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ABSTRACT
The proliferationof pervasive devices call for the enablementof
ubiquitousaccessvia multiple modalities.Sincethecapabilitiesof
pervasive devicesdiffer vastly, device-specificapplicationadapta-
tion becomesa necessity. We addresstheproblemof speechappli-
cationadaptationby dialog call-flow reorganisationfor pervasive
deviceswith differentmemoryconstraints.Oneusabilitycriterion
we useis minimisingthenumberof dialogsin thecall-flow. Given
anatomicdialogcall-flow

�
andmemorysize � , we presentop-

timal algorithms,RESEQUENCE andBALANCETREE, thatoutput
thecorrespondingreorganisedversion

���
, suchthatthenumberof

questions(prompts)is minimum. In somecases,an ‘ideal’ refer-
encecall-flow thattakesinto accountvarioususabilitycriteriamay
be available. In suchcases,minimising thenumberof changesto
this ideal call-flow to accommodatememory-constraineddevices
forms another‘usability criterion’. We presenttwo algorithms,
MASQ andMATREE thatminimisethedistancefrom theidealcall-
flow.

Thefollowing observationformsthecornerstoneof all thealgo-
rithms in this paper:Two grammars��� and ��� comprisingof 	 ���
	
and 	 ����	 elementsrespectively canbemergedinto asinglegrammar
���� ��� � � having 	 � � 	���	 � � 	 elementsfor thesequentialcase,and
������������ having 	 ����	���	 ����	 elementsfor thetreecase.

Weintroducetheconceptof an ������� � -characterisationof acall-
flow, definedasthesetof pairs !#"��%$��&�'$)(�	&*,+.-0/ , where�1$ is the
minimumnumberof questionsrequiredfor memorysize � $ . Each
call-flow hasa unique,device-independentsignaturein its �����&� � -
characterisation, whichprovidesameansfor comparingcall-flows
from anadaptationstandpoint.

Keywords
SpeechProcessing,PervasiveComputing,Algorithms,DialogCall-
Flows,Call-Flow Optimisation,ConversationalInterfaceUsability

1. INTRODUCTION
ConsiderauseraccessingtheTheatre-near-youinteractivevoice

response(IVR) systemto buy movie tickets from his car phone
while driving to the theatre.As a resultof his mobility, he might
getdisconnectedfrom theIVR systemat any time duringthecon-
versation. Ideally, he would prefer that the particularcall-flow is
availableonhisdevice,andaccessto aremoteserverhappensonly
whenrequired.

The proliferation of pervasive devices call for the enablement
of ubiquitousaccessvia multiple modalities. Usersare increas-
ingly accessingremoteapplicationson the internetandrunninga
plethoraof local applicationsfrom their mobiledevices. Fromthe
users’pointof view, they would likemoreandmoreapplicationsto
beaccessiblevia variousinterfaces(voice,multimodal)from their
pervasive devices.

Pervasive devicesaredifferent from desktopcomputersin two
fundamentalways.One,they occurin varioussizeswith vastlydif-
fering capabilities,andby virtue of mobility, arenot alwayscon-
nectedto the network. This combinationgivesrise to somevery
interestingchallengesandpossibilities.

Fromtheapplicationprovider’s point of view, hehasto provide
alternativesfor variousdevicessincethereis noone-size-fits-allso-
lution. Thismeansthathehasto deploy andmaintainvariousincar-
nationsof softwarethatessentiallyprovidesthesamefunctionality.
An applicationauthorencounterstheM timesN problem,namely,
anapplicationcomposedon M pagesto beaccessedvia N devices
requiresM x N authoringsteps,andresultsin M x N presentation
pagesto bemaintained.

To addresstheapplicationdeveloper’s nightmare,many applica-
tion programmingtoolshave beenproposedandareavailable[1].
Suchtoolsallow theprogrammerto developa genericapplication
which is automaticallyadaptedby thetool for variousdevicespro-
files. However thesetechniquesaddressproblemsof applications
in thevisualdomain.

Speechinterfacesprovide a naturalform of interactionanden-
ableaccessthroughdeviceswith limited text/visualcapabilities.A
significant improvementin speechrecognition[7, 8] and speech
synthesis[2] technologiesover the last decademakes speechin-
terfaceto applicationspracticable.Conversationalsystemslever-
agedomainknowledgeto improve on therecognitionaccuracy. In
a conversationalsystem,a dialog call-flow definesa sequenceof
questionsandpossibleanswersfor theinteraction.

