) ≥ ui(σi, σ
∗
−i) − δ,

∀ σi ∈ Si, where Si is the set of strategies player i can adopt.

Definition 2 (δ-Dominant strategy) A strategy σ∗
i is a δ-dominant strategy for player i if

ui(σ
∗
i , σ−i) ≥ ui(σi, σ−i) − δ,

∀ σi ∈ Si and ∀ σ−i ∈ S−i, where Si is the set of strategies that player i can adopt and S−i is the set

containing the profile of all the strategies that all the players other than player i can adopt.

We now define the concept of competitive equilibrium. Consider a buyer βi. Define the demand set

of buyer βi at a price vector p , Dβi
(p), as the set containing all the items for which βi has maximum

non-negative surplus. Mathematically:

Dβi
(p) =

{
φ if maxαk∈A[vβiαk

− pαk
] < 0,

αj |vβiαj
− pαj

= maxαk∈A[vβiαk
− pαk

] otherwise

Now we define competitive equilibrium prices as follows.

Definition 3 A price vector p is a competitive equilibrium price if there exists an assignment µ of item to

buyers such that following conditions hold:
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1. A buyer who is assigned in µ, gets item from her demand set.

2. Every buyer with a positive surplus on an item gets an item. Buyers having negative surplus on all the

items do not get any item.

3. No two buyers get the same item.

4. An assigned item has a price greater than or equal to its seller’s valuation. An unassigned item has a

price equal to its seller’s valuation.

The assignment µ is called the competitive equilibrium assignment at p and the tuple (µ,p) is called

a competitive equilibrium. Similar definition is also provided by Demange et al. (1986). Note that there

can be multiple competitive equilibrium price vectors. Shapley and Shubik (1972) show that the set of

all competitive equilibrium price vectors are contained in the core and for unit demands the core forms a

complete lattice. As a result, there exist a unique minimum and a unique maximum competitive equilibrium

price vector. Gul and Stacchetti (1999) have extended these results to the case of general “gross substitute”

demands.

Let pmin denote the minimum competitive equilibrium price vector and pmax denote the maximum com-

petitive equilibrium price vector. Let us call the surplus obtained by bidder βi ∈ B in minimum competitive

equilibrium as her maximum achievable surplus and denote it by smax
βi

. Let smax denote the vector of bidder

surpluses in minimum competitive equilibrium.

4.1 Seller’s Strategy

To get a better price for his item, a seller may decrease the price of his item by large amounts, or may even

increase it after decreasing it initially. The following theorem demonstrates the futility of this.

Theorem 2 Let p̂ be the final price vector in SDPAM when all the buyers follow LSI(ŝ) strategies with

0 ≤ ŝβi
∀βi ∈ Band all the sellers follow DPO(t) (t ≥ 0) strategies. If the seller of item αk was to follow a

different strategy and offer his item to a buyer at a price greater than p̂αk
+2mε, then his offer will eventually

be rejected.

Proof : Assume, for contradiction, that the seller’s offer is not rejected. Denote the final prices of SDPAM,

when seller of item αk follows a different strategy, by vector p̄. We call the mechanism deviated SDPAM

when seller of item αk deviates but other sellers follow DPO strategies, and call it SDPAM when no one

deviates. Buyers always follow LSI strategies. Now consider the following important lemma.

Lemma 1 Let I be a set of items won by a set of buyers J in deviated SDPAM and I contains the item

whose seller deviates such that ∀ αi ∈ I, p̄αi
− p̂αi

> δ (δ ≥ 2ε). Then there exists an item αj /∈ I such that

p̄αj
− p̂αj

> δ − 2ε.

Proof : Since all items in I have final prices at least 2ε above final prices in SDPAM, every buyer βi in J

will have at least 2ε + ŝβi
surplus in SDPAM. So from proposition 2, each buyer in J will win some item in

SDPAM. There are two cases to consider.

Case 1: There exists a buyer β1 in J who wins an item α2 /∈ I in SDPAM. Let β1 win α1 ∈ I in deviated

SDPAM. Applying proposition 1 on buyer β1 in SDPAM we get:
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vβ1α2
− p̂α2

> vβ1α1
− p̂α1

− ε.

