
RI 04002, 2 April 2004 System s Managem ent

I BM Research Report

Mining Act ivity Data for Dynam ic Dependency Discovery in
e- Business System s

Manoj K. Agarw al, Manish Gupta, Anindya Neogi
IBM Research Division

IBM India Research Lab
Block I , I .I .T. Cam pus, Hauz Khas

New Delhi - 110016, I ndia.

Gautam Kar, Anca Sailer
IBM Research Division

IBM T.J. Watson Research Center
Hawthorne, New York, USA

I BM Research Division
Alm aden - Aust in - Beij ing - Delhi - Haifa - T.J. W atson - Tokyo - Zurich

LI MI TED DI STRI BUTI ON NOTI CE: This report has been subm it ted for publicat ion outside of IBM
and will probably be copyrighted is accepted for publicat ion. I t has been issued as a Research Report
for early dissem inat ion of it s contents. I n view of the t ransfer of copyright to the outside publisher, it s
dist r ibut ion outside of IBM prior to publicat ion should be lim ited to peer com m unicat ions and specific
requests. After outside publicat ion, requests should be filled only by reprints or legally obtained
copies of the art icle (e.g., paym ent of royalt ies) . Copies m ay be requested from IBM T.J. Watson
Research Center, Publicat ions, P.O. Box 218, Yorktown Heights, NY 10598 USA (em ail:
reports@us.ibm .com) .. Som e reports are available on the internet at
ht tp: / / dom ino.watson.ibm .com / library/ CyberDig.nsf/ hom e .

�

Abstract—The growing popularity of e-businesses has stimulated web sites to evolve from static content servers to complex tiered
systems built from heterogeneous server platforms. A large amount of IT budget of e-businesses is spent nowadays on maintaining,
troubleshooting, and optimizing these web sites. It has been shown that such system management activities may be simplified or
automated to various extents if a dynamic dependency graph of the system were available. Currently, all known solutions to the
dynamic dependency graph extraction problem are intrusive in nature, i.e. require unwelcome modifications at application or
middleware level. In this paper, we develop non-intrusive techniques based on data mining, that process existing monitoring data
generated by server platforms, to automatically extract the system component dependency graphs in tiered e-business platforms,
without any additional application or system modification.

Index Terms—Resource Management, Computer Network Management, Monitoring, Correlation

I. INTRODUCTION

eb-based platforms have nowadays become extremely complex distributed systems with a large number of heterogeneous
interacting components. From the point of view of an end-user interacting with a web-based storefront, seemingly simple

“order” or “category browse” transactions are performed. However, tiers of back-end servers involving multiple server boxes and
system components within them decompose and execute the sub-transactions in a coordinated fashion. Figure 1 illustrates a
typical web-based stock brokerage implemented using various types of server platforms and system components.

Fig. 1. Complex component dependencies in a stock brokerage application on J2EE/Messaging/DB platforms. The successive steps of an

order transaction are indicated.

A typical complex path taken by an order transaction (e.g., “stock purchase”) shows how servers and system components
invoke other servers and components to execute the transaction. Since server vendors, application developers, system integrators,
and system maintainers are typically from different organizations, there is no single entity with absolute knowledge of how the
heterogeneous components in the deployed system run in synergy to execute user transactions. Hence, managing the deployed
system, debugging problems, and improving end-to-end performance become exceedingly complex. For example, if the “stock
purchase” transaction performance degrades drastically, the job of the system administrator turns into a tedious effort of manually

Mining Activity Data for Dynamic Dependency
Discovery in e-Business Systems

Manoj K. Agarwal*, Manish Gupta*, Gautam Kar+, Anindya Neogi*, Anca Sailer+

*IBM India Research Lab, New Delhi +IBM T.J. Watson Research Center, New York

W

reading and correlating multiple logs to solve an end-to-end problem. Thus the cost of tuning or debugging of multi-vendor
systems consumes a significant portion of enterprise IT budgets. Knowledge of end-to-end system dependencies enables semi-
automated or even automated management applications, which use the information to perform cross-component analysis for
pinpointing root causes of problems and end-to-end performance optimization [2, 7, 10, 15, 22].

The existing approaches for extracting and modeling system dependencies either fall short of enabling intelligent management
applications or require significant system alteration, which prevents its wide spread use. An approach based on static analysis of
application deployments, installation registries, or call graph analysis fails to capture the dynamic nature of dependencies in a
complex system. In another approach, extra code is inserted into the application or middleware (called “ instrumentation”) to
dynamically trace transaction paths and extract dependency knowledge. Even though the latter captures the dynamic nature of
dependencies, organizations are often apprehensive about introducing extra code outside the development process, thus stalling
the ubiquitous use of this approach. Additionally, middleware source code is often not available for end-to-end instrumentation in
multi-vendor systems. Instrumentation framework standards [3] have been created, however, they have not been widely adopted
for end-to-end transaction tracing.

This paper takes a data mining and statistical analysis approach to extract the dynamic component dependencies from existing
system monitoring data. The central idea is to analyze the large amounts of usage and performance data already available from
existing monitoring infrastructures on server platforms and extract dynamic dependencies between the monitored components,
without introducing any extra instrumentation into the application or platform. The dynamic dependency information is stored
and updated in a database accessible to dependency-based management applications. In this paper we propose two real-time
dependency generation techniques and evaluate them in the context of well-known benchmark applications. Our approach is
equally suitable for offline techniques, which are not presented in this paper.

