
RI 04001 09 March 2004 Computer Science

IBM Research Report

A Software Framework for Applying Planning Techniques

Biplav Srivastava
IBM Research Division
IBM India Research Lab

Block I, I.I.T. Campus, Hauz Khas
New Delhi - 110016. India.

IBM Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE : This report has been submitted for publication outside of IBM and will probably be copyrighted
is accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright
to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties).
Copies may be requested from IBM T.J. Watson Research Center, Publications, P.O. Box 218, Yorktown Heights, NY 10598 USA (email:
reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home



A Software Framework for Applying Planning
Techniques

Biplav Srivastava
IBM India Research Laboratory

Block 1, IIT, New Delhi 110016, India
sbiplav@in.ibm.com

Keywords: planning architecture, software reuse, applications

Abstract. Enterprise applications are built along software archi-
tectures that allow componentization of building blocks, large-scale
reuse through design patterns and frameworks, and easy upgrada-
tion/maintenance. As more and more applications of planning are
emerging in diverse areas that employ many of the planning-related
techniques like reachability and relevance analysis, causal reasoning
for plan existence, plan synthesis, temporal reasoning and what-if
analysis for bounds on optimal plans, the focus is changing from only
planner performance to the overall software process of implementing
these techniques. Over time, the implementation of the needed plan-
ning techniques has to be maintained and upgraded to better alterna-
tives, just like any other software component.

However, the process of implementing planners (and related tech-
niques) is still to start from scratch as there is no common reuse
framework. This not only slows the speed of implementation but
also inhibits adoption of better techniques in future. In this paper,
we present a Java-based programmatic framework calledPlanner4J
to build and reuse planning components in business applications. Ex-
perience with Planner4J has shown that it is effective for building and
maintaining a variety of planners and techniques in Java, which are
being used in different applications requiring planning capabilities.

1 Introduction

Today, more and more usage of planning techniques [17] are being
found in enterprise applications like data integration[8], web services
composition for application middleware [2, 15] marketing campaigns
design[18] and system management (e.g., autonomic computing1).
By planning techniques, we refer to any automated analysis that op-
erates on action and goal specification. Examples are reachability and
relevance analysis, causal reasoning for plan existence, plan synthe-
sis, temporal reasoning, what-if analysis for bounds on optimal plans
and execution monitoring. Enterprise applications (also called busi-
ness applications) are built along software architectures that allow
componentization of building blocks, large-scale reuse through de-
sign patterns and frameworks, and easy upgradation/maintenance[3].
The objective is as much to reduce the total cost of ownership (TCO)
of the application as to provide an efficient solution. They demand
implemented planning components to not only focus on performance
but also to the overall software process of implementing these tech-
niques.

In the past, planning has been applied in specialized domains like
space mission control (e.g., NASA’s RAX planner[7]) where domain
specific details would dictate customized planning and execution ap-

1 Also see http://www.research.ibm.com/autonomic/.

proaches. Planning software would be written from scratch in these
performance-constrained domains and reuse remained a non-issue.
In academic research, the trend continues to be to download publicly
available implementations of influential planners like UCPOP[11]
and Graphplan[1], learn the details and modify it for the applica-
tions. These original systems were not built for reuse but as efficient
implementations of appropriate algorithms.

The success of planning in an application depends as much on the
planning techniques used as on the way it is embedded into the run-
time. The lack of domain independent planning reuse infrastructure
makes it hard to understand the role of planning in an application (are
the planning needs really special or was the implementation ad hoc?),
slows future upgradation to planning advancements and inhibits so-
lution reuse. In this paper, we present a Java-based programmatic
framework calledPlanner4Jto build and reuse software components
for implementing planning techniques in applications. The benefit
Planner4J brings on the usability front is to provide the user (devel-
oper of planning applications) with a consistent view of planners so
that they are not restricted to any one type of algorithm and can easily
select the best-in-class, efficient and expressive planner that they may
need over time. Note that though the Planning Domain Description
Language (PDDL[5]) representation may also seem to give a consis-
tent view of a planner to the user, it only provides the specification at
the level of data inputs and outputs, and not a common programmatic
access interface. On the software engineering front, the benefit to the
user (developer of planning techniques) is that there is a well-tested
common infrastructure of components and patterns so that while de-
veloping new planners or techniques, much of the existing compo-
nents (existing code) can be reused.