Consider the instant when price of α2 was p̄α2
+ε in deviated SDPAM (since seller of α2 does not deviate,

α2 would have been offered at p̄α2
+ ε). Since β1 gets α1 in deviated SDPAM, she should have rejected the

offer of α2 at p̄α2
+ ε. As β1 follows LSI strategy, the following equation holds:

vβ1α1
− p̄α1

> vβ1α2
− p̄α2

− ε.

Adding the above two inequalities and using the fact that p̄α1
− p̂α1

> δ, we get, p̄α2
− p̂α2

+ 2ε >

p̄α1
− p̂α1

> δ. This gives p̄α2
− p̂α2

> δ − 2ε.

Case 2: Each buyer in J wins an item from I in SDPAM. Since |I| = |J |, every item in I is sold in SDPAM.

Now, consider the last item αj of I to get committed to a buyer βi ∈ J in SDPAM. Just before αj was

offered to βi, at price p̂αj
, βi must be committed to an item αi outside I. This is so because, if βi was

committed to an item from I then her switch to item αj would have freed an item from I which would have

been sold in SDPAM eventually. Therefore αj couldn’t have been the last item in I to get committed. The

other possibility is that βi was not committed when αj was offered to her. Let αk ∈ I be the item won by

βi in deviated SDPAM. This would mean that βi rejected the offer of αk at price p̂αk
+ ε in SDPAM, which

is impossible since, vβiαk
− (p̂αk

+ ε) > vβiαk
− (p̄αk

− δ + ε) > vβiαk
− p̄αk

≥ ŝβi
.

Let pi be the price at which βi accepted the offer of αi in SDPAM. Since βi preferred αi at pi over αk at

p̂αk
+ ε we have:

vβiαi
− pi > vβiαk

− p̂αk
− ε.

Since price of αi can only fall we can rewrite the above inequality as:

vβiαi
− p̂αi

> vβiαk
− p̂αk

− ε.

Consider the instant when price of αi was p̄αi
+ ε in deviated SDPAM (since seller of αi does not deviate,

αi would have been offered at p̄αi
+ ε). Since βi gets αk in deviated SDPAM, she should have rejected the

offer of αi at p̄αi
+ ε. As βi follows LSI strategy, the following equation holds:

vβiαk
− p̄αk

> vβiαi
− p̄αi

− ε.

Adding above two inequalities and using the fact that p̂αk
< p̄αk

− δ we get:

p̄αi
− p̂αi

+ 2ε > p̄αk
− p̂αk

> δ.

This gives p̄αi
− p̂αi

> δ − 2ε.

So in both cases we have found an item α2 /∈ I such that p̄α2
− p̂α2

> δ− 2ε. Hence the lemma is proved.

The proof of the theorem is based on repetitively applying this lemma. Since the seller’s offer is not

rejected, αk will be sold at a price p̄αk
> p̂αk

+ 2mε in deviated SDPAM. Initially let I = {αk}, δ = 2mε
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and apply Lemma 1 to get an item α2 /∈ I such that p̄α2
− p̂α1

> 2(m− 1)ε. Now we can have I = {αk, α2}

and apply lemma 1 again. We can continue this process and keep discovering new items till we discover

p̄αm
− p̂αm

> 2ε. But we can still apply Lemma 1 after this. As can be seen, we have already exhausted all

the items in A. Thus we reach at a contradiction. Hence our assumption must be incorrect. Therefore the

seller’s offer will eventually be rejected. This proves the theorem.

Therefore, a seller may not increase his surplus significantly by following a different strategy. However,

while following DPO strategy, a seller may set a reserve price that is different than his valuation to potentially

get more surplus. Clearly, there is no strategic advantage in setting the reserve price lower than the valuation

since a zero surplus with unsold item is strictly better than a negative surplus with sold item. On the other

hand, setting the reserve price higher than the valuation lets the seller withdraw the item from auction

earlier. This also does not lead to any strategic advantage as zero surplus with unsold item is strictly worse

than a non negative surplus and sold item. Therefore, it is best to set the reserve price equal to the true

valuation.

