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Abstract—The growing popularity of e-businesses has stimulated web sites to evolve from static content servers to complex tiered 
systems built from heterogeneous server platforms. A large amount of IT budget of e-businesses is spent nowadays on maintaining, 
troubleshooting, and optimizing these web sites. It has been shown that such system management activities may be simplified or 
automated to various extents if a dynamic dependency graph of the system were available. Currently, all known solutions to the 
dynamic dependency graph extraction problem are intrusive in nature, i.e. require unwelcome modifications at application or 
middleware level. In this paper, we develop non-intrusive techniques based on data mining, that process existing monitoring data 
generated by server platforms, to automatically extract the system component dependency graphs in tiered e-business platforms, 
without any additional application or system modification. 
 

Index Terms—Resource Management, Computer Network Management, Monitoring, Correlation 
 

I. INTRODUCTION 

 
eb-based platforms have nowadays become extremely complex distributed systems with a large number of heterogeneous 
interacting components. From the point of view of an end-user interacting with a web-based storefront, seemingly simple 

“order” or “category browse” transactions are performed. However, tiers of back-end servers involving multiple server boxes and 
system components within them decompose and execute the sub-transactions in a coordinated fashion. Figure 1 illustrates a 
typical web-based stock brokerage implemented using various types of server platforms and system components. 

 
Fig. 1. Complex component dependencies in a stock brokerage application on J2EE/Messaging/DB platforms. The successive steps of an 

order transaction are indicated. 
 

A typical complex path taken by an order transaction (e.g., “stock purchase”) shows how servers and system components 
invoke other servers and components to execute the transaction. Since server vendors, application developers, system integrators, 
and system maintainers are typically from different organizations, there is no single entity with absolute knowledge of how the 
heterogeneous components in the deployed system run in synergy to execute user transactions. Hence, managing the deployed 
system, debugging problems, and improving end-to-end performance become exceedingly complex. For example, if the “stock 
purchase” transaction performance degrades drastically, the job of the system administrator turns into a tedious effort of manually 
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reading and correlating multiple logs to solve an end-to-end problem. Thus the cost of tuning or debugging of multi-vendor 
systems consumes a significant portion of enterprise IT budgets. Knowledge of end-to-end system dependencies enables semi-
automated or even automated management applications, which use the information to perform cross-component analysis for 
pinpointing root causes of problems and end-to-end performance optimization [2, 7, 10, 15, 22]. 

The existing approaches for extracting and modeling system dependencies either fall short of enabling intelligent management 
applications or require significant system alteration, which prevents its wide spread use. An approach based on static analysis of 
application deployments, installation registries, or call graph analysis fails to capture the dynamic nature of dependencies in a 
complex system. In another approach, extra code is inserted into the application or middleware (called “ instrumentation” ) to 
dynamically trace transaction paths and extract dependency knowledge. Even though the latter captures the dynamic nature of 
dependencies, organizations are often apprehensive about introducing extra code outside the development process, thus stalling 
the ubiquitous use of this approach. Additionally, middleware source code is often not available for end-to-end instrumentation in 
multi-vendor systems. Instrumentation framework standards [3] have been created, however, they have not been widely adopted 
for end-to-end transaction tracing. 

This paper takes a data mining and statistical analysis approach to extract the dynamic component dependencies from existing 
system monitoring data. The central idea is to analyze the large amounts of usage and performance data already available from 
existing monitoring infrastructures on server platforms and extract dynamic dependencies between the monitored components, 
without introducing any extra instrumentation into the application or platform. The dynamic dependency information is stored 
and updated in a database accessible to dependency-based management applications. In this paper we propose two real-time 
dependency generation techniques and evaluate them in the context of well-known benchmark applications.  Our approach is 
equally suitable for offline techniques, which are not presented in this paper. 

 

II. PROBLEM STATEMENT 

 
An e-business system can be modeled as a directed graph of interacting servers and system components at multiple levels of 

granularity. At the macro level, a node in the graph may represent a whole server, such as a database server or an application 
server. At a micro-level, a node may represent a component within a server, such as a servlet within the web container of an 
application server or a query on a database server. For example, in Figure 1, the dependency of the application server AS on the 
database server DB is a macro dependency, while the dependency of the EJB OF on the SQL query S1 is a micro dependency. In 
either case, a directed edge in our dependency model represents a service invocation or a dependent-antecedent relationship. In 
addition, weights are also attached to edges, representing dependency strengths. Dependency strength indicates the likelihood of 
the dependency being true. It is inherent to techniques based on statistical approaches, such as ours, to extract dependencies that 
do not actually exist (false dependencies). The objective of computing dependency strengths is to sort the dependencies of a node 
based on their weights, and cluster the true dependencies of the node towards one end of the list. A management application can 
use depth-first traversal order or select top N edges of each node to avoid false dependencies [20, 25].  