Planner4J has been used to build a variety of planners imple-
mented in Java, which are being employed in different applications
requiring planning capabilities. Specifically, reference implementa-
tions of a classical (heuristic search space) planner, a metric planner
and an Hierarchical Task Network planner have been developed in
Planner4J which reuse much of their underlying components. In ad-
dition, various analysis components are available, e.g., for bi-level
planning graph construction, relevance and reachability evaluation,
that can be used to improve existing planners by getting more accu-
rate heuristic estimations or build new types of planners.

Experience with using Planner4J in applications has shown that
it can effective in bringing diverse planning capabilities into differ-
ent applications by promoting large-scale reuse and easing upgra-
dation/maintenance. It has been incorporated into a publicly avail-
able general-purpose agent building environment (ABLE2) [14] and

2 At http://www.alphaworks.ibm.com/tech/able.



fielded in system management applications. Components of Plan-
ner4J have been easily used to build a decision-support tool for Soft-
ware Project Management[13]. Other enterprise applications under
development are a web services composition tool for assembling, de-
ploying and executing composite web services[12], semantic search
of web service directories and auto-recovery in systems manage-
ment.

The paper is organized as follows: we start with considerations
in designing a software framework for reuse and then present the
Planner4J planning framework. We next discuss the evaluation of
Planner4J in building and maintaining planning techniques and ap-
plication, and conclude with an overview of contributions and future
work.

2 Considerations for a Planning Framework

A framework is a reusable design for a specific part or whole of a
software consisting of a set of abstract classes, interfaces and the
inter-relationship among their instances[3]. It is an object-oriented
design but it does not have to be implemented in an object-oriented
language. The framework provides a context for the components in
the software collection to be reused. The performance of the soft-
ware component itself is not influenced by whether it is architected
in a framework design or not, but such a software is usually faster to
develop, easier to understand and maintain, and better used by end
applications.

In building the Planner4J planning framework, our objectives are:

1. Improve usability. We want to provide the end application of plan-
ning with a consistent view of planners so that they are not re-
stricted to any one type of algorithm and can easily select the best-
in-class, efficient and expressive planner that they may need over
time.

2. Low footprint. Applications can use only the pieces that they need
and the framework should not impose additional dependencies.

3. Improve code reuse. The framework is architected around essen-
tial core concepts of planning so that while developing new plan-
ning techniques/ planners, much of the existing components can
be reused.

4. Extensibility and Scalability. The application should be able to
modify and extend the planning capabilities over time in a well
understood context.

3 The Planner4J Planning Framework

Planner4J consists of important abstract classes and interfaces that
are required to define and solve a planning problem, viz., action,
state, problem, domain and plan, and their reference implementations
that can be further reused and extended. It is arranged as a layering
of modules (see Figure 1). Planner4J-Core is the core module made
up of packages containing generic interfaces and implementations
of common capabilities like command-line processing and search
queue(see Table 1). All Planner4J planners share the Planner4J-Core,
thus promoting reuse and extensibility in the Planner4J design.

3.1 Planner4J ClassicalPlanner

The Planner4J-Classical module contains the reference implementa-
tion for the Planner4J-Core interfaces (see Table 2). It implements a

Planner4J−Core

Planner4J−Classical

Planner4J−Metric

Planner4J−HTN

...

Figure 1. Layering of modules in Planner4J.

”classical planner” (STRIPS) that can solve planning problems rep-
resented in PDDL1. Each package contains implementations of inter-
faces defined in the corresponding package of Planner4J-Core mod-
ule. The module also contains an additional package to house test
case driver programs.

Package Interfaces Implementations
≺prefix�.planners IPlanner Options

IPredicate
IDomain
IProblem
IAction
IPlanSolution

≺prefix�.parsers IParser
≺prefix�.state IState
≺prefix�.search ISearch SearchQueue

IPlanningGraph

Table 1. Planner4J-Core components.≺prefix� refers to placement of
packages in conjunction with the deployment descriptors.