If the buyers follow LSI strategy, then the DPO(0) strategy constitutes a 2mε-Nash equilibrium for the

sellers. If the set of all possible seller strategies are restricted to the class of DPO strategies, then the DPO(0)

strategy becomes a 2mε-dominant strategy for the sellers. Since DPO(0) is a 2mε dominant strategy, it is

assumed in rest of the paper that sellers follow DPO(0).

The uncertainty of 2mε remains as the price decrements are finite, the mechanism allows the flexibility of

sellers joining in at any time, offering their items in any order to buyers and breaking ties arbitrarily. If such

flexibility is removed by redesigning the mechanism on the lines of exact auction mechanism of Demange et

al. 1986, it no longer remains attractive and practical for a decentralized implementation on the Internet.

4.2 Buyer’s Strategy

In the LSI(0) strategy, the buyer commits to an item as soon as her surplus reaches zero. After this she

accepts any offer that gives her strictly better surplus. It is easy to see that a buyer can potentially get a

better surplus if she waits for prices of items to fall further and then start committing to items. However,

the chance of her winning an item decreases with more waiting. For example, consider a single item with

two buyers, the winning buyer is better off waiting till the price reaches the valuation of the loosing buyer,

but not any longer. So, how long can a buyer exactly wait and still be assured of an item?

The next two theorems give an idea about the extent to which a buyer can wait (ŝβi
, ∀βi ∈ B), given

that the sellers follow the DPO(0) strategy. Assume that all the sellers follow only DPO(0) strategy and any

buyer βi ∈ B follows LSI(ŝβi
) strategy, where ŝβi

is the starting surplus amount of buyer βi.

Theorem 3 If ŝβ1
> smax

β1
+ mε and ŝ−β1

≤ smax
−β1

, where −β1 ∈ B − {β1}, then β1 will not get any item in

SDPAM.

Proof : Assume, for contradiction, that β1 wins an item α1 in SDPAM. To prove this theorem we make

use of the following important lemma.

Lemma 2 Let I be a set of items and p be any competitive equilibrium price. Let the buyers (except possibly

the winners of I) follow LSI(ŝ) strategies with ŝβ ≤ max(maxα[vβα−pα], 0) and all the sellers follow DPO(t)

strategy with t ≥ 0. If ∀ αj ∈ I, p̂αj
< pαj

− δ, where δ ≥ ε, then ∃ αi /∈ I such that p̂αi
< pαi

− δ + ε.
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Proof : All the items in I will be assigned in the competitive equilibrium assignment at p. To see this,

consider an item αj ∈ I. pαj
> p̂αj

+ δ. Therefore pαj
> p̂αj

≥ rαj
= vαj

+ t ≥ vαj
. So, pαj

> vαj
. From

definition of competitive equilibrium, item αj must be assigned.

Let J be the set of buyers who are assigned items of I in the competitive equilibrium assignment. All

the buyers in J must get an item in SDPAM. To see this, consider a buyer βi who does not get an item

from I in SDPAM. Since prices of all the items in I are below the competitive equilibrium price by at least

ε, βi must have at least ε surplus on some item in I in SDPAM. So, from proposition 2 and the fact that βi

follows an LSI strategy, she should get some item in SDPAM. Now consider the following two cases.

Case 1: There is a buyer βi ∈ J who wins an item αi /∈ I in SDPAM. Let αj be her competitive equilibrium

assignment. Now, consider the following proposition.

Proposition 3 If βi wins αi in SDPAM and is has αj in his demand set at some price vector p, then

pαi
− p̂αi

+ ε ≥ pαj
− p̂αj

, where p̂ is the final price vector in SDPAM.

Proof : From proposition 1 we have:

vβiαi
− p̂αi

> vβiαj
− p̂αj

− ε.

Also, from the definition of competitive equilibrium we have:

vβiαj
− pαj

≥ vβiαi
− pαi

.

Adding above two inequalities, we get pαi
− p̂αi

+ ε > pαj
− p̂αj

.

Using proposition 3 and using the fact that p̂αj
< pαj

− δ we get, pαi
− p̂αi

+ ε > pαj
− p̂αj

> δ. This

gives pαi
− p̂αi

> δ − ε.

Case 2: Every buyer in J wins an item from I in SDPAM. Since every item in I is assigned in the competitive

equilibrium, so |I| = |J | and therefore, every item in I is sold in SDPAM.