We are interestedin adaptingvoice applicationsautomatically
for variousdevices. Traditionally, voice applicationsrun on a re-
moteserver, andseveralclient-server interactionstake placein the
courseof a dialog.A client-server modelincurstransmissioncosts
and is proneto transmissionerrors. This may result in degraded
speechrecognitionaccuracy. Theuseof compressionfor reducing
transmissioncostsintroducesothercomplications[9]. In orderto
circumvent suchproblems,speechrecognitionat the client offers
a viablealternative. For supportingclient-sidespeechrecognition
on a variety of deviceswith limited resources, device-specificap-
plicationadaptationis essential.However, whereconnectivity is an
issue,it maybemoreconvenientto downloadtheentireapplication
to thedevice andprocessspeechlocally. This requiresdesigninga
device-specificvoice application. A similar demandcomesfrom
embeddedapplicationswhere devices with different capabilities
processinputslocally. We addresstheproblemof device-sensitive
dialogcall-flow1 adaptation.Thebasicideais to manipulategram-
marsof dialogcall-flows in orderto satisfymemoryconstraints.

Devicesvary considerablyin termsof their memorycapacities:
A smartcardtypically hasmemoryof the order of a few tensof
KBs. Cell phoneshave few MBs of memoryandPDAs havemem-
ories in tensof MBs. Thereis a lot of variation in the memory
requirementsof dialogstoo. Within acall-flow, anaddressidentifi-
cationdialogcouldrequirea vocabulary of a few thousandwords,
whereasa credit card numberdialog needsa vocabulary size of
aboutten words. In somecases,it may benecessaryto breakthe
dialog into a few small subdialogsto accommodatea device limi-
tation,andin others,a few small subdialogsmay be combinedas
long asthedialogcanbehandledefficiently.

1.1 RelatedWork
Litman and Pan [4] discussabout improving performanceby

adaptingdialog behavior to individual users.They claim that the
performanceof the systemcanbe improved if the usercaneffec-
tively adaptthe system’s behavior, so that the systemwill usethe
dialogstrategiesthatbestmatchtheuser’s needsat any point in a
dialog. Jameson[3] discussesthe cognitive aspectsof conversa-
tionalapplicationstakingtheavailableusertime into consideration
andtheextentto which theusercanconcentrateon theinteraction.
Dialog call-flow adaptationof a conversationalsystemfor improv-
ing thespeechrecognitionaccuracy hasbeenaddressedin [5]. This
work doesnot take thedevice characteristicsinto consideration.

Levin et al. [6] formalisetheproblemof dialogdesignasanop-
timisationproblemwith an objective function reflectingdifferent
dialogdimensionsrelevantfor a givenapplication.They show that
any dialog systemcan be formally describedas a sequentialde-
cision processin termsof its statespace,actionset,andstrategy.

1or simply call-flow



With additionalassumptionsaboutthestatetransitionprobabilities
andcostassignment,a dialogsystemcanbemappedto a Markov
decisionprocess(MDP). They presenta variety of datadriven al-
gorithmsfor finding the optimal strategy basedon reinforcement
learning.

1.2 Our Contribution
Weinvestigatetheproblemof dialogcall-flow reorganisationfor

pervasive deviceswith memorysizerestrictions.The crux of the
reorganisationlies in alteringthememoryrequirementsof theun-
derlyinggrammar. We achieve this by merging atomic2 grammars
while minimisingthenumberof questions,thusaccountingfor one
aspectof usability. Usageof thenumberof questionsasausability
criterion is consistentwith theefforts for evaluatingspokendialog
systems[12]. Wepresentdeterministicalgorithms,RESEQUENCE
andBALANCETREE, which provide optimal solutionsfor the two
typesof call-flows,sequentialandtree-typerespectively.

In somecases,an ‘ideal’ referencecall-flow that takesinto ac-
count varioususability criteria may be available. In suchcases,
minimising the numberof changesto this ideal call-flow to ac-
commodatememory-constraineddevices forms another‘usability
criterion’. We presentalgorithms,MASQ andMATREE that min-
imally alter a given dialog call-flow to accommodateit within a
givenmemoryconstraint.

A derivative of our approachis a device-independentcharacter-
isationof dialog call-flows. This signaturecanbe constructedby
finding thesetof � memory, minimumnumberof questions� corre-
spondingto eachcall-flow.

A direct implicationof our work is therealisationof automated
adaptationtoolsfor buildingspeechapplicationsfor memory-constrained
pervasive devices.

Section2 presentstheassumptionsandthesettingin which the
problem is addressed.Section3 presentsthe details of RESE-
QUENCE, BALANCETREE, MASQ andMATREE includingan � m,q� -
characterisationof anexamplecall-flow. Section4 connectsthe-
ory to practiceby examiningactualdevice capabilitiesandcurrent
recognitiontechnologyin thedomain.Section5 concludesthepa-
perby discussingfuturework andchallenges.

2. PROBLEM DESCRIPTION
In this sectionwe provide a brief descriptionof a speechrecog-

nition systemandthememoryrequiredin differentportionsof this
system.Wealsodescribetheissuesthatareinvolvedin designof a
dialogcall-flow.

