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Abstract
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1 Introduction

As is well-known Walrasian economics is built upon the Hypothesis of Perfect

Competition, which can be taken as in Mas-Colell (1980) to state: “...that

prices are publicly quoted and are viewed by the economic agents as exoge-

nously given”. Attempts to go beyond Walrasian economics have in par-

ticular involved giving “a theoretical explanation of the Hypothesis itself”

(Mas-Colell (1980)). Among these the most remarkable are without doubt

the 19th century contributions of Bertrand, Cournot and Edgeworth (for an

overview, see Stigler (1965)). The Cournot approach was explored inten-

sively, in a general equilibrium framework, in the symposium issue entitled

“Non-cooperative Approaches to the Theory of Perfect Competition” (Jour-

nal of Economic Theory, Vol. 22 (1980)).

The features common to most of the symposium articles are:

(a) The strategies employed by the agents are of the Cournot type, i.e.,

consist in quoting quantities.

(b) The (insignificant) size of any agent relative to the market is the key

explanatory variable for the tendency of strategic behavior to approx-

imate perfect competition and, in its wake, to lead to Walrasian out-

comes (Mas-Colell (1980), p.122).

The extension of pure quantity strategies from Cournot’s partial equilib-

rium model of oligopoly to a general equilibrium framework, however, does

raise questions. Underlying the Cournot model is a demand curve for the

particular market under consideration which enables the suppliers to relate

quantities, via prices, to expected receipts. If such a close relationship is not

provided by the market, then it seems more natural to us that an agent will

no longer confine himself to quoting quantities, i.e., to pure buy-or-sell mar-

ket orders. To protect himself against “market uncertainty - or illiquidity, or

manipulation by other agents 1”, he will also quote prices limiting the execu-

tion of those orders, consenting to sell q units of commodity j only if its price

is p or more, or buy q̃ units only if its price is p̃ or less. By sending multiple

1to quote from Mertens (2003)
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orders of this kind an agent can approximate any monotone demand or sup-

ply curve in a market by a step function, as was done in Dubey (1982, 1994).

Here we go further and give each agent full manoeuvrability. He places a

continuum of infinitesimal limit-price orders, which in effect enables him to

send any monotone, continuous demand or supply curve for each commodity.

The upshot is a striking result: provided only that all commodity markets

are “active” (i.e. there is positive trade in them), and no matter how thin

they are, strategic (Nash) equilibria (SE) coincide - in outcome space - with

competitive (Walras) equilibria (CE). Our result thus provides a rationale,

based on strategic competition, for Walrasian outcomes even in the case of a

bilateral monopoly. This brings it in sharp contrast to Dubey (1982, 1994),

where it was necessary to have competition on both sides of each market

(in the sense of there being at least two active buyers and two active sellers

for each commodity) in order to conclude that SE are CE . (Always CE are

SE without much ado in both models). The models in Dubey (1982, 1994)

have little to say in the setting of a bilateral monopoly, where they allow for

a continuum of active non-Walrasian SE. (Indeed, the set of SE allocations

coincides with the set of all individually rational allocations). In our model

this continuum disappears, leaving only the CE behind. Thus full manoeu-

vrability of limit-price orders is tantamount to perfect competition. Even in

the presence of monopolists who have cornered several markets and elimi-

nated any vestige of competition from them, every active SE is Walrasian in

our model. This is exactly the important scenario left out in Dubey (1982,

1994).

The models in Dubey (1982, 1994) rely on competition that is “cut-

throat” in the spirit of Betrand. Any agent can take over a whole chunk

of some buy (sell) order from another by quoting an infinitesimally higher

(lower) price. Our model is not based on the possibility of such takeovers.

Instead it requires that agents’ behavior be “smooth”, with commodities

bought (sold) in infinitesimal increments of continuously non-increasing (non-

decreasing) prices. The key point of our paper is that such smooth trading

is a substitute for cut-throat price wars, and also gives rise to Walrasian

outcomes. A monopolist may be in sole command of his own resource, but

nevertheless he will be reduced to behaving as if he had cut-throat rivals,
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once smooth trading sets in. A related phenomenon2 was analyzed in Coase

(1972) (and following Coase (1972), a long line of literature, see e.g. Bulow

(1982), Gaskins (1974), Schmalensee (1979)). There, too, a monopolist was

shown to forfeit his power, but this happened in the setting of durable goods

which could be sold sequentially over time to infinitely patient customers.