Now, consider the last item αj of I to get committed to a buyer βi ∈ J in SDPAM. Just before αj was

offered to βi, at price p̂αj
, βi must be committed to an item αi outside I. This is so because, if βi was

committed to an item from I then her switch to item αj would have freed an item from I which would

have been sold eventually. Therefore αj couldn’t have been the last item in I to get committed. The

other possibility is that βi was not committed when αj was offered to her. Let αk ∈ I be the competitive

assignment of βi. This would mean that βi rejected the offer of αk at price p̂αk
+ε, which is impossible since,

vβiαk
− (p̂αk

+ ε) > vβiαk
− (pαk

− δ + ε) ≥ ŝβi
+ δ − ε ≥ ŝβi

.

Let pi be the price at which βi accepted the offer of αi. Since βi preferred αi at pi over αk at p̂αk
+ ε we

have:

vβiαi
− pi > vβiαk

− p̂αk
− ε.

Since price of αi can only fall we can rewrite the above inequality as:

vβiαi
− p̂αi

> vβiαk
− p̂αk

− ε.

From the property of competitive equilibrium, we have:

vβiαk
− pαk

≥ vβiαi
− pαi

.
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Adding above two inequalities and using the fact that p̂αk
< pαk

− δ we get:

pαi
− p̂αi

+ ε > pαk
− p̂αk

> δ.

This gives pαi
− p̂αi

> δ − ε.

The proof of the theorem is based on substituting p with the minimum competitive equilibrium price

vector in Lemma 2 and repeatedly applying it. Consider the set I = {α1}. Since pmin corresponds to the

minimum competitive equilibrium price, maxα[vβα − pmin
α ] = smax

β ≥ ŝβ . This condition however is not

satisfied by β1, winner of α1. But by Lemma 2, the winners of I need not satisfy this condition. Now,

ŝβ1
≥ smax

β1
+ mε and β1 wins the item α1. So, p̂α1

< pmin
α1

− mε. Set δ = mε and apply Lemma 2, to find

another item α2 such that p̂α2
< pmin

α2
− (m − 1)ε. Now I can be expanded to contain α2 and δ can be set

to (m − 1)ε and Lemma 2 can be applied again to get another item α3. The process can continue till we

have found αm such that pmin
αm

− p̂αm
> ε. So applying Lemma 2 again we will discover another new item.

But this is a contradiction as we have already discovered all the m items in A. Hence our assumption that

β1 wins an item α1 must be incorrect. Therefore β1 does not win any item. Hence the theorem.

Theorem 4 If ŝβ1
≤ smax

β1
− mε and β1 is assigned some item in a minimum competitive equilibrium, then

β1 will get some item in SDPAM irrespective of the starting surplus amounts of other buyers.

Proof : Assume, for contradiction that buyer β1 does not win any item in SDPAM. Consider the minimum

competitive equilibrium price, pmin, and the corresponding equilibrium assignment. Let α1 be the item she

is assigned in this assignment. Since β1 does not get α1 in SDPAM, someone else would have committed

to it before the price reached pα1
+ mε (since β1 had a surplus of smax

β1
− mε). So p̂α1

> pmin
α1

+ mε. Let

β2 win α1 in SDPAM. It is easy to see that β2 has more than mε surplus on α1 at minimum competitive

equilibrium price. So she should get some item in minimum competitive equilibrium. Let that item be α2.

From the definition of competitive equilibrium we have:

vβ2α2
− pmin

α2
≥ vβ2α1

− pmin
α1

.

Also we have the following inequality due to property of SDPAM (proposition 1):

vβ2α1
− p̂α1

> vβ2α2
− p̂α2

− ε.

Adding the above two inequalities and using p̂α1
> pmin

α1
+mε, we have, p̂α2

−pmin
α2

+ε > p̂α1
−pmin

α1
> mε.

So we have p̂α2
−pmin

α2
> (m−1)ε. Since the prices are above minimum competitive equilibrium someone

should have won the α2 in SDPAM. Let that buyer be β3. So she will have more than (m−1)ε surplus on α2

in minimum competitive equilibrium. So she should get some item α3 in minimum competitive equilibrium.