2.1 Memory Requirementsof SpeechRecog-
nition Systems

An AutomaticSpeechRecognition(ASR)systemconsistsof two
main components,an acousticmodelanda languagemodel. The
acousticmodel of an ASR systemmodelshow a given word or
“phone” is pronounced.Theacousticmodelof a statisticalspeech
recognitionsystemgeneratesthelikelihoodof theinputspeechsig-
nalwith ahypothesisedsentence.HiddenMarkov ModelandNeu-
ral Network are the most commontechniquesfor acousticmod-
elling of ASRsystems.Thelanguagemodelprovidesaprobabilistic
estimateof thelikelihoodof thesentencehypothesis.Thememory
requirementof an acousticmodel is dependenton the sizeof the
acousticmodel and the codestorage. Similarly, the memoryre-
quiredby a languagemodelis dependenton thecodestorageand
on thevocabulary sizeof the modelon which it hasbeentrained.

2An atomicgrammaris onewhich cannotbe split into subgram-
mars.

The mostcommontechniqueusedfor this purposeis an N-gram
languagemodel. An N-gram model provides the probability of
-%2�3 wordin asequence,givenahistoryof -5476 words.In conver-
sationalsystems,alanguagemodelis replacedby aspeechrecogni-
tion grammar. Thisgrammarrepresentsthepossiblephrase/sentence
thatareexpectedaspossiblespeechinput. In suchcases,theper-
plexity3 andsizeof grammardeterminethememoryrequiredby a
languagemodel.In subsequentsections,we will discussthemem-
ory requiredby anASR with varyinggrammarsizes.For thedis-
cussionsto follow, weassumein thispaperthattheacousticmodel
is thesamefor all grammarsizes.Hencethevariationin memory
requirementof anASR is duethevaryinggrammarsize.

2.2 Dialog Call-flows
Herewe presentvariouspracticalconsiderationsinvolvedin de-

signing a call-flow, and our correspondingsimplifying assump-
tions. A call-flow consistsof a question-answersequence.Ques-
tions are presentedto a userby playing the correspondingaudio
on a device. Answerscapturedfrom the userareprocessedby a
speechrecognitionsystem.Wefocuson thespeechrecognitionre-
quirementsof a call-flow.
Call-Flow Types: Call-flow applicationscanbe divided into two
types,sequentialand tree-type. In a sequentialcall-flow, thenext
questionaskedis independentof theanswerto thecurrentquestion.
An exampleis a purchaseapplicationthat asksfor the receiver’s
addressandthesender’s creditcardinformation.Eachnodein this
typeof call-flow actsasa input block. A tree-typecall-flow is one
whereauserresponsedeterminesthenext question.Eachquestion
in this call-flow actsas a decisionblock, which resultsin a tree
topology.

We presentmechanismsthatalter thememoryrequirementof a
call-flow by changingtheunderlyinggrammars.In practice,such
reorganisationof dialogsin a call-flow needsto take into account
several factors,someof which arepresentedbelow alongwith our
assumptionsandarguments:

1. Natural language grammars: Therecan be caseswherein
a grammarhasfewer choices,but its representationin nat-
ural languagesentencesincreasesthe perplexity. In sucha
case,the memoryrequiredto processthe grammarwould
not be dependenton the numberof choices,but on its per-
plexity. For example,therecanbetwo grammars,� � and � �
thathave 4 choices,! red,blue, green,white/ and ! one, two,
three, four/ respectively. However, theperplexity of ��� can
be higher as this grammarallows choicessuchas ! I want8

color9 , Give me
8

color9 , Let mehave
8

color9 , Please
giveme

8
color9:/ asitspossiblenaturallanguagesentences.

Here
8

color9 canbe substitutedby any of the ! red, blue,
green,white/ . However � � is a 4-digit grammarwhich has
no naturallanguageconstructs.Thereforethe perplexity of
��� will bemuchhigherthanthatof ��� , eventhoughbothhave
equalnumberof choices.Suchnaturallanguagerepresenta-
tionsareheavily dependenton thedesignof a grammarand
areboundto have implementationaldependencies.Assump-
tion 1: Theperplexity is independentof thenaturallanguage
representationof thegrammar.

2. Multiple grammars: Therecould be applicationswhich re-
quirethepresenceof morethanonegrammarat a particular
time. For example,thereareapplicationsthat usea global
grammarto handlesomeof thecommonuserresponseslike

3Theperplexity 	 �;	 of a grammarg is equalto thenumberof con-
structsin thelanguagethatsatisfythegrammar.



colour ?

object ?

g1 = black | gray | white         (3 choices)

g = black shirt | gray shirt | white shirt

     | black pant | gray pant | white pant

     | black shoes | gray shoes | white shoes

One prompt, requirement: 3x4 = 12Two prompts, requirement: max(3,4)

g2 = shirt | pant | shoes | tie   (4 choices) colour &
object ?

     | black tie | gray tie | white tie   ( 3x4 = 12 choices )

Figure1: Effect of merging/splitting a sequentialgrammar.

“go back”, “repeat” and “exit”. Call-flow optimisationin
presenceof multiple grammarswould requirea detailedun-
derstandingof eachcall-flow separately.
Assumption2: Thecall-flow hasonly a singlegrammarac-
tive at aparticulartime.