We assume that the nodes of the system graph are known through mechanisms such as static analysis of code, deployment 
descriptors, and installation registries, platform-specific discovery techniques, or even manually ascertained domain knowledge. 
This is a valid assumption as we are monitoring the node performance and usage anyway. The aim of our project is to devise 
techniques so that existing monitoring data from these nodes may be used to infer the dynamic dependency relationships between 
them. It is assumed that each of the server platforms has a monitoring infrastructure in place. However, our techniques should not 
demand monitoring data beyond what is already available. Additionally, the level of detail in the system graph depends on the 
availability of detail monitoring data. For instance, if a component’s monitoring data is not available then that component cannot 
be represented as a node in the system graph.  

Among the various types of dependencies possible in an e-business system [16], we demonstrate our techniques specifically on 
user transaction to database query dependencies. The relevant monitoring data about user transactions, application server 
components, and database queries is used to find the dependency of individual user transactions on database queries. Transaction 
to query dependency captures micro dependencies between two system components: servlets handling transactions and queries 
handling back-end data access. It also captures macro dependencies because it exposes the dependency of the application server, 
hosting the servlet, on the database server, executing the query. Therefore, micro dependencies across servers automatically 
extract inter-box macro dependencies. The dependency extraction techniques discussed in this paper may be extended and/or can 
work with different techniques to extract other types of micro and macro level dependencies. 

Different fault management and performance tuning applications may use the extracted dependency graph. The techniques to 
use the dependency graph in management applications are beyond the scope of this paper. 

 
 
 



III. RELATED WORK 

 
A dependency graph of a system may be obtained using direct or indirect methods [4]. Direct methods rely on a human or a 

static analysis program to analyze system configuration, installation data, and application code to compute dependencies. 
However, such methods are unsuitable in large and heterogeneous systems because they are system specific and do not provide 
runtime dependency information. Indirect methods operate at runtime, and with respect to the manner they extract dependencies, 
they may be intrusive, semi-intrusive, or non-intrusive to the operational system. An example of an intrusive technique is one that 
relies on instrumentation such as ARM [3]. Dependencies are extracted by passing correlation IDs along with transaction flows, 
through instrumentation of application and/or middleware code. eWLM [2] is an IBM workload manager that relies on ARM 
instrumentation of the underlying components. Li [23] uses an instrumentation-based mechanism for global causality capture in 
HP printing systems. PinPoint [6] is a problem determination framework, where coarse-grained client requests are tagged as they 
travel through an enterprise system and discover the components. Tagging requires middleware-level instrumentation to pass the 
request ID between components, similar to ARM. 

A key problem with the above approaches is that they may be unusable in situations where the system components are from 
multiple vendors or located in places where transaction correlation code cannot be inserted for security, licensing, or other 
technical constraints. Consequently, unless all components adhere to standards, such as ARM, instrumentation based approaches 
cannot be deployed as a full-fledged dependency generation solution. This motivates the requirement of semi or non-intrusive 
approaches. An example of a semi-intrusive approach is Active Dependency Discovery [5], where perturbation and fault-injection 
are used to infer dependencies. 

In addition, Ensel [9] has also suggested the use of Neural Networks technology to automatically generate dynamic and cross-
machine dependency graphs while monitoring is active. The technique however only detects correlation, without providing any 
evidence of causality. At the time of this writing, there are no details available regarding the training of such networks or to any 
experimental or theoretical accuracy and precision analysis of the method. Steinder et.al. [18] have also used the concept of belief 
networks for fault localization in network services built on complex communication topologies. The technique is specific to 
network services and the bipartite graph is developed specifically for problem determination. 

Our approach falls in the non-intrusive category. We rely on the fact that most vendors provide some built-in instrumentation 
for monitoring statistics primarily for accounting or debugging purposes. These statistics provide at least process invocation or 
activity counters for monitored resources, and sometimes, even periods of actual usage of a resource by a transaction. We apply 
data mining techniques on the existing monitoring data to obtain probabilistic dependency information among resources used by 
transactions. Since we are not dependent on the actual “ type”  of the resource, the techniques may be easily generalized. 