Arguing as before we will have p̂α3
− pmin

α3
> (m − 2)ε. We can repeat this process till we discover αm

such that p̂αm
− pmin

αm
> ε. Again the winner of αm in SDPAM will have positive surplus on it in minimum

competitive equilibrium. So she should be assigned some item in minimum competitive equilibrium. But

we already have all the m items assigned to some buyer in minimum competitive equilibrium. This is a

contradiction. So our assumption that β1 does not win any item in SDPAM must be incorrect. Therefore

β1 wins an item in SDPAM. Hence proved.
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The above two theorems tell us that if the set of possible buyer’s strategies are restricted to LSI, then

waiting till buyer βi’s surplus becomes smax
βi

− mε constitutes a 2mε-Nash equilibrium for buyers. Also, a

buyer is guaranteed to get an item irrespective of what other buyers are doing, if she makes a conservative

estimate of the minimum competitive equilibrium price and sets her starting surplus amount (SSA) to be

less than or equal to smax
βi

− mε. In general a buyer doesn’t know his surplus in minimum competitive

equilibrium (sβi
) as that requires the knowledge of the the minimum competitive equilibrium price vector,

which depends on the number of buyers, number of sellers and the individual valuations of each buyer.

So, this waiting strategy has risk element attached to it as the buyer can at best estimate her SSA by

estimating the valuations of all the buyers in the system. The risk averse buyers will typically follow the

safest strategy of setting their SSA to zero whereas the risk takers will estimate their surplus in minimum

competitive equilibrium and wait for the prices to fall till their surplus reaches that value. Note that if all the

buyers wait for long, then it is possible that the prices fall even below the minimum competitive equilibrium

price. In this case, the buyers get surplus better than their corresponding surplus in minimum competitive

equilibrium. The actual prices and allocations in SDPAM mechanism depend on the profile of the buyers and

on how well the buyers estimate their surplus in the minimum competitive equilibrium. However, according

to Theorem 4 it is always safe to make a conservative estimate of the surplus in the minimum competitive

equilibrium. In Section 5 we discuss implications of this assumption on the final prices.

Note that if all the buyers choose a starting surplus amount such that ŝβ ≤ max[smax
β − mε, 0], the

mechanism will still lead to nearly efficient allocation (Theorem 1 will still hold). To see this, consider a

buyer β such that ŝβ > 0. Clearly, smax
β ≥ ŝβ + mε > 0. This means that bidder β is assigned some item in

minimum competitive equilibrium. Hence according to Theorem 4, β will be assigned some item in SDPAM.

So, a buyer β who doesn’t win an item in SDPAM has ŝβ = 0. Therefore inequality (5) still holds. Since,

for all buyers β, ŝβ ≥ 0, inequality (7) holds. Inequality (4) holds because of property of the LSI strategy.

So, Theorem 1 still holds.

5 Equilibrium Prices

We saw that DPO(0) is a 2mε-dominant strategy for sellers if the set of strategies are restricted to the DPO

class of strategies. Similarly, waiting till a buyer’s surplus becomes mε less than her surplus in minimum

competitive equilibrium, constitutes a 2mε-Nash Equilibrium. Since the buyers do not know the minimum

competitive equilibrium price, they can only estimate their surplus in the minimum competitive equilibrium.

We also saw that it is safe for buyers to make a conservative estimate of their surplus in minimum competitive

equilibrium. What happens to the final prices if all the buyers make a conservative estimate of their surplus

in minimum competitive equilibrium while the sellers follow DPO strategy? In this section, we try to answer

this question. Firstly, we provide some useful definitions.

We denote the surplus of buyer βi on the items in her demand set at price vector p (zero if the demand

set is the null set) as sβi
(p). Let s(p) denote the surplus vector for all the buyers in the set B, at price

vector p. Let ŝβi
denote the starting surplus amount of buyer βi and ŝ denote the vector of starting surplus

amounts of all buyers. Define a “maximal competitive equilibrium price at s” as follows:

Definition 4 p is a maximal competitive equilibrium price vector at s if it is a competitive equilibrium price

such that s(p) ≥ s and there does not exist another competitive equilibrium price vector p̃ > p with s(p̃) ≥ s.
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So a maximal competitive equilibrium price is a largest competitive equilibrium price vector whose

corresponding surplus vector is greater than or equal to the given surplus vector. For example, if s is

a vector of zeros, then maximal competitive price at s is unique and equal to the maximum competitive

equilibrium price (Shapley and Shubik, 1972). We generalize this result to arbitrary surplus vectors less

than or equal to the maximum achievable surplus.