3. Usability Constraints: Usability constraintscanbe of sev-
eraltypes.They couldbetime-based“the total runningtime
of theapplicationshouldnot exceedT”, comfort-based“no
morethan< questionsshouldbeasked”, “this particularques-
tion shouldnot be split or merged with anotherquestion”.
Note from the above examplesthat theseconstraintsmight
apply globally (entire call-flow) or locally (single dialog).
We restrict ourselves to consideringthe maximumnumber
of questionsasa constraint.
Assumption3: All constraintscanbeinterpretedin termsof
allowing/enforcingmerge/splitoperationson a subsequence
of questions.

4. BestPractices:As a resultof optimisationfor differentde-
vices,thesameapplicationmayhaveadifferentcall-flow se-
quencewhenaccessedondifferentdevices.This maynotbe
consideredasa userfriendly interactionmodel,eventhough
it usesthedevice resourcesoptimally.
Argument4: Thefactthatalterationmakesit possibleto run
anapplicationona device is of paramountimportance.

Findinganoptimalsolutionwhile consideringtheabovespeech-
specificnuancesis a challengingtask. Our assumptionsadmit a
preciseformulationfor gaining further insightsinto the problem.
Although,thealgorithmsin this paperdo not take into accountthe
above factorsexplicitly, we claim that all assumptions(except 2
above) canbetranslatedinto reorganisationconstraintsthatcanbe
input to our algorithms.

In the next section,we presentthe reorganisationconstraints
usedby thealgorithmspresentedin section3.

2.3 ReorganisationConstraints
For reducingthe numberof questionsto improve usability and

make optimumuseof memoryresourceswemergethedialogsand
theircorrespondinggrammars.However in mostof thereallife ap-
plications,grammarmergesacrosscertainsubdialogsmay not be
possibledueto variousconstraints.Theseconstraintscanbedueto
usability, datadependency, server roundtrip or userimposed.We
call theseconstraintsasreorganisationalconstraints.While merg-
ing dialogs,thereorganisationalalgorithmswill haveto work under
theprovidedreorganizationconstraints.

Reorganisationalconstraintsrepresenthard constraintsof two
types. One,that insist that a certaingroupof dialogsbe merged,

andtwo, thatforbid a certaingroupof dialogsfrom beingmerged.
The first setmust-merge is a setof setsof dialogswhich mustbe
merged. The secondsetmust-separate is a setof setsof dialogs
which must not be merged. The former constraintsare handled
by a preprocessingstepwhereall thosedialogsthat “have to” be
merged,aremerged. The new dialog call-flow generatedby this
merging of dialogsis thenconsideredasanatomiccall-flow. The
reorganisationalgorithmsmentionedin section 3 areappliedover
thiscall-flow. Type2 constraintsareincorporatedin thealgorithm,
aswill be explainedin the next section. The call-flow of an ex-
ampleflight reservationapplicationis shown in 9. We will itemize
thevariousreorganisationalconstraintsandtheir significancewith
respectto this call-flow.

= Datadependency/validation ConstraintsDeparturecitycan
notbemergedwith arrival city. Thegrammarfor arrival city
dependson thedeparturecity. On gettingtheuserresponse
for departurecity, theapplicationgoesbackto theserverand
fetchesthelist of valid arrival cities.Sincethecall flow needs
to fetchdatafrom theserver basedon userresponsefor de-
parturecity, thedeparturecity subdialogcannot bemerged
with thenext subdialog.

= Usability constraintsNotmore thanfour atomicsubdialogs
can be merged To maintainthe usability of the dialog sys-
tem,thecall-flow shouldnotaskfor morethanfour piecesof
informationfrom theuserin onego.

= UserconstraintsDateshouldnot mergedwith airline
Flight numbershouldnotbemergedwith credit card type
If merged, day and monthshouldalwaysoccur together If
merged,expiry monthandyearshouldoccurtogether.

Theremaybeconstraintsdueto severalotherreasonsin a real-
life applicationbut they canbe modeledasreorganisationalcon-
straints. Thus the systemcan take care of practical limitations
on merging of dialogswhile doingthereorganization.Thesecon-
straintshelpin specifyingtheusabilityrequirementsin theprocess
of reorganisingthecall-flow.

2.3.1 Implications
Theeffectof reorganizationconstraintsis thatthey forbid certain

subdialogsto mergeeven if they satisfythememoryrequirement.
Theseconstraintsprovide a mechanismto representthe usability
factorsin thealgorithmspresentedin section 3. We alsoshow an
exampleof how thereorganisationgraphof acall-flow changesdue
to theseconstraints.



3. REORGANISATION ALGORITHMS
Weassumethattheinputcall-flow comprisesof atomicdialogs4

only. Suchacall-flow is calledanatomiccall-flow. An atomiccall-
flow hastheleastmemoryrequirementsandalsothemostnumber
of dialogs.