II. PROBLEM STATEMENT

An e-business system can be modeled as a directed graph of interacting servers and system components at multiple levels of

granularity. At the macro level, a node in the graph may represent a whole server, such as a database server or an application
server. At a micro-level, a node may represent a component within a server, such as a servlet within the web container of an
application server or a query on a database server. For example, in Figure 1, the dependency of the application server AS on the
database server DB is a macro dependency, while the dependency of the EJB OF on the SQL query S1 is a micro dependency. In
either case, a directed edge in our dependency model represents a service invocation or a dependent-antecedent relationship. In
addition, weights are also attached to edges, representing dependency strengths. Dependency strength indicates the likelihood of
the dependency being true. It is inherent to techniques based on statistical approaches, such as ours, to extract dependencies that
do not actually exist (false dependencies). The objective of computing dependency strengths is to sort the dependencies of a node
based on their weights, and cluster the true dependencies of the node towards one end of the list. A management application can
use depth-first traversal order or select top N edges of each node to avoid false dependencies [20, 25].

We assume that the nodes of the system graph are known through mechanisms such as static analysis of code, deployment
descriptors, and installation registries, platform-specific discovery techniques, or even manually ascertained domain knowledge.
This is a valid assumption as we are monitoring the node performance and usage anyway. The aim of our project is to devise
techniques so that existing monitoring data from these nodes may be used to infer the dynamic dependency relationships between
them. It is assumed that each of the server platforms has a monitoring infrastructure in place. However, our techniques should not
demand monitoring data beyond what is already available. Additionally, the level of detail in the system graph depends on the
availability of detail monitoring data. For instance, if a component’s monitoring data is not available then that component cannot
be represented as a node in the system graph.

Among the various types of dependencies possible in an e-business system [16], we demonstrate our techniques specifically on
user transaction to database query dependencies. The relevant monitoring data about user transactions, application server
components, and database queries is used to find the dependency of individual user transactions on database queries. Transaction
to query dependency captures micro dependencies between two system components: servlets handling transactions and queries
handling back-end data access. It also captures macro dependencies because it exposes the dependency of the application server,
hosting the servlet, on the database server, executing the query. Therefore, micro dependencies across servers automatically
extract inter-box macro dependencies. The dependency extraction techniques discussed in this paper may be extended and/or can
work with different techniques to extract other types of micro and macro level dependencies.

Different fault management and performance tuning applications may use the extracted dependency graph. The techniques to
use the dependency graph in management applications are beyond the scope of this paper.

III. RELATED WORK

A dependency graph of a system may be obtained using direct or indirect methods [4]. Direct methods rely on a human or a

static analysis program to analyze system configuration, installation data, and application code to compute dependencies.
However, such methods are unsuitable in large and heterogeneous systems because they are system specific and do not provide
runtime dependency information. Indirect methods operate at runtime, and with respect to the manner they extract dependencies,
they may be intrusive, semi-intrusive, or non-intrusive to the operational system. An example of an intrusive technique is one that
relies on instrumentation such as ARM [3]. Dependencies are extracted by passing correlation IDs along with transaction flows,
through instrumentation of application and/or middleware code. eWLM [2] is an IBM workload manager that relies on ARM
instrumentation of the underlying components. Li [23] uses an instrumentation-based mechanism for global causality capture in
HP printing systems. PinPoint [6] is a problem determination framework, where coarse-grained client requests are tagged as they
travel through an enterprise system and discover the components. Tagging requires middleware-level instrumentation to pass the
request ID between components, similar to ARM.

A key problem with the above approaches is that they may be unusable in situations where the system components are from
multiple vendors or located in places where transaction correlation code cannot be inserted for security, licensing, or other
technical constraints. Consequently, unless all components adhere to standards, such as ARM, instrumentation based approaches
cannot be deployed as a full-fledged dependency generation solution. This motivates the requirement of semi or non-intrusive
approaches. An example of a semi-intrusive approach is Active Dependency Discovery [5], where perturbation and fault-injection
are used to infer dependencies.

In addition, Ensel [9] has also suggested the use of Neural Networks technology to automatically generate dynamic and cross-
machine dependency graphs while monitoring is active. The technique however only detects correlation, without providing any
evidence of causality. At the time of this writing, there are no details available regarding the training of such networks or to any
experimental or theoretical accuracy and precision analysis of the method. Steinder et.al. [18] have also used the concept of belief
networks for fault localization in network services built on complex communication topologies. The technique is specific to
network services and the bipartite graph is developed specifically for problem determination.

Our approach falls in the non-intrusive category. We rely on the fact that most vendors provide some built-in instrumentation
for monitoring statistics primarily for accounting or debugging purposes. These statistics provide at least process invocation or
activity counters for monitored resources, and sometimes, even periods of actual usage of a resource by a transaction. We apply
data mining techniques on the existing monitoring data to obtain probabilistic dependency information among resources used by
transactions. Since we are not dependent on the actual “ type” of the resource, the techniques may be easily generalized.