In our model the monopolist loses power even with perishable goods which

are traded at one instant of time. But we do need, unlike Coase, strategic

behavior on both sides of the market as well as convex preferences.

It must be emphasized that our model is based on decentralized markets.

Each commodity j is traded against fiat money (“unit of account”), and

orders sent to the markets k 6= j for other commodities k, do not affect

how market j functions. Thus we do not allow an agent to link his buy-

order for a commodity to whether the sell-order for another commodity goes

through.3 The only connection between different commodity markets is the

budget-constraint of agents, requiring them to cover purchases out of their

sales receipts. Our model is therefore an order-of-magnitude simpler than

that of Mertens (2003), where cross-market limit orders are permitted. In

spite of this paucity of our strategy-space compared to Mertens (2003), we

exactly implement 4 CE via our mechanism (modulo activity in markets). In

contrast, SE form a large superset 5 of CE in Mertens (2003) (though, we

hasten to add, the implementation of CE was never the aim there, rather it

was to well-define a mechanism that allowed for a rich menu of cross-market

limit-orders).

For better perspective, we consider two somewhat contrasting versions of

our model. In the first version agents act under the optimistic illusion that

they can exert perfect price discrimination: sell to others, starting at the

highest quoted price (or buy, starting at the lowest). In the second version

we turn to a standard market game, akin to that of Dubey (1982, 1994).

2We thank John Geanakoplos for this reference.
3That would be like allowing agents to submit demand functions based on the whole

price vector.
4Indeed, our result may be interpreted in terms of the “mechanism-design” literature

(see Section 4).
5For instance, the SE of Shapley’s “windows model” (see Sahi and Yao (1989)) are also

SE in Mertens’ model.
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Here each agent is grimly realistic and realizes that he will be able to buy

(sell) only after higher-priced buyers (lower-priced sellers) have been serviced

at the market, and that the prices he gets are apropos his own quotations,

not the best going.6

Though the two versions are built on quite different behaviorial hypothe-

ses, we find their equilibria lead to the same outcomes, namely Walrasian.

Our model shares some of the weaknesses of the Walrasian models. In

particular, since it is based on the static concept of a strategic equilibrium,

our model does not address the question of what dynamic forces bring the

equilibrium about and ensure that individual strategic plans become jointly

compatible. But it goes beyond the Walrasian notion in at least three im-

portant ways:

(a) It is not assumed that the economic agents face perfectly elastic supply

and demand curves.

(b) Prices are not quoted from outside but set by the agents themselves.

Each agent, operating in a market, realizes and exerts his ability to

influence price.

(c) Strategies of the individuals (i.e. supply and demand curves submitted

to the market) need not be based on their true characteristics (prefer-

ences and endowments).

2 The First Version: Optimistic Conjectures

and Equilibrium Points

Let N = {1, . . . , n} be the set of agents who trade in k commodities. Each

agent i ∈ N has an initial endowment ei ∈ IRk
+ \ {0} and a preference

relation
>∼i on IRk

+ that is convex, continuous and monotonic (in the sense

that x ≥ y, x 6= y implies x Âi y). We assume that
∑
i∈N

ei À 0, i.e. every

6We could make the same assumption also in the first market model. However we would
lose economic insight, as to what happens to the consumers’ and producers’ surplus, when
agents behave like monopolists, trying to exert perfect price discrimination .
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named commodity is present in the aggregate.

An agent may enter a market either as a buyer or a seller, and submit

to each of the k commodity markets a marginal demand or supply curve.

Formally, let

M+ = {f : IR+ → IR++| f is continuous and non-decreasing}
M− = {f : IR+ → IR++| f is continuous and non-increasing}.

Then a strategic choice σi of agent i is given by

σi = (di
1, s

i
1; . . . ; d

i
k, s

i
k|di

j ∈ M−, si
j ∈ M+, for j = 1, . . . , k).

In the interpretation di
j(q

i
j) is the price at which agent i is willing to

buy an infinitesimal, incremental unit of commodity j, once his level of pur-

chases has reached qi
j. The supply curve has an analogous meaning. Denote

σ ≡ (σ1, . . . , σn) and let Sσ
j , Dσ

j be the aggregate supply, demand curves.