Hellerstein and Ma [11] have also applied data mining algorithms for discovering useful patterns in historical system event 
data. They examine how data mining can be used to identify actionable patterns; in particular they present algorithms for 
detecting three kinds of frequently occurring patterns in event data. Thoenen et al. [19], in the same context, have developed an 
event management tool along with a design methodology that have been widely used. The core of this methodology is a graphic 
representation of the roles and relationships between events. 

A close match of our work is with Aguilera et.al. [20]. They use the message traces obtained from passive network sniffing to 
construct dynamic probabilistic dependency graphs between black boxes. The nodes that do not appear as source or destination in 
network messages or have addresses as part of encrypted payloads cannot be modeled. The work is complementary to ours 
because we rely on the nodes’ monitoring data. We can also use nodes’ activity traces obtained by passive network sniffing if the 
situation allows.  

 

IV. KEY OBSERVATIONS 

 
The objective of this project is to extract runtime dependencies between monitored components in a web-enabled e-business 

system, more specifically, dependencies between transactions and database queries. We hypothesize that if a component is 
dependent on another component for completing a transaction, (e.g., “ order” ), then the periods when these components are 
actively used by different instances of “ order”  should be correlated. We define the activity period of a component as the period of 
time the component is performing some task when a transaction instance uses the component, like the execution period of an SQL 
query or a servlet. Thus, activity period is the difference between the start time when the component is invoked for a service and 
the end time when it finishes the service. We uncover correlations between these execution periods in order to derive the 
weighted dependencies between the components. 

We work with two benchmark J2EE applications to investigate the efficacy of our techniques. The first one is a TPC-W 
compliant online bookstore application [21], which implements 14 types of user transactions related to “ browse”  or “ order”  
categories. The other application, called Trade3 [24], captures the essence of an online stock brokerage application, where users 
can login to check stock quotes, buy, or sell stocks, and manage their investment portfolio. In this paper we investigate how 
effectively we can extract the user transaction to back-end database query dependencies in these applications using standard 



system monitoring data. As we have mentioned previously, we require no application or middleware modification. Before 
describing our dependency generation techniques, we state some key observations that motivate these techniques. 

We conduct the following experiment with TPC-W bookstore and a workload of 50 simultaneous customers running over 3 
hrs. For each TPC-W transaction we record the start and end times of the transactions and all the database queries that are active 
when each of these transactions are active. We need not be concerned at this point about how these activity periods, i.e. start and 
end times, of transactions and queries are obtained as monitoring data from the system. We want to find out if there is underlying 
correlation between the activity periods of transactions and queries.  

For each transaction type and query pair, we compute a ratio of the number of times the SQL query is concurrent with the 
transaction to the total occurrences of the transaction. We assume the strictest form of concurrency, i.e. the entire activity period 
of the query has to be nested within that of the transaction. In Figure 2, we show the plot of the ratio for the “ bestsellers”  
transaction paired with all possible (41) database queries. It is interesting to observe that the ratio is much higher for antecedent-
dependent pairs, such as {bestsellers, query #1} and {bestsellers, query #10}, compared to others. We know from studying the 
application source code that queries #1 and #10 are the only possible true dependencies for “ bestsellers”  transaction type. Thus 
true dependencies seem to have much higher ratio values compared to false or co-incidental dependencies that arise due to 
multithreading. This observation is exploited by our first technique to compute weighted dependencies between components.  
 

 
Fig. 2. Ratio of co-occurrence, i.e., the query is active when the transaction is active, for each database query paired with “bestsellers” 

transaction type. True dependencies show much higher ratios compared to false dependencies. 
 

The nesting relationship in activity periods, of antecedents within dependents, can be applied to model correlation in 
synchronous transactions. However, component dependencies need not result from synchronous invocations only. For example, 
in Trade3, the order submission and order fulfillment business processes are decoupled and operate through a message queue, as 
shown in Figure 1. A user submits an order to buy or sell a stock and the transaction returns after submitting the order. The order 
fulfillment process picks up the order from a message queue and executes it. Thus, the activity period of a “ buy”  transaction has 
apparently no nesting relationship with the database queries that fulfill the purchase order. Asynchronous transactions require a 
different approach to derive the correlation between the activity periods of antecedent-dependent pairs. While in the case of 
synchronous transactions, the search is bounded by the dependent’ s response time; it is required to assume a worst-case window 
to search for an antecedent query of an asynchronous transaction.   