Hellerstein and Ma [11] have also applied data mining algorithms for discovering useful patterns in historical system event
data. They examine how data mining can be used to identify actionable patterns; in particular they present algorithms for
detecting three kinds of frequently occurring patterns in event data. Thoenen et al. [19], in the same context, have developed an
event management tool along with a design methodology that have been widely used. The core of this methodology is a graphic
representation of the roles and relationships between events.

A close match of our work is with Aguilera et.al. [20]. They use the message traces obtained from passive network sniffing to
construct dynamic probabilistic dependency graphs between black boxes. The nodes that do not appear as source or destination in
network messages or have addresses as part of encrypted payloads cannot be modeled. The work is complementary to ours
because we rely on the nodes’ monitoring data. We can also use nodes’ activity traces obtained by passive network sniffing if the
situation allows.

IV. KEY OBSERVATIONS

The objective of this project is to extract runtime dependencies between monitored components in a web-enabled e-business

system, more specifically, dependencies between transactions and database queries. We hypothesize that if a component is
dependent on another component for completing a transaction, (e.g., “ order”), then the periods when these components are
actively used by different instances of “ order” should be correlated. We define the activity period of a component as the period of
time the component is performing some task when a transaction instance uses the component, like the execution period of an SQL
query or a servlet. Thus, activity period is the difference between the start time when the component is invoked for a service and
the end time when it finishes the service. We uncover correlations between these execution periods in order to derive the
weighted dependencies between the components.

We work with two benchmark J2EE applications to investigate the efficacy of our techniques. The first one is a TPC-W
compliant online bookstore application [21], which implements 14 types of user transactions related to “ browse” or “ order”
categories. The other application, called Trade3 [24], captures the essence of an online stock brokerage application, where users
can login to check stock quotes, buy, or sell stocks, and manage their investment portfolio. In this paper we investigate how
effectively we can extract the user transaction to back-end database query dependencies in these applications using standard

system monitoring data. As we have mentioned previously, we require no application or middleware modification. Before
describing our dependency generation techniques, we state some key observations that motivate these techniques.

We conduct the following experiment with TPC-W bookstore and a workload of 50 simultaneous customers running over 3
hrs. For each TPC-W transaction we record the start and end times of the transactions and all the database queries that are active
when each of these transactions are active. We need not be concerned at this point about how these activity periods, i.e. start and
end times, of transactions and queries are obtained as monitoring data from the system. We want to find out if there is underlying
correlation between the activity periods of transactions and queries.

For each transaction type and query pair, we compute a ratio of the number of times the SQL query is concurrent with the
transaction to the total occurrences of the transaction. We assume the strictest form of concurrency, i.e. the entire activity period
of the query has to be nested within that of the transaction. In Figure 2, we show the plot of the ratio for the “ bestsellers”
transaction paired with all possible (41) database queries. It is interesting to observe that the ratio is much higher for antecedent-
dependent pairs, such as {bestsellers, query #1} and {bestsellers, query #10}, compared to others. We know from studying the
application source code that queries #1 and #10 are the only possible true dependencies for “ bestsellers” transaction type. Thus
true dependencies seem to have much higher ratio values compared to false or co-incidental dependencies that arise due to
multithreading. This observation is exploited by our first technique to compute weighted dependencies between components.

Fig. 2. Ratio of co-occurrence, i.e., the query is active when the transaction is active, for each database query paired with “bestsellers”

transaction type. True dependencies show much higher ratios compared to false dependencies.

The nesting relationship in activity periods, of antecedents within dependents, can be applied to model correlation in
synchronous transactions. However, component dependencies need not result from synchronous invocations only. For example,
in Trade3, the order submission and order fulfillment business processes are decoupled and operate through a message queue, as
shown in Figure 1. A user submits an order to buy or sell a stock and the transaction returns after submitting the order. The order
fulfillment process picks up the order from a message queue and executes it. Thus, the activity period of a “ buy” transaction has
apparently no nesting relationship with the database queries that fulfill the purchase order. Asynchronous transactions require a
different approach to derive the correlation between the activity periods of antecedent-dependent pairs. While in the case of
synchronous transactions, the search is bounded by the dependent’ s response time; it is required to assume a worst-case window
to search for an antecedent query of an asynchronous transaction.

We conduct a second experiment, with Trade3 this time, running a workload of 50 simultaneous customers for 1 hour to
investigate how transaction to query occurrences are related, given a fixed search window after each transaction occurrence. For
every transaction occurrence, we record its start time difference with the database queries that occurred within a worst-case
search window of 1.5 seconds. We call this difference in start times, transaction hop delay or DTS, where T is a transaction and S
is a potential antecedent query that occurred in the search window of T. Figure 3(a) illustrates continuous DTS samples made when
an S lies within the 1.5 seconds search window of some T. The frequency distribution of DTS for T=“ buy” and some database
queries, S=S1, S3, and S51, is shown in the graph in Figure 3(b). Each y-value shows the percentage of total samples that have the
corresponding start time offset on the x-axis.