Theorem 5 For any surplus vector s ≤ s
max, the corresponding maximal competitive equilibrium price

vector (denoted by p
max(s)) exists and is unique.

Proof : pmin is a competitive equilibrium price and s(pmin) = smax ≥ s. So, there exists a maximal

competitive equilibrium price at s.

Assume for contradiction, p1 and p2 are two different (p1 6= p2) maximal competitive equilibrium

price vectors corresponding to s. Let p3 be a price vector defined as p3

αj
= max[p1

αj
, p2

αj
]. Define s3

βi
=

min[sβi
(p1), sβi

(p2)].

From Lemma in Theorem 3 of Shapley and Shubik (1972), p3 is a competitive equilibrium price vector

with s(p3) = s3. Since p1 and p2 are different price vectors, from the definition of p3, p3 > p1 and p3 > p2.

Also, sβi
(p3) = s3

βi
= min[sβi

(p1), sβi
(p2)] ≥ sβi

. Therefore p3 is a competitive equilibrium price with

s(p3) ≥ s and p3 ≥ p1,p3 ≥ p2. Therefore, p1 and p2 cannot be a maximal competitive equilibrium price

at s. Hence our assumption that p1 6= p2 must be wrong. Therefore maximal competitive equilibrium price

at s is unique.

Since the maximal competitive equilibrium price at s is unique, we call it the maximum competitive

equilibrium price vector at s and denote it as pmax(s). We now state an important proposition regarding

the maximum competitive equilibrium price at a given surplus.

Proposition 4 Consider 0 ≤ s ≤ s
max and a competitive equilibrium at p

max(s). Consider a set of q items

that are assigned to a set of q buyers such that all the q buyers have a surplus greater than s. At least one

of these buyers should have an item in her demand set that is not in this set of q items.

Proof : Assume, for contradiction that all the q buyers have all items in their demand sets from the set of

q items mentioned. This means we can increase the prices of all the q items by a sufficiently small amount

and still have the demand sets of the q buyers unchanged (since all of them have positive surplus). Thus

we will get another higher competitive equilibrium price. Since initially all the q buyers had surplus more

than s, by increasing the prices by sufficiently small amount, they will still have surplus more than s. So

we have discovered a new competitive equilibrium price p such that p > pmax(s) and s(p) ≥ s. This is a

contradiction from the definition of maximum competitive equilibrium price. Hence, our assumption must

be incorrect i.e. there must be a buyer having an item in her demand set, that is not from the set of q items

considered. Hence proved.

The next two theorems show that if the buyers follow LSI(ŝ) strategies with ŝ ≤ smax and sellers follow the

DPO(0) strategy then the final prices will converge close to pmax(ŝ). There are two interesting extreme cases

of these results. If all the buyers follow the LSI(0) strategy, then the final prices in SDPAM will converge close

to the maximum competitive equilibrium price (pmax), whereas if the buyers follow LSI(smax) strategies,

then the final prices in SDPAM will converge close to the minimum competitive equilibrium prices (pmin).
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Theorem 6 (Upper Bound) If p̂ is the final price vector in SDPAM when all buyers follow LSI(ŝ) strate-

gies (with 0 ≤ ŝ ≤ s
max) and all the sellers follow DPO(0) strategy, then p̂ ≤ p

max(ŝ) + mε.

Proof : Consider the following important lemma.

Lemma 3 Consider an outcome of SDPAM with buyers following LSI(ŝ) strategies with ŝ ≤ s
max. Let

p = p
max(ŝ) and p̂ be the final prices in SDPAM. Let I be a set of q items such that all the items in I are

assigned in SDPAM and if αj ∈ I then p̂αj
> pαj

+δ, where δ ≥ ε. Then ∃ αi /∈ I such that p̂αi
> pαi

+δ−ε.