We presenttwo setsof algorithms.Thefirst setconsistsof two
algorithmsRESEQUENCE andBALANCETREE thatminimisethe
numberof dialogs(questions/prompts)givenanatomicdialogcall-
flow with respectto a givenmemoryconstraintandoperateon se-
quentialandtree-typecall-flows respectively. We use > for a se-
quentialcall-flow, ? for tree-type,and

�
includesboth types. @

denotesthememoryconstraint.
Apart from thememoryconstraint,all algorithmsaccommodate

reorganisationconstraints. Reorganisationconstraintsrepresent
hard constraintsthatcannotbeviolated(Pleasereferto section2.3
for details.)

Thesecondsetof algorithmsMASQ andMATREE minimallyal-
ter the given referencecall-flow (sequentialandtree-typerespec-
tively) to accommodatethegivenmemoryconstraint.A reference
call-flow

�BA
may be the resultof a myriad of considerationsand

servesasa guidelinefor reorganisation.
�BA

representsa guideline
andthereforeis asoftconstraint.It neednotbeatomic.For thisset
of algorithms,we naturallyrequirea notionof distanceto quantify
minimal alteration.

3.1 Minimising the Number of Dialogs
In this section,we presentRESEQUENCE andBALANCETREE

to minimisethenumberof dialogsin a call-flow while respecting
thememoryandreorganisationalconstraints.

3.1.1 SequentialCall-flows
Thefollowing observationformstheoperatinghandlefor RESE-

QUENCE in handlingsequentialcall-flows.

Observation1. Two grammars� � and � � comprisingof 	 � � 	 and
	 ����	 elementsrespectively can be merged into a single grammar
���� �C� � � having 	 � � 	���	 � � 	 elements.Figure1 showsanexample,
whereas a result of a merge operationthe memoryrequirement
goesupto12 from 4.

A call-flow canberepresentedby asequence>D�E!�6 �'F1F'FG�IHJ/ of
atomicdialogsrepresentingtheorderin which thedialogsarepre-
sented.Thegoal is to mergeasmany questionsaspossiblewhile
respectingthememoryconstraint.Thememoryrequirement�D"K� $ (
for each��$ is known. We constructa graph L asfollows. Thever-
tex set M7"NLO( containspreciselytheelementsof > . For eachvertex
* in L , we addedge "�*&�)P�( if Q#R S1T $ �D"K� S (0UV@W"�* 8 PXUYHZ( ,
i.e, the memoryrequirementof the mergedgrammars� $ through
� R canbe accommodatedwithin memoryconstraint@ . As a re-
sultof this, L becomesadirectedacyclic graph.Notethat L could
bedisconnected.Now, we needto find theshortestpath(or setof
paths)from 6 to H , by finding theshortestpathfor eachconnected
componentof L . Eachedgein theshortestpath(setof paths)de-
notethesubsequenceof questionsbeingmerged. Figure2 details
RESEQUENCE. Thesetsof dialogsin must-merge aremergedasa
preprocessingstep,anddialogsmergedasa resultof this stepare
consideredatomic. > � denotestheoutputcall-flow with themin-
imum numberof dialogs. > � may containmerged(non-atomic)
dialogs.

Figure3 shows anexampleof a graphwith 7 nodes.Theedges
of this graphrepresentthe possiblemergesin the call-flow. The
4dialogs which cannot be split into subdialogs- analogousto
atomicgrammars

1. input: atomicsequentialcall-flow [Z\ .
2. output:sequentialcall-flow [ � with theminimumnumberof ques-

tions.
3. Constructagraph ]_^�`Zacbed asfollows:

(a) Mergeall must-merge dialogsin [Z\ to obtain [
�
\ .

(b) Representall dialogsby verticeslabelled f 1,...,ng
(c) for eachvertex hc^NikjlhJjlmnd

i. for eachvertex o�^ph;jqoOjlmnd
ii. if ^Kr R s T $�t ^pu s dqjwvxd && fyhcaKo�g{z| must-separate,

add ^}hcaKo d to ] .

4. Find theshortest(setof) path(s)asfollows:

(a) start= 1. [ ��~��
.

(b) while ( �������1��j0m )

i. [ ��~ [ �{� f1�������1�)g
�
ii. selectt �
� R suchthat ^��I���
�1��a�o d | bO�

iii. start= j+1.

5. output [ � .

Figure2: RESEQUENCE – An optimal shortestpath algorithm.

1 2 3 4 5 6 7

Figure3: An exampledir ectedacyclic graph of a call-flow.

dottededgesidentify the nodesthatarenot allowed to merge due
to reorganisationconstraints. The shortestpath for the graph is
indicatedby thick edgesin Figure3.

CLAIM 1. RESEQUENCE is correct and runs in ��"�H � ( time.
Thegraphconstructionphasetakes ��"�H � ( timeto check everypair
of verticesfor addingedges. Theshortestpath phasetakes ��"�HZ(
time, sinceat each vertex thelargestadjacentvertex canbechosen
greedilyto yield theshortestpath.

3.1.2 Tree-typeCall-flows
The following observation forms theoperatinghandlefor BAL-

ANCETREE to processtree-typecall-flows.