Our prior knowledge about the application tells us that S1 and S2 are true dependencies and “ buy” is not dependent on S5.
Clearly, there is a difference in the DTS support distributions between “ buy” and these queries. Since occurrence of “ buy” is not
correlated with occurrence of S5, S5 occurs only a few times in the search window of a “ buy” transaction when called by other
concurrent transactions, but more importantly, the start time differences of S5 with “ buy” are randomly separated when they
coincidentally occur in the search window, leading to a uniform support distribution. On the other hand, S1 is consistently

1 Sn is query number #n.

executed soon after “ buy” starts, which explains the peak in the DTS support distribution for the {“ buy” , S1} pair. The distribution
for {“ buy” , S2} on the other hand shows multiple peaks (a multi-modal distribution) because conditional statements in the
implementation of “ buy” cause two different code paths to execute before invoking S2, leading to two major peaks.

(a)

(b)

Fig. 3. (a) DTS samples between transaction T and query S. (b) Distribution of start time offsets of transaction “buy” and three queries: S1,

S2, and S5.

We can conclude from the experiment that true dependencies have skewed DTS support distributions with one or more distinct
peaks, while non-existent dependencies or coincidental occurrences of queries in search windows of transactions have relatively
uniform distributions. We will exploit this difference of feature in DTS support distributions between true and non-existent or false
dependencies to attach dependency weights and order the dependencies in asynchronous transactions.

The final key observation is essentially a limitation in obtaining the monitoring data from some server platforms. Our
techniques depend on the assumption that activity data of system components can be obtained from the heterogeneous monitoring
infrastructure. However, most of the runtime monitoring infrastructures do not provide the detail activity traces of a component
with respect to each transaction flowing through the system since it involves tremendous overhead. Thus, for some server
platforms, activity data is in aggregate form. For example, the production-mode monitoring interface of the IBM WebSphere
Application Server [12] can be queried to get only the number of instances of a servlet or EJB that were active in a given period.
Therefore, sometimes, the dependency extraction techniques have to be resilient enough to work with aggregate data. Wherever
only aggregate monitoring data is available, our platform-specific programs poll the local server-monitoring interface with some
preset frequency to get progressive snapshots of the active components. Thus activity periods of components can be constructed
within the observation error t, where t is the polling interval. Higher t produces coarser measurements, adversely affecting the
precision of the statistical techniques, while lower t adversely affects system performance. Details about constructing approximate
activity periods from aggregate data are described in Gupta et.al. [25].

V. TECHNIQUES

A. Technique 1 for Synchronous Systems

Our preliminary investigation, described in Section 4, indicated that the nesting rule of the activity periods might be used to
compute dependencies in synchronous systems. Our first technique exploits this observation to assign edge weights to potential
antecedent-dependent pairs. When outgoing dependency edges of a node are sorted based on this weight, the true dependencies
are efficiently segregated from false dependencies.

The technique makes continuous observations of activity periods on the timeline. For example, Figure 4 shows a snapshot on
the timeline with activity periods of components T1, T2, S1, S2, S3, S4 components, where T1 and T2 are transactions and S1,
S2, S3, and S4 are database queries. The activity periods of transactions are measured by the application server transaction
monitoring and the query activity periods are measured by database monitoring.

Let us assume that both the monitoring interfaces are polled at the same frequency, hence the start and end times of the activity
periods have an observation error equal to the corresponding polling interval. If we know from static or domain knowledge that
transactions T1 and T2 are both synchronous, then we can apply the nesting rule. From the snapshot in Figure 5, applying the
rule, T1 is dependent on S1, S2 and S3. T2 is dependent on S3 and S4. The measurement and application of the nesting rule is a
continuous process. Thus any transaction T is potentially dependent on any query S if at least one activity period of S is nested
within any activity of T somewhere along the timeline. This leads to an un-weighted graph.

Since the system is multithreaded and transactions T1 and T2 may proceed simultaneously, it is quite possible that an
antecedent query S3 of T2 executes when T1 is also executing, leading the nesting rule to wrongly infer a non-existent
dependency between T1 and S3. We compute weights of each edge discovered by the nesting rule such that a higher weight is
attached to a dependency, which is more likely to be true. A graph traversal routine, which visits a node’ s edges in descending
order of their weight, is more likely to visit true dependencies before false dependencies.

Fig. 4. Nesting rule for counting dependencies. Solid green lines are counted as dependencies and dotted red lines are false dependencies

due to concurrency.

Our assumption, when attaching weights to discovered edges, is that false dependencies are a coincidence and occur less

frequently in the long run. The weight of an edge TÆS, also called the forward probability, is defined as Prob(S|T), i.e.
probability that the activity period of S is nested within the activity period of T. The probability is computed by the ratio
#{S,T}/#T, where #{S,T} is the count of S occurring within T found by the nesting rule and #T is the total occurrences of T on the
timeline. Forward probability is similar to the definition of “ support” in the support-confidence framework of Agarwal et.al. [1].

Our experience with TPC-W and Trade3 has shown that the antecedent-dependent relationships are often not symmetric. For
example, #T may be much higher than #{S2,T} because T calls several queries but S2 is called only by T. Thus, although TÆS2
is a true dependency, Prob(S2|T) is small. In order to reduce the problem with weights computed from only forward probabilities,
we also compute reverse probability of a TÆS dependency as Prob(T|S), i.e. probability that when S occurs, it is called from T.
The reverse probability assigns a higher weight to asymmetric true dependencies such as TÆS2.