Package Implementations Helpers
≺prefix�. ClassicalPlanner ActionManager
planners PredicateImpl PredicateManager

DomainImpl HelperUtil
ProblemImpl
ActionImpl
PlanSolutionImpl

≺�.parsers PDDL1Parser
≺�.state StripsStateImpl
≺�.search StateSpaceSearchImpl PlanningGraph-

BiLevelPlanning- -HeuristicsCalculator
-GraphImpl LevelDataItem

MutexManager
≺�.test TestClassicalPlanner

Table 2. Planner4J-Classical components.

In the planner package, ClassicalPlanner implements the IPlan-
ner interface and drives the planning process. Additionally, helper
classes are defined to manage action and predicate objects. The



StripsStateImpl implementation of IState contains routines to record
information about literals and reason with states. The StateSpace-
SearchImpl class implements a forward as well as a backward state
space search regime guided by a heuristic function. The direction of
the search is customizable with a switch provided in the Planner4J-
Core Options class. The search package contains support for a
Planning Graph[1], which can be used to calculate more accurate
heuristics[10] or implement Graphplan within Planner4J. Each plan-
ner implementation contains a test program to illustrate how the plan-
ner can be programmatically invoked.

Planner4J allows additional planners to be built using the
Planner4J-Core and Planner4J-Classical modules. Note that though
the use of Planner4J-Classical module is optional, the interfaces in
Planner4J-Core have to find some implementation in any planner
built within Planner4J and Planner4J-Classical provides ready im-
plementations for components that a planner may not particularly
want to customize. Different types of planning (Classical, Metric or
HTN3) change the representation of the actions and the states, but
not the basic search characteristic of the problem. This effect can be
modeled as changing the heuristic calculation function that is used
to measure distance between states of the underlying planner. At
the heart of all the implemented planners is a heuristics-driven state
space search algorithm which is tuned by planner-specific heuristics
and generic parameters like search direction.

3.2 Planner4J MetricPlanner

Now consider how a new planner may be developed. Also imple-
mented in Planner4J is a restricted metric temporal planner that can
reason about cost and performance of actions in generating a feasi-
ble plan. It reuses the implementation of Planner4J-Classical as much
as possible. In Table 3, the components of the Planner4J-Metric are
summarized.

MetricPlanner implements the IPlanner interface. In comparison
to PDDL1, actions in this case contain annotations compliant with
PDDL2 for cost and duration of actions. As a result, the file pars-
ing routines (MetricParser), the action implementation (MetricAc-
tionImpl), the implementation for planning solution (MetricPlanSo-
lutionImpl), and the heuristic evaluation function (MetricStateSpace-
SearchImpl) have to be primarily extended/changed. However, even
these implementations can reuse and extend the corresponding im-
plementations in Planner4J-Classical.

In the general representation of metric temporal planning, predi-
cates can have duration. We will support this in future and that would
require extensions to predicate and state related implementations.

Package Implementations Helpers
≺prefix�. MetricPlanner HelperUtil
planners MetricActionImpl

MetricPlanSolutionImpl
≺�.parsers MetricParser
≺�.search MetricStateSpaceSearchImpl
≺�.test TestMetricPlanner

Table 3. Planner4J-Metric components.

3 Not an exclusive list. We have identified other types that we want to imple-
ment in future.

3.3 Planner4J HTNPlanner

We have implemented a Hierarchical Task Network planner in Plan-
ner4J that that can accept descriptions of non-primitive tasks i.e., hi-
erarchical tasks along with the specification how to decompose them,
in addition to the PDDL1 primitive tasks. The responsibility of the
planner is to produce plans that not only achieve the goals but also
respect the specified decompositions. Planner4J-HTNPlanner reuses
the implementation of Planner4J-Classical as much as possible. In
Table 4, its components are summarized.

The PDDL specification of the domain is extended for non-
primitive actions by introducing aschemaconstruct that is similar
to actions but has an additionalmethodfield to give expansion (de-
composition) of the action[9]. The precondition field of the schema
is a place holder to specify necessary conditions for applying the
schema which are additional preconditions beyond those of the con-
stituent decomposed actions which should be true to apply the reduc-
tions. The effect field records theprimary effectsof the schema for
which the merged action should be introduced into the plan. They
take care of a basic concern in HTN planning that non-primitive ac-
tions should not be used to achieve secondary effects which will un-
necessarily produce very complex plans. The method field specifies
the choice in selecting a sequence of actions that are to be used for re-
ductions. When there are more than one sequence, achoicedelimiter
is used. The HTNPDDL1Parser implements a parser for the extended
PDDL1 domain description while the HTNDomainImpl holds infor-
mation about the HTN planning domain.