We suppose that agent i acts under the optimistic conjecture that he

can exert perfect price discrimination, i.e., that he can sell (buy) starting at

the highest (lowest) prices quoted by the buyers (sellers). This means that

agent i calculates his receipts (or expenditures) on the market j as the inte-

gral, starting from 0, under the curve Dσ
j (or Sσ

j ). The generally non-convex

budget-set Bi(σ) for σ = (σ1, . . . , σn), is then obtained by the requiring that

(perceived) expenditures do not exceed (perceived) receipts, i.e.,

Bi(σ) = {ei + t | t ∈ IRk, ei + t ∈ IRk
+,

k∑
j=1

Eσ
j (tj) ≤

k∑
j=1

Rσ
j (tj)}

where

Eσ
j (q) =

q∫

0

Sσ
j if q > 0, 0 otherwise,

Rσ
j (q) =

|q|∫

0

Dσ
j if q < 0, 0 otherwise.

(Note that tij > 0 (tij < 0) means that i buys (sells) j .)
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The collection of strategic choices σ will be called an equilibrium point

(EP) if there exist trade vectors t1, . . . , tn in IRk such that

(i) ei + ti is
>∼i -optimal on Bi(σ) for i = 1, . . . , n

(ii)
n∑

i=1

tij = 0 for j = 1, . . . , k

(iii)
∑

i:tij>o

tij = sup{qj | Sσ
j (qj) ≤ Dσ

j (qj)} for j = 1, . . . , k

Conditions (i) and (ii) require that agents optimize and that markets

clear. Condition (iii) says that no trade can be enforced, i.e., it stops when

the (marginal) supply price for the first time exceeds the demand price; and,

at the same time, in equilibrium all trades compatible with the submitted

strategies are actually carried out.

An EP will be called active if there is positive trade in each market.

First let us establish that at an active EP all trade Tj :=
∑

i:tij>0

tij in

any commodity j takes place at one price, pj.

Lemma 1. The curves Sσ
j and Dσ

j coincide and are constant on [0, Tj] at

any EP .

Proof. For any j, let Gj := {i : tij > 0}, Hj := {i : tij < 0} Then
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∑
i∈Hj

Rσ
j (tij) =

∑
i∈Hj

|tij |∫

0

Dσ
j(1)

≥
Tj∫

0

Dσ
j

≥ Dσ
j (Tj) · Tj

≥ Sσ
j (Tj) · Tj

≥
Tj∫

0

Sσ
j

≥
∑
i∈Gj

tij∫

0

Sσ
j

=
∑
i∈Gj

Eσ
j (tij).

The third inequality follows from (iii); the other four follow from monotonic-

ity of the supply and demand functions.

Hence

(2)
n∑

i=1

Rσ
j (tij) ≥

n∑
i=1

Eσ
j (tij) for j = 1, . . . , k.

From the monotonicity of preferences, and the fact that each agent has op-

timized, we have

(3)
k∑

j=1

Rσ
j (tij) =

k∑
j=1

Eσ
j (tij) for i = 1, . . . , n.

(2) and (3) together imply:

(4)
n∑

i=1

Rσ
j (tij) =

n∑
i=1

Eσ
j (tij) for j = 1, . . . , k.

8



From (4) it follows that all the inequalities in (1) must, in fact, be equalities.

Therefore

(5) Sσ
j (Tj) = Dσ

j (Tj) =: pj

and

(6)

Tj∫

0

Dσ
j = pjTj =

Tj∫

0

Sσ
j .

Since by (iii), Dσ
j ≥ Sσ

j on [0, Tj] we get, from (6), and the monotonicity of

D and S

(7) Dσ
j = Sσ

j on [0, Tj].

In view of the Lemma 1 we can talk not only of the allocation but also the

prices produced at an active EP . These are the constant values of Sσ
j , Dσ

j on

[0, Tj] for j = 1, . . . , k. Note that these prices are positive by assumption.

Proposition 1. The prices and allocation at an active equilibrium point are

Walrasian.