We combine these two measures and come up with one single measure of the “ likelihood” of each dependency edge. We
conjecture that a dependency is more likely to be true if either of the measures is high, and an even stronger likelihood if both the
measures are high. This statement is captured by the combined weight computation formula:

Edge weight = max (forward prob, reverse prob) + forward prob * reverse prob
Note that this weight computation technique is not foolproof in separating true and false dependencies when both forward and
reverse probabilities are low for a true dependency.

B. Technique 2 for Asynchronous systems

Technique 1 may fail to capture all dependencies in case of asynchronous transactions, i.e. the callee’ s activity period is not
necessarily nested within the caller’ s. Our second technique exploits the second observation we made in Section 4 about the
difference in DTS support distributions for true and false dependencies. In general, DTS can be defined between any two
consistently defined trigger times of activity periods of components T and S. Start times are a more natural choice.

In asynchronous transactions, the search window for antecedents of T is independent of T’ s activity period. In the absence of
any good estimate of the temporal distance between a dependent and an antecedent, we pick an arbitrary worst-case search
window, w. If any query S starts execution within w time units of the start of a transaction T, then TÆS dependency is considered
and weighed by technique 2. If this dependency were actually false, the weight assigned by technique 2 to TÆS dependency edge
would put it relatively lower down the sorted list.

We observed in Section 4 that false dependencies should ideally have a random DTS support distribution and true dependencies
should be skewed. The core idea behind technique 2 is to assign a weight to a TÆS dependency, which quantifies how much its
DTS support distribution is “ different” from a uniform distribution resulting from random DTS samples. A higher weight signifies
an increased likelihood of the dependency being true. We next explain how the DTS distribution is built online and used to assign
edge weights.

B.1 Building the DTS distribution online

Assume there are n components 1, 2, 3,…, n, which are either user transactions or database queries. The start time information

for each component is obtained continuously from the monitoring interfaces of respective servers. The starting times are
inaccurate by maximum observation error t, which is equal to the polling interval of the monitoring interface. Assume, for
simplicity that t is the same for all monitoring interfaces.

Currently, we fix w as a multiple of t, w=mt, where m is provided as an input parameter. m, which may be fixed per transaction,
signifies the maximum number of bins in the DTS support distribution of a dependency pair. The following steps show how to
build the DTS support distribution for each T and S pair, where at least one of the activity periods of S starts within search window
w after the start time of an activity period of T.

Step 1: The time line is chopped into intervals of length t, called bins. When a component’ s activity period starts, it is put into the
nearest bin. A sliding window of only m bins, denoted as b0, …, bm-1, is needed, corresponding to the search window w.
Step 2: For each bin bj, we keep a count of the number of occurrences of component c, denoted as rc(j).
Step 3: For a pair of occurrences of components T (in bin j) and S (in bin j+k), separated by k bins, where k=0, 1, 2, …, m-1, the
support distribution of {T, S}, is updated as follows:

¦
�

�

�
km

j
STTS kjrjrkD

0

))(),(min()(

The DTS distribution is updated with new monitoring data at each polling interval. The search window w is a sliding window
over the trace of records.

B.2 Computing Edge Weights

If the hypothesis is that T does not depend on S, then the support distribution of DTS should be uniform, because the random

variable has equal probability to lie in any of the m bins. If the measured distribution is “ different” from the uniform distribution,
then the hypothesis is false and there exists a dependency between T and S. We use chi-square statistics to quantify the difference
between the distributions in terms of chi-square probability. The computed chi-square value (2�), given by the equation below,
is a measure of the “difference” between the hypothesized uniform distribution of m bins and the observed DTS distribution.

¦
�

�

�
1

0

22 /)/)((
m

k
TS NmmNkDF

where N is the sum of the m DTS(k) computed for the current search window. A higher 2� means more chance of dependency
because the observed distribution is “ more different” from the uniform distribution. The confidence to be placed on a chi-square
value, p (the chi-square probability), is a well-known function of chi-square and sample-size. p is used as the dependency
strength. Higher the sample-size, more confidence can be placed on a chi-square value. Dependencies of a resource are sorted in
descending order of strength p. Thus, heavily skewed distributions with very few samples are assigned low weight.

The chi-square statistic depends on how the data is binned, i.e., the size of search window w and the polling interval t. At
present, we fix w as a multiple of t in the absence of a more rigorous approach. When w is very large, it amounts to off-line
analysis of a large amount of recorded monitoring data. Smaller w leads to near real-time analysis. w should be large enough to at
least be able to capture the antecedents of each component in the search window and allow for enough number of bins to be

created (m=w/t). In our experiments we use w=15t. For higher precision, t should be small. However, from the monitoring system
perspective, a higher t is desirable to reduce overheads. t is thus limited by the monitoring system.

VI. SYSTEM IMPLEMENTATION

The techniques we described have been used to build a fully functional management system prototype for tiered IBM

WebSphere/DB2 e-business system. We have used the extracted dependency graph to implement root cause analysis applications
for response time related performance problems.
The system architecture is shown in Figure 5. The managed business system consists of an IBM HTTP server to handle URL
requests from remote clients, an IBM WebSphere Application Server (WASv5.0) [12] for application offload, and a backend
database IBM DB2 (v7.2) [14]. The WAS hosts a web container for servlets and JSPs, and an EJB container. TPC-W bookstore
and Trade3 applications are installed on WAS with their data on the backend database. An embedded JMS messaging server is
also installed on the WAS machine for asynchronous transactions. For example, the Trade3 order processing logic communicates
with the order fulfillment process through a queue hosted on the messaging server.