Proof : Let J be the set of q buyers who win items of I in SDPAM by following LSI(ŝ) strategy. Consider

a competitive equilibrium at p. Since all the buyers in J get items above the competitive equilibrium price

p by following LSI(ŝ) strategy, they should have positive surplus (as ŝ is non-negative) in the competitive

equilibrium. So, from the definition of competitive equilibrium, they should be assigned some item from

their demand set. There are two cases:

Case 1: ∃ βi ∈ J whose competitive equilibrium assignment αi /∈ I. Let βi win αj in SDPAM. Using proposi-

tion 3 and using the fact that p̂αj
−pαj

> δ we have, p̂αi
−pαi

+ε > p̂αj
−pαj

> δ. This gives p̂αi
−pαi

> δ−ε.

Case 2: All buyers in J get assigned from I in the competitive equilibrium assignment. Since δ > 0, all

buyers in J have more than ŝ surplus in competitive equilibrium assignment. Applying proposition 4 at

s = ŝ we get ∃ αi /∈ I which is in the demand set of βi ∈ J . Let βi win αj ∈ I in SDPAM. From proposition

3 and using the fact that p̂αj
−pαj

> δ, we get, p̂αi
−pαi

+ ε > p̂αj
−pαj

> δ. This gives us p̂αi
−pαi

> δ− ε.

The proof of the theorem is based on repetitively applying Lemma 3 and using the fact that sellers follow

DPO(0) strategy. Firstly, if final price of any item in SDPAM is above pmax(ŝ), then it should also be greater

than its seller’s valuation. As sellers are following DPO(0) strategy, the item should be assigned to some

buyer. Let us assume for contradiction that there exists an item α1 such that p̂α1
− pmax

α1
(ŝ) > mε. So in

Lemma 3 we can substitute δ = mε, I = {α1} and this will give us an item α2 /∈ I and p̂α2
−pmax

α2
(ŝ) ≥ δ−ε.

Then we can include α2 in I and substitute δ = (m − 1)ε and again apply Lemma 3. This process can

continue till we find αm such that p̂αm
− pmax

αm
(ŝ) ≥ ε. But we can still apply Lemma 3 which will give

us another item. But as can be seen, we have already exhausted all the items in A. Thus we reach a

contradiction. Hence, our assumption that there exists an item α1 such that p̂α1
− pmax

α1
(ŝ) > mε must be

incorrect. Therefore, for all items αi, p̂αi
− pmax

αi
(ŝ) ≤ mε.

Theorem 7 (Lower Bound) If p̂ is the final price vector in SDPAM when all buyers follow LSI(ŝ) strate-

gies with 0 ≤ ŝ ≤ s
max and all sellers follow DPO(0) strategies, then p̂ ≥ p

max(ŝ) − mε.

Proof : The proof of the theorem follows by applying Lemma 2 repetitively. Assume, for contradiction that

there is an item α1 such that p̂α1
< pmax

α1
(ŝ)−mε. Set the competitive equilibrium vector, p, in Lemma 2 to

be the maximum competitive equilibrium price at ŝ, pmax(ŝ). From the definition of maximum competitive

equilibrium price vector at ŝ, ŝβ ≤ max(maxα[vβα − pα], 0) ∀ β ∈ B. Set I = {α1} and δ = mε and apply

Lemma 2 to get an item α2 /∈ I such that p̂α2
< pα2

− (m−1)ε. Again I can be expanded to contain α2 and

δ can be set to (m − 1)ε. This process can be continued till we find αm such that p̂αm
< pαm

− ε. We can
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still apply Lemma 2 to give another item. But as can be seen we have exhausted all the items in A. Thus

we reach a contradiction. Hence, our assumption that p̂α1
< pmax

α1
(ŝ) − mε must be incorrect. Therefore,

p̂αi
≥ pmax

αi
(ŝ) − mε ∀αi ∈ A.

Theorems 6 and 7 establish that if the sellers follow DPO strategy and buyers follow LSI class of strategies

with starting surplus amount set to (non-negative) conservative estimates of their maximum achievable

surplus, the final prices in the mechanism converge close to the unique maximum competitive equilibrium

price vector corresponding to the starting surplus amount vector.