Proof. Let σ be an EP with trades t1, . . . , tn and prices p . We need to show

that, for each i , ei + ti is
>∼i -optimal on the set

Bi(p) := {ei + t : t ∈ IRk, ei + t ∈ IRk
+, p.t = 0}.
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W.l.o.g. fix i = 1, put

J1 := {j : t1j > 0}
J2 := {j : t1j < 0}
J3 := {j : t1j = 0}
Tj :=

∑

i:tij>0

tij

δj := min[{|t1j | : j ∈ J1 ∪ J2}, {Tj : j ∈ J3}]
Nj := {α ∈ IR : |t1j − α| < δj}
Fj := Ej −Rj

(Since the EP is active, δj > 0). Now we claim, for j = 1, . . . , k:

Fj is continuously differentiable and strictly increasing on Nj(8)

and its derivative at t1j is pj.

This follows from the continuity and strict positivity of Sj and Dj, and from

Lemma 1 which implies:

(9) Fj(q) coincides with Ej(q) = pjq if j ∈ J1, 0 ≤ q ≤ t1j

(10) Fj(q) coincides with −Rj(q) = pjq if j ∈ J2, t1j ≤ q ≤ 0

(11) Fj(q) = pjq if j ∈ J3, q ∈ Nj.

W.l.o.g. fix commodity j = 1. Since F1, . . . , Fk are all strictly increasing

and
k∑

j=1

Fj(t
1
j) = 0, and F (t1j) > 0 (< 0) if j ∈ J1 (j ∈ J2), it follows

that there is a neighborhood V of (t12, . . . , t
1
k) in N2 × . . . × Nk such that

if (t2, . . . , tk) ∈ V then there is a unique t1 which satisfies the equation

F1(t1) + . . . + Fk(tk) = 0. Thus we have an implicit function G(t2, . . . , tk) =

−F2(t2)−. . .−Fk(tk) defined on V which is clearly continuously differentiable.

Finally the point t1 = (t11, . . . , t
1
k) belongs by construction to the hypersurface
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M = {(G(t2, . . . , tk), t2, . . . , tk) : (t2, . . . , tk) ∈ V } and, by (8), the tangent

plane H to M at this point has normal p .

Since we are at an EP, e1 + t1 is
>∼1-optimal on (e1 + M)∩ IRk

+. Suppose

that there is some x ∈ H+ := (e1 + t1 + H) ∩ IRk
+ such that x Â1 e1 + t1.

By continuity of
Â∼1 we can find a neighborhood Z of x (in IRk

+) with the

property: y ∈ Z ⇒ y Â1 e1 + t1. But since M is a smooth surface there exists

a point y∗ in Z, such that the line segment between y∗ and e1 + t1 pierces

e1 +M at some point z∗ ∈ (e1 +M)∩ IRk
+ (see Fig.1). By convexity of

>∼1, we

have z∗ Â1 e1 +t1, contradicting that e1 +t1 is
>∼1-optimal on (e1 +M)∩IRk

+ .

We conclude that e1 +t1 is
>∼1-optimal on H+ . But we have e1 ∈ H+ (simply

set trades to be zero, i.e., pick −t1 in H). Therefore, in fact, H+ = B1(p).

Since the choice of i = 1 was arbitrary, the proposition follows.

................. Insert Figure 1 approximately here!.................

Proposition 2. If the trades t1, . . . , tn and prices p À 0 are Walrasian, then

they can be achieved at an EP

Proof. For any i let

J i
1 ={j : tij > 0}

J i
2 ={j : tij < 0}

J i
3 ={j : tij = 0}

f i
j = any strictly decreasing function with f i

j(t
i
j) = pj

gi
j = any strictly increasing function with gi

j(t
i
j) = pj

and consider

si
j(x) =

{
0 if j ∈ J i

1 ∪ J i
3

max{pj, g
i
j(x)} if j ∈ J i

2}

di
j(x) =

{
0 if j ∈ J i

2 ∪ J i
3

min{pj, f
i
j(x)} if j ∈ J i

1}

Then it is readily checked that these strategies constitute a EP and produce

the trades t1, . . . , tn at prices p.
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3 The Second Version: Strategic Market Game

and Nash Equilibria

The previous results can be expressed in the form of Nash Equilibria of a (gen-

eralized 7) strategic game. The game is defined as in Dubey (1982, 1994),

except that strategies are not step functions, but rather continuously differ-

entiable (i.e., we now take M+ and M− to consist of weakly monotonic C1

functions). For simplicity of exposition, we also suppose that an agent enters

a commodity market either as a buyer or as a seller, not both. (This can be

dropped as in Dubey (1982)). Given the strategy-selection σ = (σ1, . . . , σn)

by the agents, let Dσ
j and Sσ

j denote the aggregate (strategic) demand and

supply curves. If Sσ
j lies above Dσ

j , then no trade takes place, i.e., tij(σ) = 0

for i = 1, . . . , n. Otherwise set

Tj(σ) =





sup{q ∈ IR+ : Dj(q) ≥ Sj(q)} if the sup is finite

some arbitrary positive number M, otherwise.