Fig. 5. Management system architecture: The management system has three tiers communicating using publish-subscribe messaging.
WAS and DB2 are on 2GHz Pentiums with 512 MB RAM. For all the experiments WAS and DB2 have been put on the same machine.

JMS server is always on the same machine as WAS.

The management system, also illustrated in Figure 5, has three tiers as well. The first tier consists of monitoring agents (see A1
and A2) specific to server platforms. These agents can interface with the monitoring APIs of the server platforms, extract
component activity data and send them to the next tier. The second tier contains a centralized engine where the mining techniques
are implemented. The engine computes the dependencies between transactions executed on the WAS and the SQL queries on the
backend DB2 from WAS and database monitoring data. The correlation engine stores the extracted dependency information into
a repository. A standardized object-oriented management data repository technology called Common Information Modeling
(CIM) [8], is used to store the dependency information. CIM’ s standardized and open data access interface allows anyone to write
a management application and use the continuously updated runtime dependency database, as shown in the top management
application tier.

We utilize the Performance Monitoring Infrastructure (PMI) [17] provided by IBM WAS to extract transaction activity
periods. Our monitoring agent program connects to the PMI interface and periodically polls the interface to get the total number
of accesses and the average response time for each component on WAS. This information is used to reconstruct the activity
periods of WAS components [25].

The DB2 monitoring data can be obtained by enabling tracing in the JDBC driver (in which case agent A2 is on the WAS
machine), or by using the Snapshot interface provided by DB2 [14]. The JDBC tracing method is database independent and
provides exact query activity periods w.r.t. the WAS box. The Snapshot API has to be polled similar to WAS PMI, it is database
dependent, and can be used when JDBC tracing is either not possible or monitoring needs to be closer to the database.
 If Snapshot API is used on DB2 and WAS is not on the same machine as DB2, then the activity information is aligned on a
common timeline using our implementation of a lightweight clock delay estimation algorithm.

VII. PERFORMANCE EVALUATION

In this section we evaluate the performance of the dependency extraction techniques on our testbed.

A. Definition of Accuracy and Precision

TPC-W bookstore has 54 true transaction-to-query dependencies out of a potential set of 644 dependencies (14 transactions and
46 SQLs). Trade3 has 99 true dependencies out of a potential 264 (11 transactions and 24 SQLs). We evaluate the results of our
experiments using two performance measures: accuracy and precision. Accuracy is defined as the percentage of the true
dependencies discovered. Precision is defined for a node based on depth first graph traversal order typically used by problem
determination applications [25]. In the sorted dependency list of a node having n outgoing edges, the edges are numbered
(starting from the first edge) from 1 to n with m (d n) being the last true dependency in the list. We assign a penalty of m-i to the
false dependency labeled i, where 1 d i d m-1. The maximum possible penalty, when there are only false dependencies before the
last true dependency, is therefore wtot := m(m-1)/2. Thus the total penalty due to false dependencies is ¦

�

�
Dependency false a is ,

)(:
imi

f imw .

We use the percentage node precision defined as)1(100
tot

f

w

w
� . Observe that this definition penalizes a false dependency more if it

occurs higher in the list. The precision value reported in the following experiments is the mean percentage node-precision over all
dependent nodes in the graph.

B. Obtaining Experiment Data

Before running experiments, we need to obtain the “ ground truth” graph containing the exact set of dependencies between
transactions and queries, so that we can compute accuracy and precision of the extracted graph.

For TPC-W bookstore, we instrumented the application source (similar to ARM [3]) in order to get the actual transaction to
query dependencies. Trade3 application source is too complex for quick instrumentation, especially in EJB mode with the EJB
container generating SQL queries. Therefore, we manually executed one transaction at a time through a browser and recorded the
queries that were invoked (through JDBC driver tracing). In the absence of concurrency, exact dependencies were obtained. A
transaction type was executed multiple times to make sure all code paths are executed. The union of the set of queries invoked
represents the true dependencies of the respective transaction type.

TPC-W workload generation is performed using the Remote Browser Emulation package [21]. The number of simultaneous
customers specifies the load in an experiment run. The think-time of requests is a uniform distribution with 7 seconds average for
all experiments. The transaction transition matrix used is 50% “ buy” and 50% “ browse” from TPC-W spec, to exercise all parts
of the application uniformly. For Trade3, we use the IBM Web Performance Toolkit (WPT) for load generation [26]. The
record tool is used to record 400 user clicks manually executed through a browser. The stress tool is then used to replay the
trace with varying number of simulated clients. The average think-time is 7 seconds with a uniform distribution and the browse to
buy ratio is 1:1.

In both TPC-W and Trade3 the query traces are obtained from the JDBC driver. In TPC-W the transaction traces are obtained
from PMI because a transaction type is handled by a unique servlet that can be monitored by PMI. In Trade3, all transactions are
handled by the same servlet. Thus transaction traces are obtained from HTTP server monitoring data, where the action
parameter of the logged URLs in access.log indicates the transaction type.