We conduct a second experiment, with Trade3 this time, running a workload of 50 simultaneous customers for 1 hour to 
investigate how transaction to query occurrences are related, given a fixed search window after each transaction occurrence. For 
every transaction occurrence, we record its start time difference with the database queries that occurred within a worst-case 
search window of 1.5 seconds. We call this difference in start times, transaction hop delay or DTS, where T is a transaction and S 
is a potential antecedent query that occurred in the search window of T. Figure 3(a) illustrates continuous DTS samples made when 
an S lies within the 1.5 seconds search window of some T. The frequency distribution of DTS for T=“ buy”  and some database 
queries, S=S1, S3, and S51, is shown in the graph in Figure 3(b). Each y-value shows the percentage of total samples that have the 
corresponding start time offset on the x-axis. 

Our prior knowledge about the application tells us that S1 and S2 are true dependencies and “ buy”  is not dependent on S5. 
Clearly, there is a difference in the DTS support distributions between “ buy”  and these queries. Since occurrence of “ buy”  is not 
correlated with occurrence of S5, S5 occurs only a few times in the search window of a “ buy”  transaction when called by other 
concurrent transactions, but more importantly, the start time differences of S5 with “ buy”  are randomly separated when they 
coincidentally occur in the search window, leading to a uniform support distribution. On the other hand, S1 is consistently 
 

1 Sn is query number #n. 



executed soon after “ buy”  starts, which explains the peak in the DTS support distribution for the {“ buy” , S1} pair. The distribution 
for {“ buy” , S2} on the other hand shows multiple peaks (a multi-modal distribution) because conditional statements in the 
implementation of “ buy”  cause two different code paths to execute before invoking S2, leading to two major peaks.  

 
 

 
(a) 

 
(b) 

 
Fig. 3. (a) DTS samples between transaction T and query S. (b) Distribution of start time offsets of transaction “buy” and three queries: S1, 

S2, and S5. 
 

We can conclude from the experiment that true dependencies have skewed DTS support distributions with one or more distinct 
peaks, while non-existent dependencies or coincidental occurrences of queries in search windows of transactions have relatively 
uniform distributions. We will exploit this difference of feature in DTS support distributions between true and non-existent or false 
dependencies to attach dependency weights and order the dependencies in asynchronous transactions.  

The final key observation is essentially a limitation in obtaining the monitoring data from some server platforms. Our 
techniques depend on the assumption that activity data of system components can be obtained from the heterogeneous monitoring 
infrastructure. However, most of the runtime monitoring infrastructures do not provide the detail activity traces of a component 
with respect to each transaction flowing through the system since it involves tremendous overhead. Thus, for some server 
platforms, activity data is in aggregate form. For example, the production-mode monitoring interface of the IBM WebSphere 
Application Server [12] can be queried to get only the number of instances of a servlet or EJB that were active in a given period. 
Therefore, sometimes, the dependency extraction techniques have to be resilient enough to work with aggregate data. Wherever 
only aggregate monitoring data is available, our platform-specific programs poll the local server-monitoring interface with some 
preset frequency to get progressive snapshots of the active components. Thus activity periods of components can be constructed 
within the observation error t, where t is the polling interval. Higher t produces coarser measurements, adversely affecting the 
precision of the statistical techniques, while lower t adversely affects system performance. Details about constructing approximate 
activity periods from aggregate data are described in Gupta et.al.  [25]. 

 



V. TECHNIQUES 

A. Technique 1 for Synchronous Systems 

Our preliminary investigation, described in Section 4, indicated that the nesting rule of the activity periods might be used to 
compute dependencies in synchronous systems. Our first technique exploits this observation to assign edge weights to potential 
antecedent-dependent pairs. When outgoing dependency edges of a node are sorted based on this weight, the true dependencies 
are efficiently segregated from false dependencies. 

The technique makes continuous observations of activity periods on the timeline. For example, Figure 4 shows a snapshot on 
the timeline with activity periods of components T1, T2, S1, S2, S3, S4 components, where T1 and T2 are transactions and S1, 
S2, S3, and S4 are database queries. The activity periods of transactions are measured by the application server transaction 
monitoring and the query activity periods are measured by database monitoring. 

Let us assume that both the monitoring interfaces are polled at the same frequency, hence the start and end times of the activity 
periods have an observation error equal to the corresponding polling interval.  If we know from static or domain knowledge that 
transactions T1 and T2 are both synchronous, then we can apply the nesting rule. From the snapshot in Figure 5, applying the 
rule, T1 is dependent on S1, S2 and S3. T2 is dependent on S3 and S4. The measurement and application of the nesting rule is a 
continuous process. Thus any transaction T is potentially dependent on any query S if at least one activity period of S is nested 
within any activity of T somewhere along the timeline. This leads to an un-weighted graph.   