HTNPlanner implements the IPlanner interface. After a schema is
parsed, its decompositions are processed to create multiple HTNAc-
tionImpl with actions sets recorded in ActionCollection. The heuris-
tic evaluation function (HTNStateSpaceSearchImpl) is extended to
let the planner differentiate between actions and prefer non-primitive
actions as they result from user provided domain knowledge, rather
than primitive actions.

The above discussion was centered on reusing and extending
Planner4J-Classical components. In [16], it was shown how planning
domain specification at different PDDL levels could be extended
slightly to enable a heuristic state space search planner reason with
non-primitive tasks and support HTN planning. There, the authors
had used and extended the Sapa[4] metric temporal planner. We can
similarly extend MetricPlanner too to build a PDDL 3 HTNPlanner
quite easily in Planner4J.

Package Implementations Helpers
≺prefix�. HTNPlanner HelperUtil
planners HTNDomainImpl

HTNActionImpl
ActionCollection
Schema

≺�.parsers HTNPDDL1Parser
≺�.search HTNStateSpaceSearchImpl
≺�.test TestHTNPlanner

Table 4. Planner4J-HTN components.

3.4 Discussion

Planner4J is a collection of abstractions representing essential plan-
ning concepts and their reference implementations that can be further
reused and extended. We implemented a classical planner, a metric



planner and an HTN planner within Planner4J and discuss the degree
of reuse achieved in the next section. Though the discussed planners
are based on heuristic search space approach, and can of course be
improved with better optimizations/heuristics,the Planner4J archi-
tecture itself is a set of interfaces which does not dictate any partic-
ular implementation approach. We will encourage external planner
contributions to extend the spectrum of readily-available planners.
One restriction the implemented framework imposes is that the plan-
ning components have to be written in Java or there has to be a Java
bridge to the implementing language.

4 Evaluating Planner4J

Planner4J has been used to build a rich set of planners techniques
which are being applied to various applications detailed in the intro-
duction. Since its main promise is in component reuse and mainte-
nance, we wanted to evaluate how well have we been able to achieve
it in developing the reference implementations.

4.1 Experience with using Planner4J

The design and development of Planner4J-Core and Planner4J-
ClassicalPlanner was iterative and took 2-3 weeks to stabilize. How-
ever, having done that, the first Metric and HTN planners could be
implemented in Planner4J in a couple of days. The framework con-
tinues to be extended and the latest addition is support for planning
graph, which can be used to calculate more accurate heuristics or
implement Graphplan within Planner4J.

The biggest advantage of Planner4J, however, has been in the ease
of packaging and customizing the right planning components for dif-
ferent applications. While we are continuously upgrading the plan-
ning components, we are able to propagate the changes to the differ-
ently deployed applications in minutes, using an Integrated Develop-
ment Editor like Eclipse4.

4.2 Measuring Reuse

We try to quantitatively understand reuse achieved with Planner4J.
Lines of code (LOC) is a standard measure of software complexity
in software engineering and we adopt it for our purpose here.

Table 5 shows the lines of code in each package of the Planner4J
modules. Since Planner4J-Core consists of both abstractions (i.e., in-
terfaces) and implementations, the latter is also shown separately. We
omitted the test package as test programs do not affect the individual
planner’s functionality.

Package Core Classical Metric HTN
Lcore (Lni

core) Lclass Lmetric Lhtn

parsers 16 3731 3736 4656
planners 533 (201) 2809 1503 1205
state 288 2407 437 74
search 48 (182) 464
Total 885 (383) 9411 5676 5935

Table 5. Lines of code (LOC) in various Planner4J packages. For Core,
figures in bracket give LOC count for non-interface code.