................. Insert Figure 2 approximately here!.................

Define pj(σ) to be the intersection price of Sσ
j and Dσ

j if the sup is finite

in the definition of Tj(σ) (see Fig. 2), or an arbitrary point in the interval

[ sup
q∈IR+

Sσ(q), inf
q∈IR+

Dσ(q)] otherwise (see Fig. 3).

................. Insert Figure 3 approximately here!.................

The individual trades tij(σ) are determined as follows. In the event that

the sup in Tj(σ) is finite, all purchases (sales) of quantities quoted above

(below) pj(σ) occur, with arbitrary rationing, e.g., proportional on the mar-

gin”, i.e., quantities that are in excess (either on the supply or the demand

side) and that are quoted at the price pj(σ) are rationed. In the event that

7See Remark 2, however, on how to replace the generalized game by a proper game
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the sup in Tj(σ) is not finite, all purchases (sales) of quantities quoted above

(below) Dσ
j (M) (Sσ

j (M)) occur, with arbitrary rationing of quantities quoted

for purchase at Dσ
j (M) or for sales at Sσ

j (M).

For any strategy choice σ̃i of agent i denote by (σ|σ̃i) the n-tuple

(σ1, . . . , σi−1, σ̃i, σi+1, . . . , σn) and let

Êi
j(q, σ̃

i) =

q∫

0

d̃i
j if q > 0, = 0 otherwise

R̂i
j(q, σ̃

i) =

|q|∫

0

s̃i
j if q < 0, = 0 otherwise

where σ̃i = (d̃i
1, s̃

i
1, . . . d̃

i
j, s̃

i
j, . . . d̃

i
k, s̃

i
k) .

(Now we adopt the convention that a buyer (seller) pays (receives) the area

under his own demand (supply) curve.)

Thus, for any σ, we automatically have

n∑
i=1

ti(σ) = 0

i.e. markets always clear. However, when i considers a deviation from σ̃i, it

may happen that ei
j + tij(σ|σ̃i) < 0 for some j, i.e., the trader i is called upon

to sell more of commodity j than he has. Furthermore, he may go bankrupt,

i.e.
k∑

j=1

Êi
j(t

j(σ|σ̃i), σ̃i) >

k∑
j=1

R̂i
j(t

j(σ|σ̃i), σ̃i)}.

The mechanism is not at fault on either count. It is blind to the private

characteristics, as well as to the strategic manipulations, of the individual

agents. In each market the signals submitted are resolved into trades and

payments via the mechanism’s publicly known rule. It is for the individual to

ensure that his signal leads to trades he can honor, and that across markets

he balances his budget. This motivates the definition of Σi(σ) below of the
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following strategy sets for each player i :

Σi(σ) = {σ̃i : ei + ti(σ|σ̃i) ∈ IRk
+,

k∑
j=1

Êi
j(t

j(σ|σ̃i), σ̃i) ≤
k∑

j=1

R̂i
j(t

j(σ|σ̃i), σ̃i)}.

Thus
∑i(σ) is the set of strategies of i that lead to feasible trades for him

when others’ strategies are fixed at σ. Define σ to be a strategic (Nash) equilibrium

(SE) if

(i)
n∑

i=1

ti(σ) = 0

(ii) σi ∈ Σi(σ) for i = 1, . . . , n

(iii) ei + ti(σ) &i ei + ti(σ|σ̃i), for all σ̃i ∈ Σi(σ), i = 1, . . . , n.