Since the system is multithreaded and transactions T1 and T2 may proceed simultaneously, it is quite possible that an 
antecedent query S3 of T2 executes when T1 is also executing, leading the nesting rule to wrongly infer a non-existent 
dependency between T1 and S3. We compute weights of each edge discovered by the nesting rule such that a higher weight is 
attached to a dependency, which is more likely to be true. A graph traversal routine, which visits a node’ s edges in descending 
order of their weight, is more likely to visit true dependencies before false dependencies. 

 
Fig. 4. Nesting rule for counting dependencies. Solid green lines are counted as dependencies and dotted red lines are false dependencies 

due to concurrency. 
 
Our assumption, when attaching weights to discovered edges, is that false dependencies are a coincidence and occur less 

frequently in the long run. The weight of an edge TÆS, also called the forward probability, is defined as Prob(S|T), i.e. 
probability that the activity period of S is nested within the activity period of T. The probability is computed by the ratio 
#{S,T}/#T, where #{S,T} is the count of S occurring within T found by the nesting rule and #T is the total occurrences of T on the 
timeline. Forward probability is similar to the definition of “ support”  in the support-confidence framework of Agarwal et.al. [1]. 

Our experience with TPC-W and Trade3 has shown that the antecedent-dependent relationships are often not symmetric. For 
example, #T may be much higher than #{S2,T} because T calls several queries but S2 is called only by T. Thus, although TÆS2 
is a true dependency, Prob(S2|T) is small. In order to reduce the problem with weights computed from only forward probabilities, 
we also compute reverse probability of a TÆS dependency as Prob(T|S), i.e. probability that when S occurs, it is called from T. 
The reverse probability assigns a higher weight to asymmetric true dependencies such as TÆS2.  

We combine these two measures and come up with one single measure of the “ likelihood”  of each dependency edge. We 
conjecture that a dependency is more likely to be true if either of the measures is high, and an even stronger likelihood if both the 
measures are high. This statement is captured by the combined weight computation formula:  

Edge weight = max (forward prob, reverse prob) + forward prob * reverse prob 
Note that this weight computation technique is not foolproof in separating true and false dependencies when both forward and 
reverse probabilities are low for a true dependency. 
 
 
 



B. Technique 2 for Asynchronous systems 
 

Technique 1 may fail to capture all dependencies in case of asynchronous transactions, i.e. the callee’ s activity period is not 
necessarily nested within the caller’ s. Our second technique exploits the second observation we made in Section 4 about the 
difference in DTS support distributions for true and false dependencies. In general, DTS can be defined between any two 
consistently defined trigger times of activity periods of components T and S. Start times are a more natural choice. 

In asynchronous transactions, the search window for antecedents of T is independent of T’ s activity period. In the absence of 
any good estimate of the temporal distance between a dependent and an antecedent, we pick an arbitrary worst-case search 
window, w. If any query S starts execution within w time units of the start of a transaction T, then TÆS dependency is considered 
and weighed by technique 2. If this dependency were actually false, the weight assigned by technique 2 to TÆS dependency edge 
would put it relatively lower down the sorted list.  

We observed in Section 4 that false dependencies should ideally have a random DTS support distribution and true dependencies 
should be skewed. The core idea behind technique 2 is to assign a weight to a TÆS dependency, which quantifies how much its 
DTS support distribution is “ different”  from a uniform distribution resulting from random DTS samples. A higher weight signifies 
an increased likelihood of the dependency being true. We next explain how the DTS distribution is built online and used to assign 
edge weights.  
 

B.1 Building the DTS distribution online 
 
Assume there are n components 1, 2, 3,…, n, which are either user transactions or database queries. The start time information 

for each component is obtained continuously from the monitoring interfaces of respective servers. The starting times are 
inaccurate by maximum observation error t, which is equal to the polling interval of the monitoring interface. Assume, for 
simplicity that t is the same for all monitoring interfaces.  

Currently, we fix w as a multiple of t, w=mt, where m is provided as an input parameter. m, which may be fixed per transaction, 
signifies the maximum number of bins in the DTS support distribution of a dependency pair. The following steps show how to 
build the DTS support distribution for each T and S pair, where at least one of the activity periods of S starts within search window 
w after the start time of an activity period of T. 
 