Using the LOC information, we now calculate statistics about
Planner4J under different scenarios(see Table 6). In the first column

4 http://www.eclipse.org

is the effective LOC for each planner in Planner4J. Since Classi-
calPlanner is the basic reference planner, to calculate its effective
size, we included Planner4J-Core’s LOC with its own LOC. Met-
ricPlanner and HTNPlanner build upon ClassicalPlanner and hence,
their effective LOC is the same as LOC in their modules.

In the second column, we consider the scenario if the individual
planners had been implemented from scratch. In that case, Classi-
calPlanner (and other planners) would not have cared for Planner4J-
Core interfaces, as they relate to abstractions, and only implemented
the non-interface components (specifically, SearchQueue and Op-
tions in Table 1). Therefore, we only consider the latter in the LOC,
i.e., Lscratch−pess

class = Lni
core + Lclass. For MetricPlanner and HTN-

Planner, we do not know the size of the individual modules if Clas-
sicalPlanner had not been present5. But we know that it will be more
than the size of ClassicalPlanner because they incorporate more de-
tailed domain modeling and inference reasoning.

The third column calculates how much code has been writtenless
in Planner4J compared to if it was written from scratch, as a percent-
age of the code written from scratch. For example,Lpayoff−pess

class =
((Lscratch−pess

class - Lplanner4j
class ) / Lscratch−pess

class ) * 100. The result is
a lower estimate because if the size of a planner written from scratch
is greater than the lower estimate, its reuse percentage increases. The
column shows that for ClassicalPlanner, we end up writing 5% more
code to facilitate reuse but for other planners, this translates to a sav-
ing of atleast around 40%.

In the fourth and fifth columns, we improve our estimate of pay-
off due to reuse by being less conservative on the size of individ-
ual planners (other than ClassicalPlanner) when implemented from
scratch. Since a planner like MetricPlanner, if built from scratch,
would have to implement the functionality of ClassicalPlanner in ad-
dition to the incremental functionality of metric reasoning, a better
estimate for it is the sum of ClassicalPlanner’s size from scratch and
the incremental size from Planner4J. E.g., (Lscratch

metric ) = Lscratch−opt
class

+ Lplanner4j
metric .

The fifth column calculates the reuse payoff percentage using the
revised estimate of building planners from scratch. For example,
Lpayoff−opt

metric = ((Lscratch−opt
metric - Lplanner4j

metric ) / Lscratch−opt
metric ) * 100.

The column shows that with the same 5% overhead in ClassicalPlan-
ner to facilitate reuse, we may be saving upto about 60% of coding
effort.

4.3 Discussion

The evaluation of code reuse is always tricky since it is difficult to se-
lect the right measure that captures the functionality of the software
components. While LOC is a convenient measure to calculate and
generally shows broad trends, it need not be accurate for planning
components. However, the above exercise does show that the Plan-
ner4J framework can substantially reduce new coding effort. This,
along with the initial positive experience in using Planner4J for var-
ious planning techniques and applications, leads us to believe that
more planning systems should be built around framework principles.

5 Conclusion and Future Work

With more applications of planning emerging, the focus is changing
from only planner performance to the overall software process of
implementing these techniques. In this paper, we presented a Java-
based programmatic framework calledPlanner4Jto build and reuse

5 Table 5 only shows the size of the incremental code when ClassicalPlanner
is present.



Planner type Planner4J From Scratch (Pess.) Reuse Payoff % (Pess.) From Scratch (Optim.) Reuse Payoff % (Optim.)
Lplanner4j Lscratch−pess Lpayoff−pess Lscratch−opt Lpayoff−opt

Classical 10296 9794 -5.12 9794 -5.12
Metric 5676 ≥ 9794 42.05 15470 63.31
HTN 5935 ≥ 9794 39.4 15729 62.27

Table 6. Statistics on payoff due to code reuse based on lines of code (LOC). The reuse payoff ranges from 40-60% based on how one calculates the size of
individual planners from scratch.

planning components in applications. We discussed development of
three types of planners in Planner4J and evaluated the framework in
promoting reuse. Future work will be in expanding the techniques
available through Planner4J (e.g., probabilistic reasoning, execution
monitoring) and continually improving their performance. We will
also encourage external planner contributions to extend the spectrum
of readily-available planners.