C. Accuracy and Precision

In all experiments, the extracted transaction to query graph stabilizes within 30 minutes, under constant workload. Thus, we run
each experiment for 1 hour and compare the extracted graph to the ground truth to compute the accuracy and precision of the
former. We take the average of several such experiments under same conditions to report a data point.

The most critical factor that impacts the performance of the techniques is the degree of concurrency and load on the system,
which directly corresponds to the number of simultaneous customers using the web application. If multiple transactions proceed
simultaneously, it is harder to separate true dependencies from false dependencies in bookstore using nesting relationship.
Similarly, under high load in asynchronous environments, as in Trade3, the queuing delays within the system tend to make the
DTS support distributions more unstable. Thus true dependencies may be mistaken for false because they may have a more
uniform support distribution (lowering accuracy) and false dependencies may exhibit some skew to be mistaken for true
dependencies (lowering precision).

Figure 6 shows the variation of accuracy and precision values of TPC-W and Trade 3 with increasing customer load and
concurrency. The number of customers is increased till a significant percentage of URL requests time out due to load. The WAS
machine can support up to 200 customers with TPC-W and 125 customers with Trade3.

All Trade3 dependencies are obtained using technique 2, while TPC-W dependencies are obtained using technique 1.
Accuracy is not a function of load. In fact a counting based approach, such as technique 1, is bound to give 100% accuracy
because at least one occurrence of the dependency will be caught by the nesting rule independent of concurrency. However,
technique 2 is not able to catch some dependencies, independent of load, because there are no consistent peaks in their DTS
support distributions at any load level. Accuracy improves from 5 to 25 customers in Trade3 because at very low loads the
experiment needs to run longer to get enough samples for convergence.

Fig. 6. Accuracy and precision with varying load for TPC-W/Technique1 and Trade3/Technique2 using 100ms polling interval of

transaction activity.

As expected, both techniques show a drop in precision at higher loads. The precision of technique 2 is 6-12% lower than

technique 1, which is expected because technique 2, in an attempt to generalize to asynchronous systems, removes the end-time
constraint and assumes only start time information. However, at low loads both techniques give above 90% accuracy and
precision, which means these techniques can be turned on when load levels are low and turned off when higher load is sensed.

We mentioned in Section 4 that many monitoring infrastructures provide only aggregate activity data through a polled
interface. In our next experiment we investigate the effect of the polling interval or observation error t on the accuracy and
precision of the techniques. Figure 7 shows the results.

In Figure 7 we only show Trade3/Technique2 measurements because TPC-W/Technique1 trends are similar [25]. The polling
rate significantly affects precision and not accuracy (hence accuracy is not shown). At lower polling rates, the precision falls in
both applications and using either technique. A higher polling rate is required to maintain high precision at the cost of higher
overheads, as discussed next. The polling rate has less significance at lower loads because the transaction rates are lower.

Fig. 7. Effect of PMI polling rate on precision in Trade3 using technique 2. Each plot is for a particular load level.

D. Scalability and Overheads

In both the techniques, the number of operations required to update the dependency graph for each dependent transaction
instance T present in an activity trace is O(n), where n is the number of instances of antecedents within the search window of T.
At the same load level but higher polling rate, n may increase. Higher load levels will also increase n because transaction density
increases. However, in all our experiments, we are able to update the dependency graph in real-time.

Ideally, dependency extraction should have no effect on the transaction data path beyond what is already introduced by an
existing monitoring infrastructure. However, the agents that collect monitoring data may have some additional overhead. We
perform end-to-end overhead measurements in terms of additional increase in average transaction response time when
dependency extraction is active with a polling agent on WAS vs. when no dependency extraction is performed and the WAS
agent is not active. In either case the basic WAS monitoring infrastructure and JDBC tracing are enabled. We vary the customer
load and polling rate among data points. We show the results for TPC-W/Technique1 only because the overheads are
independent of the application and extraction technique.

As shown in Figure 8, additional overhead of dependency extraction over and above normal monitoring overheads is mainly a
function of polling interval and does not appreciably change with load. Higher polling rates increase the overhead because the
agents run more frequently to query the monitoring interface, e.g. for agent A1 on WAS PMI, causing higher CPU consumption.
This affects the transaction data path performance.

Fig. 8. End-to-end overhead measurements with and without dependency extraction at different polling intervals of WAS PMI. Basic

monitoring infrastructure is anyway enabled all the time.

VIII. SUMMARY AND FUTURE WORK

In this paper, we applied data mining to extract resource dependencies from existing system monitoring data. The extracted

dependency graph is an essential element for performance and fault management tasks. We described two techniques, for
synchronous and asynchronous systems respectively, which perform with above 90% accuracy and precision under low loads on
our testbed. We also measured the “ non-intrusiveness” of our approach in terms of additional overhead (over and above existing
monitoring) on the transaction data path.

In the future, we plan to extend our transaction to query dependency graph and include more servers and system components,
such as JMS queues and DB server internals. This will also test our techniques in a more general distributed heterogeneous
setting. Currently, we are also exploring technologies, such as root cause analysis, that can use the extracted dependency graph
for better systems management.