6 Multi-item Ascending English Auctions

Demange et al. (1986) have described an ascending price version of multi-item auctions. The buyer’s strategic

behavior in these auctions has been studied by Miyake (1998) and Bansal and Garg (2000). However, the

seller’s strategic behavior has not received much attention. It is possible to obtain results similar to Theorem 3

and 4 for sellers in ascending English auctions.

It is well known that final prices in multi-item ascending English auctions correspond to the minimum

competitive prices (Demange et al., 1986). A seller may set a reserve price higher than his true valuation

to obtain a larger surplus. It can be shown that a seller will always be able to sell his item as long as

his reserve price is less than the maximum competitive equilibrium price (provided that the buyers follow

a greedy surplus maximizing bidding strategy). It can also be shown that if all the other sellers set a

reserve price that is less than their corresponding maximum competitive equilibrium prices, then a seller

will not be able to sell his item by setting a reserve price higher than the maximum competitive equilibrium

price. Therefore, setting reserve price equal to (mε less than) the maximum competitive equilibrium price

constitutes a 2mε-Nash equilibrium for the sellers in multi-item ascending English auctions.

Similar to maximum competitive equilibrium price at a given surplus vector, we can define a unique

minimum competitive equilibrium price given a vector of reserve prices (less than the maximum competitive

equilibrium prices). It is possible to establish counterparts of Theorems 6 and 7, for the ascending English

auctions as well. So for arbitrarily small value of ε, with buyers following greedy bidding strategy and sellers

setting a reserve price less than maximum competitive equilibrium price and more than their valuation, the

prices in the ascending English auction will converge close to the minimum competitive equilibrium price

corresponding to the reserve price of sellers.

7 Simulation

In DPO strategy, the sellers can offer their respective items to buyers in any random order. Similarly, if more

than one item gives maximum surplus to a buyer, he can randomly choose one of the items. This randomness

in the strategies of both buyers and sellers lead to price variations from one auction instance to the other

for the same set of buyers and sellers. Our results account for such variations in prices. Theorems 6 and 7

show that such variations will be within 2mε. But in practice, such variations will be well within 2mε. We

conducted simulations to validate this claim.

In, practice, we expect each buyer to be interested in only some of the items and not the whole set of
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items. To model this scenario, we generate random positive valuations for each buyer on 20% of the whole

set of items and set the valuations of rest of the items to zero. Also, in practice, we expect the number of

buyers to be more than the number of items sold. So, we keep the ratio (denote it as k) of number of sellers

to number of buyers at 0.8. We test out price variations when number of buyers (and thus the market size

varies). For a fixed number of buyer, we run the simulations 1000 times with the same valuations. Due to

the randomness of offering process of sellers and accepting process of buyers, the prices vary from iteration

to iteration. We found the maximum and minimum prices of each item for the 1000 iterations and plotted

their difference(see Figure 1). The plotting is done after sorting the items in increasing order of (maximum

- minimum) price. We take the price decrement ε to be 1.

From the plot of Figure 1, it can be seen as the market size increases, the number of items with price

variation less than 10ε increase. With higher number of buyers(≥ 125), almost 75% of the items have price

variations less than 10ε. For other items, the price variations are of the order of m
5

ε, where m is the number

of items.

The other interesting statistics we show in Figure 2 is the plot of mean of standard deviations of all items

with number of buyers. As can be seen, the standard deviations of prices is really small(< 5).

8 Conclusions

Dutch auctions have traditionally been used in specialized markets of perishable goods such as vegetable

markets, flower markets etc. The price markdown mechanism typically followed in retail markets to clear

inventories (especially during post-festive seasons) may be thought as a variant of the descending price

mechanism where the customers (the buyers) are allowed to close the deal before the auctions end. However,

the customers are still faced with a similar choice of items at different stores, and a similar dilemma of

whether to wait for the prices to fall further at the risk of losing the item, or to buy at potentially higher

prices. With the Internet technologies, now it has become feasible to formally carry out descending price
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multi-item auctions and remove the inefficiencies in the market. If the buyers are allowed to close the deals

before the auctions end, they will not have to suffer the long wait as in the current (ascending price) Internet

auctions. Whether such auctions will become popular on the Internet is something that remains to be seen.
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