REFERENCES

[1] A. Blum and M. Furst, ‘Fast planning through planning graph analysis’,
in Proceedings of the 14th International Joint Conference on Artificial
Intelligence, ed., C. Mellish, pp. 1636–1642. Morgan Kaufmann, San
Francisco, CA, (1995).

[2] J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A. Agarwal, and G. Mehta,
‘The role of planning in grid computing’, In Giunchiglia et al. [6].

[3] G. Booch, ‘Object-oriented analysis and design with applications (2nd
ed)’, in Benjamin-Cummings Publishing Co., Redwood City, CA, USA,
ISBN:0-8053-5340-2, (1993).

[4] Minh B. Do and Subbarao Kambhampati, ‘Sapa: A scalable multi-
objective heuristic metric temporal planner’, inJournal of Artificial
Intelligence Research (JAIR) Special Issue on the Third International
Planning Competition, (2003).

[5] M. Fox and D. Long,PDDL2.1: An Extension to PDDL for Expressing
Temporal Domains, The AIPS-02 Planning Competition Committee,
2002. Available at http://www.dur.ac.uk/d.p.long/competition.html.

[6] E. Giunchiglia et al., eds.Proceedings of the 13th International Confer-
ence on Artificial Intelligence Planning and Scheduling. AAAI Press,
Menlo Park, 2003.

[7] A. K. Jonsson, P. H. Morris, N. Muscettola, K. Rajan, and B. D. Smith,
‘Planning in interplanetary space: Theory and practice’, inProceedings
of the 5th International Conference on Artificial Intelligence Planning
and Scheduling, eds., S. Chien, S. Kambhampati, and C. Knoblock, pp.
177–186. AAAI Press, Menlo Park, (2000).

[8] C. Knoblock, S. Minton, J. Ambite, N. Ashish, I. Muslea, P. Philpot,
and S. Tejada, ‘The ariadne approach to web-based information inte-
gration’, in International Journal on Cooperative Information Systems
(IJCIS) 10 (1-2) Special Issue on Intelligent Information Agents: The-
ory and Applications, pp 145-169, 2001., (2001).

[9] Drew McDermott, ‘The 1998 AI planning systems competition’,AI
Magazine, 21(2), 35–55, (Summer 2000).

[10] XuanLong Nguyen, Subbarao Kambhampati, and Romeo Sanchez Ni-
genda, ‘Planning graph as the basis for deriving heuristics for plan syn-
thesis by state space and CSP search’,Artificial Intelligence, 135(1-2),
73–123, (2002).

[11] J. Penberthy and D. Weld, ‘UCPOP: A sound, complete, partial or-
der planner for ADL’, inProceedings of the 3rd International Confer-
ence on Principles of Knowledge Representation and Reasoning, eds.,
B. Nebel, W. Swartout, and C. Rich, pp. 103–113. Morgan Kaufmann,
San Mateo, (1992).

[12] B. Srivastava, ‘Automatic web services composition using planning’, in
Proceedings of 3rd Internation Conference on Knowledge-Based Com-
puter Systems, pp. 467–477, Mumbai, (December 2002).

[13] B. Srivastava, ‘A decision-support framework for component reuse
and maintenance in software project management’, inIEEE 8th Euro-
pean Conference on Software Maintenance and Reengineering (CSMR
2004), Tampere, Finland., (2004).

[14] B. Srivastava, J. Bigus, and D. Schlosnagle, ‘Bringing planning to au-
tonomic applications with able’, inTo Appear in Proc. IEEE Inter-

national Conference on Autonomic Computing (ICAC-04), New York,
USA., (2004).

[15] B. Srivastava and J. Koehler. Web service composition - current solu-
tions and open problems. ICAPS 2003 Workshop on Planning for Web
Services, Trento, Italy., 2003.

[16] Biplav Srivastava, ‘A Limited Extension of PDDL for Planning with
Non-primitive Action’, in Proceedings of ICAPS’03 Workshop on the
Competition: Impact, Organization, Evaluation, Benchmarks, Trento,
Italy, (June 2003).

[17] D. Weld, ‘Recent trends in planning’,AI Magazine, 20(2), (1999).
[18] Q. Yang and H. Cheng, ‘Planning for marketing campaigns’, In

Giunchiglia et al. [6].