Then propositions 1, 2 remain true with SE substituted for EP . To see

this, first note that

∑
i∈Hj

|di
j |∫

0

di
j =

Tj∫

0

Dj,
∑
i∈Gj

tij∫

0

si
j =

Tj∫

0

Sj

and then reread the proof of the Lemma 1 with Êj, R̂j in place of Rj, Ej (in

effect reversing the chain of inequalities). This proves that, at any SE, all

trade takes place at one price. The rest of the proof proceeds as before, after

noting the following changes. Consider Tj, the total trade in commodity j at

the SE under consideration, and the (unique) price pj at which Tj is traded in

the SE. Also denote the aggregate demand and supply curves for commodity

j by Dj and Sj . Now it is clear that an agent can (via unilateral deviations

in strategy at the SE)

(i) buy up to Tj at the price pj (simply by quoting to buy more, in the event

that he is being rationed)
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(ii) buy x > Tj , at the price Sj(x) (by quoting the flat curve whose price is

Sj(x)).

Thus his expenditure for buying x is Ej(x) = xSj(x).

Similarly his receipts from selling x is Rj(x) = xDj(x). Both Ej and Rj are

C1, since Sj and Dj are C1 by hypothesis. Now the proofs hold exactly as

before.

Remark 1 : (Proof against Pretension) We could enhance the strategy-

set of an agent by allowing him to pretend to be any finite number of agents

as he wishes, aggregating the trades he obtains via his proxies, provided the

aggregate trade is feasible for him. This, as can easily be verified, would

not disturb the equilibrium (i.e., he could not get higher utility by such a

manoeuver).

Remark 2 : (Proper Game) It is also possible to describe a proper game

by introducing default penalties if
∑
j

Êi
j >

∑
j

R̂i
j or if ei

j + tj(σ|σ̃i) < 0 , as

is done in Dubey (1982, 1994). Moreover, the penalties can be brought on

by a rule for confiscating commodities in amounts commensurate with the

size of the default, as discussed there. (They can be trivially be brought

on by confiscating the entire consumption, in effect inflicting a huge penalty

on agents who violate their feasibility constraints. For then each agent will

simply prefer not to trade and to consume his initial endowment.)

Remark 3 : (Inactive markets) For any subset L ⊂ {1, . . . , k} of com-

modities, one can define Walras equilibrium modulo L, by restricting trade

to only commodities in L and restricting the preferences to this subspace

of trades. Then our analysis shows that an SE yields Walras equilibrium

modulo the set of commodities whose markets are active at the SE.

Remark 4 : (Equilibrium Refinement) Imagine a “market maker” who

endeavours to trigger trade at market j by offering to buy (and, sell) up

to ε > 0 units of commodity j at some common price pj and to buy (sell)

more at smoothly decreasing (increasing) prices. We shall call this an “ε-

perturbation” of market j. Treating each market maker as a strategic dummy,

and postulating that he creates the commodities and the money that the

mechanism calls upon him to deliver, the game is well defined even after

some markets are ε-perturbed. We shall say that an NE is refined it there

exist ε-perturbations of its inactive markets that do not disturb the NE. It
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is then trivial to verify (using the convexity of preferences) that the prices

and allocations of refined NE coincide with the CE of the underlying econ-

omy, i.e., refinement eliminates the need for the extended Walras equilibria

of Remark 3. (Note that refined NE would be unaffected if we required ε-

perturbations of all the markets; the market-maker could simply trade ε with

himself at the NE price formed at each active market).

Other, more sophisticated, versions of refinement can be thought of. One

could consider the NE of the game in which all markets are ε-perturbed, and

take the limit of these NE as ε → 0. With some additional constraints on

the perturbations, this should lead to the same refined NE, but we will not

pursue the inquiry here.

4 Mechanism Design

The strategic market game of Section 3 can be interpreted in the context

of mechanism design (see Postlewaite (1985)), once we observe that agents’

strategy-sets are invariant of their preferences.8 To bring our strategy-to-

outcome map in line with that literature, let us define (pro forma) the out-

come to be no-trade if any agent winds up being infeasible (i.e. either violates

his budget constraint or is called upon to sell more of any commodity than

he has ). This yields a “strategic outcome function” as in Postlewaite (1985).

Next, given any economy, define the set of “extended Walras equilibria” to

be the union of Walras equilibria modulo L, as L varies over all possible

subsets of commodities. Then, in the terminology of Postlewaite (1985), Re-

mark 3 implies that the “Nash performance correspondence” of our strategic

outcome function exactly implements the extended Walras correspondence 9;

8In our model even more is true. The game is truly “anonymous” in the sense of
Dubey, Mas-Colell, and Shubik (1980): all agents have the same message space, and the
trade that the market assigns to any agent (prior to a feasibility check on him) depends in
an identical way on his message and the distribution (indeed aggregate) of all messages.