Step 1: The time line is chopped into intervals of length t, called bins. When a component’ s activity period starts, it is put into the 
nearest bin. A sliding window of only m bins, denoted as b0, …, bm-1, is needed, corresponding to the search window w.  
Step 2: For each bin bj, we keep a count of the number of occurrences of component c, denoted as rc(j). 
Step 3: For a pair of occurrences of components T (in bin j) and S (in bin j+k), separated by k bins, where k=0, 1, 2, …, m-1, the 
support distribution of {T, S}, is updated as follows:  
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The DTS distribution is updated with new monitoring data at each polling interval. The search window w is a sliding window 
over the trace of records. 

 
B.2 Computing Edge Weights 
 
If the hypothesis is that T does not depend on S, then the support distribution of DTS should be uniform, because the random 

variable has equal probability to lie in any of the m bins. If the measured distribution is “ different”  from the uniform distribution, 
then the hypothesis is false and there exists a dependency between T and S. We use chi-square statistics to quantify the difference 
between the distributions in terms of chi-square probability. The computed chi-square value ( 2� ), given by the equation below, 
is a measure of the “difference” between the hypothesized uniform distribution of m bins and the observed DTS distribution.  
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where N is the sum of the m DTS(k) computed for the current search window. A higher 2�  means more chance of dependency 
because the observed distribution is “ more different”  from the uniform distribution. The confidence to be placed on a chi-square 
value, p (the chi-square probability), is a well-known function of chi-square and sample-size. p is used as the dependency 
strength. Higher the sample-size, more confidence can be placed on a chi-square value. Dependencies of a resource are sorted in 
descending order of strength p. Thus, heavily skewed distributions with very few samples are assigned low weight. 

The chi-square statistic depends on how the data is binned, i.e., the size of search window w and the polling interval t. At 
present, we fix w as a multiple of t in the absence of a more rigorous approach. When w is very large, it amounts to off-line 
analysis of a large amount of recorded monitoring data. Smaller w leads to near real-time analysis. w should be large enough to at 
least be able to capture the antecedents of each component in the search window and allow for enough number of bins to be 



created (m=w/t). In our experiments we use w=15t. For higher precision, t should be small. However, from the monitoring system 
perspective, a higher t is desirable to reduce overheads. t is thus limited by the monitoring system.  

 

VI. SYSTEM IMPLEMENTATION 

 
The techniques we described have been used to build a fully functional management system prototype for tiered IBM 

WebSphere/DB2 e-business system. We have used the extracted dependency graph to implement root cause analysis applications 
for response time related performance problems.  
The system architecture is shown in Figure 5. The managed business system consists of an IBM HTTP server to handle URL 
requests from remote clients, an IBM WebSphere Application Server (WASv5.0) [12] for application offload, and a backend 
database IBM DB2 (v7.2) [14]. The WAS hosts a web container for servlets and JSPs, and an EJB container. TPC-W bookstore 
and Trade3 applications are installed on WAS with their data on the backend database. An embedded JMS messaging server is 
also installed on the WAS machine for asynchronous transactions. For example, the Trade3 order processing logic communicates 
with the order fulfillment process through a queue hosted on the messaging server. 

 
Fig. 5. Management system architecture: The management system has three tiers communicating using publish-subscribe messaging. 
WAS and DB2 are on 2GHz Pentiums with 512 MB RAM. For all the experiments WAS and DB2 have been put on the same machine. 

JMS server is always on the same machine as WAS. 
 

The management system, also illustrated in Figure 5, has three tiers as well. The first tier consists of monitoring agents (see A1 
and A2) specific to server platforms. These agents can interface with the monitoring APIs of the server platforms, extract 
component activity data and send them to the next tier. The second tier contains a centralized engine where the mining techniques 
are implemented. The engine computes the dependencies between transactions executed on the WAS and the SQL queries on the 
backend DB2 from WAS and database monitoring data. The correlation engine stores the extracted dependency information into 
a repository. A standardized object-oriented management data repository technology called Common Information Modeling 
(CIM) [8], is used to store the dependency information. CIM’ s standardized and open data access interface allows anyone to write 
a management application and use the continuously updated runtime dependency database, as shown in the top management 
application tier.  

We utilize the Performance Monitoring Infrastructure (PMI) [17] provided by IBM WAS to extract transaction activity 
periods. Our monitoring agent program connects to the PMI interface and periodically polls the interface to get the total number 
of accesses and the average response time for each component on WAS. This information is used to reconstruct the activity 
periods of WAS components [25]. 