Observation2. Two grammars��� and��� comprisingof 	 ���'	 and
	 � � 	 elementsrespectively can be merged into a single grammar
������C�0��� having 	 ����	I�5	 ����	 elements.Figure4 shows anexam-
ple. As a resultof the merge operation,the memoryrequirement
goesup from 2 to 4 ( �C6 to �C61� ).

Definition1. The degree of a vertex is the numberof its chil-
dren.

Definition2. A 2-subtreeof a vertex � is a treeof depth2 with
� astheroot.

Definition3. A 2-subtreeof a vertex � is balancedif all the
leavesof the 2-subtreeareat distance2 from � , i.e., no child of
� is childless.A 2-subtreeof avertex � is 1-balancedif at leastone
child of � is childless.A 2-subtreeis eitherbalancedor 1-balanced.

Definition4. Let the maximumdegreeof any vertex in a call-
flow treebedenotedby � . Thevacancyof a vertex � is definedas
( � - degree(v)).



Figure4: Effect of merging/splitting a tr ee-typegrammar.

1. input: tree-typecall-flow � .
2. output: tree-typecall-flow � � with theminimum numberof ques-

tions.
3. initialise � � ~ � ; booleanchanged= false.
4. do

(a) Find the longestpathin � � andidentify its lowest2-subtree� � .
(b) if (shorten̂}� � a)� � d ) changed= true.

5. while (changed)
6. output � � .

7. shorten̂�� � a)�N�'d
(a) while ^}� � z~ “r oot” d
(b) do

i. if (fold ^p� � d ) returntrue.
ii. else�N� ~.� ���'�ym���^p�N�'d .

(c) done
(d) returnfalse.

8. fold ^}� � d
(a) if ((vacancy ^}� � d�� degree(children̂}� � d )) returntrue.
(b) returnfalse.

Figure5: BALANCETREE: An optimal shortesttr eealgorithm.

Definition5. The fold operationis definedon theroot � of a 2-
subtreeandallows � to directly inherit all its grandchildrenif the
vacancy"���(��� $ degree(child $ "���(&( . As a resultof this operation,
all thegrandchildrenof � becomeits own children,andtheoriginal
childrenareremoved.Thisoperationreducestheheightof thetree
by 1.

CLAIM 2. Thegreedyapplicationof thefoldingoperationcan-
not leadto suboptimalsolutions.

PROOF OUTLINE. A greedyapplicationof the folding opera-
tion on theroot of a 2-subtree� canleadto two possibilities.One,
inspiteof this fold(v)operation,in asubsequentstepfold(parent(v))
is still possible,or two, that it is not. In the first case,sinceboth
fold operationsmustbedoneoptimality is preserved. In thesecond
case,it turnsout that only oneof fold(v) or fold(parent(v))could
havebeenapplied,eitherof whichwould leadto aheightreduction
of 1.

Claim2 suggeststhatabottom-upapproachonthelongestpaths
in thetreeone2-subtreeat a timemight providea solution.This is
theessenceof BALANCETREE(figure 5). At eachstep,thelongest
pathis found,its heightreducedby 1, if a fold operationis possible
at any vertex from the grandparentof the leaf in the longestpath
to the root. Notice that shortentraversesup the treetill it is able
to reducetheheightby 1. After this reduction,the longestpathis
calculatedagainandthesameprocedureis applied.If at any time,
thelongestpathcannotbereduced,thealgorithmterminates.Since
thelongestpathis foundgloballyateachstep,andsincetheheight
of thetreeis reducedonly 1 at a time,we obtaina maximalheight
reduction.It follows that:

CLAIM 3. BALANCETREE is correct and runs in ��"�H � ( time
where H is thenumberof verticesin thetree. Sincethefold opera-
tion is thedominatingcost,considerthedegenerate caseof a tree
of depth H with onevertex at each level (a path). Supposetheroot
hasvacancyH , theneach vertex foldsinto its parentbottom-upone
at a time. Thisaccountsfor ��"�H � ( fold operations.Each vertex is
examineda maximumof 2 timesfor each level it visits,asa child
for its degreeandasa parent for its vacancyamountingto a cost
of �
H � .



3.1.3 Hybrid Call-flows
In general,hybridcall-flowsmaycontainsequentialpartsaswell

astree-typeparts.ThealgorithmsRESEQUENCE andBALANCE-
TREE canoperateontheseparatepartsindependentlyof eachother.
Withoutlossof generality, wecanexecuteRESEQUENCE followed
by BALANCETREE. Notethatasaresultof RESEQUENCE, ashort-
enedsequencemaycontaina vertex � with increasedmemoryre-
quirementsandhencea reductionin vacancy(parent(v)). This re-
ductionin vacancy may prevent � from folding into its parent. If
RESEQUENCE would not have affected � , then BALANCETREE
would have folded � into its parent. Either caseleadsto a height
reductionof 1. This argumentis similar to theoneusedin claim 2
above.