9Given a CE modulo L, one can construct an NE on the L-subeconomy to match the
CE as in the proof of Proposition 2. Then define strategies on the set {1, . . . , k} \ L of
inactive markets as follows. Let some agents quote supply curves starting at exorbitantly
high prices, while others quote demand curves starting at ridiculously low prices (scaling
the CE prices up, if necessary, to make this feasible). Provided that the marginal rates
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while Remark 4 implies that the “refined Nash performance correspondence”

exactly implements the Walras correspondence.

Of course, others have presented mechanisms which implement the Walras

correspondence (see, e.g., Hurwicz (1979). Hurwicz, Maskin, and Postlewaite

(1980), Schmeidler (1980), all of whom, incidentally, require at least three

agents and bypass the case of a bilateral monopoly). It is not our intention

just to add to this list. We were instead inspired by the fact that the “double

auction” - which underlies our mechanism - has a long and rich history, not

only in academia, but in real market processes (see Friedman and Rust (1993)

for an excellent survey). Our analysis reveals that a “smoothened” version

of the double auction will make for efficiency and help to break monopoly

power. It thereby implies that, if the “price-jumps” permitted in the bid-

ders’ strategies are reduced by mandate (of the auction-designer), every such

reduction will tend to come with efficiency gains. To that extent, we hope

that our analysis will also be of some interest to applied economists who are

concerned with the general properties of double auctions.

of substitution between commodities are bounded, we obtain a full-fledged NE which
replicates the CE. This, in conjunction with Remark 3, shows the exact implementation.

17



References

Bulow, J. (1982): “Durable-Goods Monopolists,” The Journal of Political

Economy, 90(2), 314–332.

Coase, R. (1972): “Durability and Monopoly,” The Journal of Law and

Economics, XV(1), 143–149.

Dubey, P. (1982): “Price-Quantity Strategic Market Games,” Economet-

rica, 50(1), 111–126.

Dubey, P., A. Mas-Colell, and M. Shubik (1980): “Efficiency Prop-

erties of Strategic Market Games: An Axiomatic Approach,” Journal of

Economic Theory, 22, 339–362.

Friedman, D., and J. Rust (1993): “The Double Auction Market,”

Addison-Wesley.

Gaskins, D. (1974): “ALCOA Revisted: The Welfare Implications of a

Secondhand Market,” Journal of Economic Theory, 7, 254–271.

Hurwicz, L. (1979): “Outcome Functions yielding Walrasian and Lindahl

Allocations at Nash Equilibrium Points,” Review of Economic Studies, 46,

217–225.

Hurwicz, L., E. Maskin, and A. Postlewaite (1980): “Feasible Imple-

mentation of Social Choice Correspondences by Nash Equilibria,” Mimeo.

Mas-Colell, A. (1980): “Noncooperative Approaches to the Theory of

Perfect Competition: Presentation,” Journal of Economic Theory, 22(2),

121–135.

Mertens, J. (2003): “The Limit-Price Mechanism,” Journal of Mathemat-

ical Economics, 39(5-6), 433–528.

Postlewaite, A. (1985): “Implementation via Nash Equilibria in Eco-

nomic Environments,” Hurwics, L. and D. Schmeidler and H. Sonnen-

schein (eds), Social Goals and Social Organization: A Volume in Memory

of Elisha Pazner.

18



Sahi, S., and S. Yao (1989): “The Non-cooperative Equilibria of a Trading

Economy with Complete Markets and Consistent Prices,” Journal of Math.

Economics, 18, 315–346.

Schmalensee, R. (1979): “Market Structure, Durability, and Quality: A

Selctive Survey,” Economic Inquiry, 17, 177–196.

Schmeidler, D. (1980): “Walrasian Analysis via Strategic Outcome Func-

tions,” Econometrica, 48, 1585–1594.

Stigler, G. (1965): “Perfect Competition, historically contemplated,” Es-

says in the History of Economics, Quart. 8, University of Chicago Press.

19



20



Tj
�

q

pj
�

p Fig. 2

sales rationed

Dj
�

Sj
� Dj

�

Sj
�

21



M
q

pj
�

p Fig. 3

purchases rationed

Dj
�

Sj
�

22