The DB2 monitoring data can be obtained by enabling tracing in the JDBC driver (in which case agent A2 is on the WAS 
machine), or by using the Snapshot interface provided by DB2 [14]. The JDBC tracing method is database independent and 
provides exact query activity periods w.r.t. the WAS box. The Snapshot API has to be polled similar to WAS PMI, it is database 
dependent, and can be used when JDBC tracing is either not possible or monitoring needs to be closer to the database. 
  If Snapshot API is used on DB2 and WAS is not on the same machine as DB2, then the activity information is aligned on a 
common timeline using our implementation of a lightweight clock delay estimation algorithm. 
 



VII. PERFORMANCE EVALUATION 

 
In this section we evaluate the performance of the dependency extraction techniques on our testbed.  

A. Definition of Accuracy and Precision 
 

TPC-W bookstore has 54 true transaction-to-query dependencies out of a potential set of 644 dependencies (14 transactions and 
46 SQLs). Trade3 has 99 true dependencies out of a potential 264 (11 transactions and 24 SQLs). We evaluate the results of our 
experiments using two performance measures: accuracy and precision. Accuracy is defined as the percentage of the true 
dependencies discovered. Precision is defined for a node based on depth first graph traversal order typically used by problem 
determination applications [25]. In the sorted dependency list of a node having n outgoing edges, the edges are numbered 
(starting from the first edge) from 1 to n with m (d n) being the last true dependency in the list. We assign a penalty of m-i to the 
false dependency labeled i, where 1 d i d m-1. The maximum possible penalty, when there are only false dependencies before the 
last true dependency, is therefore wtot := m(m-1)/2. Thus the total penalty due to false dependencies is ¦

�

� 
Dependency false a is  ,

)(:
imi

f imw . 

We use the percentage node precision defined as )1( 100
tot

f

w

w
� . Observe that this definition penalizes a false dependency more if it 

occurs higher in the list. The precision value reported in the following experiments is the mean percentage node-precision over all 
dependent nodes in the graph.  
 

B. Obtaining Experiment Data 
 

Before running experiments, we need to obtain the “ ground truth”  graph containing the exact set of dependencies between 
transactions and queries, so that we can compute accuracy and precision of the extracted graph. 

For TPC-W bookstore, we instrumented the application source (similar to ARM [3]) in order to get the actual transaction to 
query dependencies. Trade3 application source is too complex for quick instrumentation, especially in EJB mode with the EJB 
container generating SQL queries. Therefore, we manually executed one transaction at a time through a browser and recorded the 
queries that were invoked (through JDBC driver tracing). In the absence of concurrency, exact dependencies were obtained. A 
transaction type was executed multiple times to make sure all code paths are executed. The union of the set of queries invoked 
represents the true dependencies of the respective transaction type. 

TPC-W workload generation is performed using the Remote Browser Emulation package [21]. The number of simultaneous 
customers specifies the load in an experiment run. The think-time of requests is a uniform distribution with 7 seconds average for 
all experiments. The transaction transition matrix used is 50% “ buy”  and 50% “ browse”  from TPC-W spec, to exercise all parts 
of the application uniformly. For Trade3, we use the IBM Web Performance Toolkit (WPT) for load generation [26]. The 
record tool is used to record 400 user clicks manually executed through a browser. The stress tool is then used to replay the 
trace with varying number of simulated clients. The average think-time is 7 seconds with a uniform distribution and the browse to 
buy ratio is 1:1. 

In both TPC-W and Trade3 the query traces are obtained from the JDBC driver. In TPC-W the transaction traces are obtained 
from PMI because a transaction type is handled by a unique servlet that can be monitored by PMI. In Trade3, all transactions are 
handled by the same servlet. Thus transaction traces are obtained from HTTP server monitoring data, where the action 
parameter of the logged URLs in access.log indicates the transaction type.  

 

C. Accuracy and Precision 
 

In all experiments, the extracted transaction to query graph stabilizes within 30 minutes, under constant workload. Thus, we run 
each experiment for 1 hour and compare the extracted graph to the ground truth to compute the accuracy and precision of the 
former. We take the average of several such experiments under same conditions to report a data point. 

The most critical factor that impacts the performance of the techniques is the degree of concurrency and load on the system, 
which directly corresponds to the number of simultaneous customers using the web application. If multiple transactions proceed 
simultaneously, it is harder to separate true dependencies from false dependencies in bookstore using nesting relationship. 
Similarly, under high load in asynchronous environments, as in Trade3, the queuing delays within the system tend to make the 
DTS support distributions more unstable. Thus true dependencies may be mistaken for false because they may have a more 
uniform support distribution (lowering accuracy) and false dependencies may exhibit some skew to be mistaken for true 
dependencies (lowering precision).  