3.2 Minimally Alter ed Call-flows
Minimising thenumberof questionsneednotbethesinglemoti-

vatingfactorfor reorganisation.Thedesignof a call-flow (without
memoryrestrictions)typically takesinto accountnumerousfactors
including speechrecognitionaccuracy andnatural languagepro-
cessingamongothers. Using sucha call-flow asa referenceand
adheringto specifiedreorganisationalconstraints,it is possibleto
designalgorithmsthat minimally alter the referencecall-flow to
meetmemoryrestrictions.

This sectionpresentstheminimally alteredcounterpartsMASQ
andMATREE of RESEQUENCE andBALANCETREE respectively.

For quantifyingminimality, it is necessaryto definea notionof
distance.We introducea simplenotion of distancebasedon two
operations:merge andsplit. A singleapplicationof eitherof these
operationson a call-flow

�
(whethersequentialor tree-type)in-

creasesthedistanceof themodifiedversionfrom
�

by 1. Let
� \

denotetheatomicversionof
�

. A split operationon a non-atomic
call-flow

�
can be simulatedby replacinga dialog in

�
by its

atomiccomponentsfrom
� \ . Observe thatno split operationwas

requiredfor minimising the numberof dialogsin a call-flow be-
causethe initial call-flow wasatomic. In this case,however, since
thereferencecall-flow neednot beatomic,we needto supportthe
split operation.

3.2.1 MASQ

We have the following question:Givena sequential,not neces-
sarily atomicreferencecall-flow > A anda memoryconstraint@ ,
find acall-flow > A� , aminimallyalteredversionof > A thatsatisfies
thememoryconstraint@ .

MASQ is simple.If any dialogcanbeaccommodatedwithin @ ,
it remainsunchanged.For the others,it hasto be split. Figure6
detailsthealgorithm.

CLAIM 4. MASQis correctandefficient.

PROOF OUTLINE. Thebasicideais to split only thosedialogs
that usememorylarger than @ . Further, the smallestnumberof
splits areensuredby the split routine. Eachcall to split involves
a linear searchof the correspondingatomiccomponentset. This
greedymethodyieldsanoptimalsolution.

3.2.2 MATREE
MATREE works on tree-typecall-flows. In this case,the ’split-

ting’ of avertex is likean’unfolding’ (similar to thefold operation
beinganalogousto the merge). Figure7 describesthe algorithm.
Note that theunfoldingoperationmay causethe depthof the tree
to increase,but thememoryrequirementat thevertex decreases.

CLAIM 5. MATREE producesa treewith theminimumnumber
of alterations.

1. input: atomicsequentialcall-flow [Z\ .
2. input: referencesequentialcall-flow [ A .
3. output:minimally alteredsequentialcall-flow [ A� .
4. Constructagraph ]_^�`Zacbed asfollows:

(a) Representall dialogsby verticeslabelled f 1,...,ng
(b) Let [ A� ~ [ A .
(c) for eachvertex hc^NikjlhJjlmnd
(d) if ^ t ^pu $ d��0vxd , then � ��� hK��^}hca)[ A� d .

5. output [ A� .

6. split ^p��aI[ A� d
(a) Find the set of atomiccomponents��� ~ fy� � ay������a�����g of �

from [Z\ .

(b) If  ¡� $ | � � a t ^p� $ d���v , output“IMPOSSIBLE” andexit.

(c) Otherwise,

i. h ~ i'� �;� � ~D�
.

ii. Find thelargest ¢ suchthat r S$¡t ^p� R d�j£v .
iii. h ~ ^p¢k¤�iyd&��Z��� ~ �Z��� � fyh¦¥q¢§g
�

if ^p¢©¨.ª�d , repeatpreviousstep.

(d) Replace� by �;��� .

Figure 6: MASQ: Minimally Alter ed SequentialCall-Flow Al-
gorithm.

matree"K?G\���? A (
1. input: atomictree-typecall-flow ��\ .
2. input: referencetree-typecall-flow � A .
3. output:minimally alteredtree-typecall-flow � A� .
4. initialise � A� ~ � A ;
5. do

(a) Traverse� A� in preorderandif ^ t ^�� A� d���vxd , then

i. unfold̂}� A� d ;
ii. matreê���\�a�� A� d ;

6. output � A� .

7. unfold̂}��d
(a) Identify thecorrespondingsubtree� � of � in ��\ .
(b) Traverse� � bottom-upandfor eachvertex � � | � � ,� �� = shorten̂�� � a)�¡d .
(c) Replace� with � �� .

Figure7: MATREE: Minimally Alter edTreeAlgorithm.
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Figure 8: Sample �����c��� -characterisationplots for Cflex and
Cshort. Due to reorganisationalconstraints,Cshorthasa mini-
mum of two questions.Cflex is more flexible in that it can sup-
port deviceswith lower memories.