REFERENCES
[1] R Agarwal, T.Imielinski, and A. Swami, “ Mining association rules between sets of items in large databases” , In Proc. of the ACM SIGMOD Conference

on Management of Data, pages 207-216, May 1993.
[2] J. Aman, C.K. Eilert, D. Emmes, P. Yocom, D. Dillenberger, “ Adaptive Algorithms for managing a distributed data processing workload” , IBM Systems

Journal, vol.36, no.2, 1997.
[3] “ Systems Management: Application Response Measurement” , OpenGroup Technical Standard C807, UK ISBN 1-85912-211-6 July 1998,

http://www.opengroup.org/products/publications/catalog/c807.htm.
[4] S. Bagchi, G. Kar, J.L. Hellerstein, “ Dependency Analysis in Distributed Systems using Fault Injection: Application to Problem Determination in an e-

commerce Environment” 12th International Workshop on Distributed Systems: Operations & Management 2001.

[5] A. Brown, G. Kar, and A. Keller, “ An Active Approach to Characterizing Dynamic Dependencies for Problem Determination in Distributed Environment” ,
IM 2001.

[6] M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “ Pinpoint: Problem Determination in Large, Dynamic Internet Services” , International
Conference on Dependable Systems and Networks (DSN’02), June 2002.

[7] J. Choi, M. Choi, and S. Lee, “ An Alarm Correlation and Fault Identification Scheme Based on OSI Managed Object Classes,” In 1999 IEEE International
Conference on Communications, Vancouver, BC, Canada, 1999, pp. 1547–51.

[8] CIM: http://www.dmtf.org/standards/standard_cim.php.
[9] Ensel, Christian, “ New Approach for Automated Generation of Service Dependency Models” Second Latin American Network Operation and

Management Symposium, LANOMS, 2001.
[10] B. Grushke, “ Integrated Event Management: Event Correlation using Dependency Graphs” , Proceedings of 9th IFIP/IEEE International Workshop on

Distributed Systems: Operations and Management (DSOM 98), October 1998.
[11] J.L. Hellerstein and S. Ma, “ Mining Event Data for Actionable Patterns” , The Computer Measurement Group, 2000
[12] IBM WebSphere Application Server, http://www-3.ibm.com/software/webservers/appserv/
[13] A.K. Iyengar, M.S. Squillante, L. Zhang, “ Analysis and Characterization of Large-Scale Web Server Access Patterns and Performance” , World Wide Web

vol. 2 #1, 2, June 1999.
[14] DB2: http://www-3.ibm.com/software/data/db2/
[15] S. Katker and M. Paterok, “ Fault Isolation and Event Correlation for Integrated Fault Management” , Integrated Network Management V, Chapman and

Hall, May 1997.
[16] A. Keller and G. Kar, “ Classification and Computation of Dependencies for Distributed Management” , 5th IEEE Symposium on Computers and

Communications (ISCC), July 2000.
[17] S. Rangaswamy, R. Willenborg, and W. Qiao, “ Writing a Performance Monitoring Tool Using WebSphere Application Server’ s Performance Monitoring

Infrastructure API” , In IBM WebSphere Developer Technical Journal, February 2002.
[18] M. Steinder and A.S. Sethi, “ Multi-layer Fault Localization using Probabilistic Inference in Bipartite Dependency Graphs” , Technical Report 2001-02, CIS

Dept., Univ. of Delaware, Feb 2001.
[19] D. Thoenen, J. Riosa, and J. L. Hellerstein, “ Event Relationship Networks: A Framework for Action Oriented Analysis for Event Management,”

Proceedings of the IFIP/IEEE International Symposium on Integrated Network Management, Seattle, WA, May 2001, IEEE, New York (2001), pp. 593-
606.

[20] M.K. Aguilera et.al., “ Performance Debugging for Distributed Systems of Black Boxes” , 19th ACM Symposium on Operating Systems Principles, October
2003.

[21] TPCW Wisconsin website, http://www.ece.wisc.edu/~pharm/tpcw.shtml.
[22] S. Yemini, S. Kliger et al., “ High Speed and Robust Event Correlation,” IEEE Communications Magazine, vol. 34, no. (5), pp. 82–90, May 1996.
[23] J. Li, “ Monitoring and Characterization of Component-Based Systems with Global Causality Capture” , 23rd International Conference on Distributed

Computing Systems, May 2003.
[24] Trade3: http://www3.ibm.com/software/webservers/appserv/benchmark3.html
M. Gupta, A. Neogi, M. Agarwal, G. Kar, “ Discovering Dynamic Dependencies in Enterprise Environments for Problem Determination” , Proceedings of 14th
IFIP/IEEE International Workshop on Distributed Systems:Operations and Management (DSOM 03), October 2003.
[25] Web Performance Toolkit: http://www.alphaworks.ibm.com/tech/wptools

Filename: RI04002.doc
Directory: C:\To Be Moved\Old_TP\Cyber
Template: C:\Documents and Settings\Administrator\Application

Data\Microsoft\Templates\Normal.dot
Title:
Subject: IEEE Transactions on Magnetics
Author: -
Keywords:
Comments:
Creation Date: 6/8/2004 3:19 PM
Change Number: 2
Last Saved On: 6/8/2004 3:19 PM
Last Saved By: IBM_User
Total Editing Time: 2 Minutes
Last Printed On: 6/8/2004 3:19 PM
As of Last Complete Printing
 Number of Pages: 13
 Number of Words: 7,447 (approx.)
 Number of Characters: 42,451 (approx.)