Figure 6 shows the variation of accuracy and precision values of TPC-W and Trade 3 with increasing customer load and 
concurrency. The number of customers is increased till a significant percentage of URL requests time out due to load. The WAS 
machine can support up to 200 customers with TPC-W and 125 customers with Trade3. 

All Trade3 dependencies are obtained using technique 2, while TPC-W dependencies are obtained using technique 1. 
Accuracy is not a function of load. In fact a counting based approach, such as technique 1, is bound to give 100% accuracy 
because at least one occurrence of the dependency will be caught by the nesting rule independent of concurrency. However, 
technique 2 is not able to catch some dependencies, independent of load, because there are no consistent peaks in their DTS 
support distributions at any load level. Accuracy improves from 5 to 25 customers in Trade3 because at very low loads the 
experiment needs to run longer to get enough samples for convergence. 

 
Fig. 6. Accuracy and precision with varying load for TPC-W/Technique1 and Trade3/Technique2 using 100ms polling interval of 

transaction activity. 
 
As expected, both techniques show a drop in precision at higher loads. The precision of technique 2 is 6-12% lower than 

technique 1, which is expected because technique 2, in an attempt to generalize to asynchronous systems, removes the end-time 
constraint and assumes only start time information. However, at low loads both techniques give above 90% accuracy and 
precision, which means these techniques can be turned on when load levels are low and turned off when higher load is sensed. 

We mentioned in Section 4 that many monitoring infrastructures provide only aggregate activity data through a polled 
interface. In our next experiment we investigate the effect of the polling interval or observation error t on the accuracy and 
precision of the techniques. Figure 7 shows the results. 

In Figure 7 we only show Trade3/Technique2 measurements because TPC-W/Technique1 trends are similar [25]. The polling 
rate significantly affects precision and not accuracy (hence accuracy is not shown). At lower polling rates, the precision falls in 
both applications and using either technique. A higher polling rate is required to maintain high precision at the cost of higher 
overheads, as discussed next. The polling rate has less significance at lower loads because the transaction rates are lower.  
 

 
Fig. 7. Effect of PMI polling rate on precision in Trade3 using technique 2. Each plot is for a particular load level. 

 



D. Scalability and Overheads 
 

In both the techniques, the number of operations required to update the dependency graph for each dependent transaction 
instance T present in an activity trace is O(n), where n is the number of  instances of antecedents within the search window of T. 
At the same load level but higher polling rate, n may increase. Higher load levels will also increase n because transaction density 
increases. However, in all our experiments, we are able to update the dependency graph in real-time. 

Ideally, dependency extraction should have no effect on the transaction data path beyond what is already introduced by an 
existing monitoring infrastructure. However, the agents that collect monitoring data may have some additional overhead. We 
perform end-to-end overhead measurements in terms of additional increase in average transaction response time when 
dependency extraction is active with a polling agent on WAS vs. when no dependency extraction is performed and the WAS 
agent is not active. In either case the basic WAS monitoring infrastructure and JDBC tracing are enabled. We vary the customer 
load and polling rate among data points. We show the results for TPC-W/Technique1 only because the overheads are 
independent of the application and extraction technique.  

As shown in Figure 8, additional overhead of dependency extraction over and above normal monitoring overheads is mainly a 
function of polling interval and does not appreciably change with load. Higher polling rates increase the overhead because the 
agents run more frequently to query the monitoring interface, e.g. for agent A1 on WAS PMI, causing higher CPU consumption. 
This affects the transaction data path performance.  
 

 
Fig. 8. End-to-end overhead measurements with and without dependency extraction at different polling intervals of WAS PMI. Basic 

monitoring infrastructure is anyway enabled all the time. 

VIII. SUMMARY AND FUTURE WORK 

 
In this paper, we applied data mining to extract resource dependencies from existing system monitoring data. The extracted 

dependency graph is an essential element for performance and fault management tasks. We described two techniques, for 
synchronous and asynchronous systems respectively, which perform with above 90% accuracy and precision under low loads on 
our testbed. We also measured the “ non-intrusiveness”  of our approach in terms of additional overhead (over and above existing 
monitoring) on the transaction data path. 

In the future, we plan to extend our transaction to query dependency graph and include more servers and system components, 
such as JMS queues and DB server internals. This will also test our techniques in a more general distributed heterogeneous 
setting. Currently, we are also exploring technologies, such as root cause analysis, that can use the extracted dependency graph 
for better systems management. 
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