PROOF OUTLINE. Every vertex in ? A� canbecreatedby merg-
ing several verticesin ? \ . Therefore,eachvertex in ? A�

corre-
spondsto a uniquesubtreein ?G\ . The unfoldingoperationiden-
tifies this subtree,andattemptsto shortenit asmuchaspossible
to minimisealteration.Sinceeachvertex correspondsto a unique
subtree,theorderof replacingthesubtreesis inconsequential.

3.3 Call-flow Characterisation
Givena call-flow

�
, theabove algorithmscanberun with vari-

ousvaluesof memorysize � $ ��6«U5*,U5H andtheir corresponding
minimum numberof questionsobtained. This givesus a device-
independentcharacterisationof

�
. Sincethese ���%$��&�'$)� -pairsare

uniquefor agivencall-flow, they canbethoughtof asa reorganisa-
tional signature of thecall-flow. We call this signaturean �����&� � -
characterisationof

�
. From a practicalperspective, the �����&� � -

characterisationof
�

provides a meansfor comparingtwo call-
flows thatessentially(semantically)performthesametask,thatof
doing airline reservation, for example,andtracesthe memoryre-
quirementsof each.This is importantin call-flow design.

The �����c��� -characterisationfunctionof
�

is typically a decay-
ing function – a compositionof lines with negative, decreasing
slopes.Considera sequentialcall-flow > of H dialogswhereeach
dialog * requiresmemory �%$ , a single questionrequires Q:¬ � �.$ .
This is the largestvalue of the function. The smallestvalue is
�q§®£�.$ . When all the numbersare the same,this function re-
ducesto anexponentialfunctionon � � . In themostgeneralcase,
this function is similar to the falling factorial function,exceptthat
thethenumbersarenotnecessarilyconsecutive,sotheslopeof the
curve continuesto decreasefasterthanthe falling factorial func-
tion. In the caseof tree-typecall-flows, since the numbersget
addedratherthanmultiplied, theeffect is lesspronounced.

Figure 8 shows a comparisonof the ���£��� � -characteristicsof
two imaginarycall-flows, Cflex andCshort. Note that both call-
flows are semanticallyequivalent in that they perform the same
task(for example,airline reservation)but weredesignedwith dif-
ferentassumptionsandconsiderationsin mind. Thechoiceof the
call-flow could dependon a numberof factors. For example, if

Table1: Memory requirementfor the differ ent grammar sizes
Grammarsize Memoryrequired(bytes)

1 47916
116 47960
280 48080
370 48052
960 48412
1440 48644
3000 53356
4000 59712
5000 60532
7000 61888
9600 62860
10670 63060

thedesignerexpectsclient devices(with lessthan90 bytes)to ac-
cesstheapplication,Cflex is preferable.However, if thedesigneris
concernedthathedoesnotwantto askmorethan3 questions,then
Cshortaccomplishesthiswith lessermemory.

4. EXPERIMENTS
In thissection,wepresenttheexperimentsconductedto validate

our assumptionsandto evaluatetheperformanceof our proposed
algorithms,RESEQUENCE andMASQ, with a samplesequential
call-flow. In section4.1, we illustrate the effect of the size of a
grammaron thememoryrequirementsof aspeechrecognitionsys-
tem. We usea large vocabulary continuousspeechsystemto de-
codea singleutterancewith varying grammarsize. We show the
outcomeof running RESEQUENCE on a samplesequentialcall-
flow of an Airline Reservation systemin section4.2. Section4.3
describesthe implicationsof the RESEQUENCE algorithm with
distancemeasureon thesamesamplecall-flow.

4.1 Effect of Grammar Sizeon Memory Re-
quir ement

We useda large vocabulary Englishspeechrecognitionsystem
to decodea speechutterance.We used24-dimensionalMel Fre-
quency CepstralCoefficients(MFCC) asthe featurevectorof the
speechdata.To capturethedynamicsof thespeechsignal,4 previ-
ousand4 succeedingMFCC vectorswereconcatenatedto thecur-
rent MFCC vectorandLinear DiscriminantAnalysis (LDA) was
appliedon the concatenatedvector to reducethe dimensionality
of the featurevector from 24 � 9 to 60 dimensions. The vectors
so obtainedwereusedto modelthe outputdistribution of Hidden
Markov Models (HMM). The acousticmodelswere trainedover
34 hoursof speechdatacollectedfrom more than 170 speakers.
Theutterancecomprisedof a singleword. Thegrammarsusedfor
decodingwereisolatedwords. The sizeof grammarthereforere-
flectsthevocabulary of therecognitionsystem.Thedecodingwas
performedfor thesameutterance,but with varyinggrammarsizes.
Table1 shows thememoryrequiredto performdecodingona AIX
machinewith 2GB of RAM. Theexperimentswereperformedon
on a 450MHz Quadprocessor. Thesenumbersmayvary depend-
ing uponthe particularimplementationof the speechrecognition
systemandthehardware,but with anincreasein grammarsize,an
increasein memoryrequirementis expected.

Thememoryrequirementof 47916bytesfor decodingtheutter-
anceagainstaonewordgrammarcanbeinterpretedasthefootprint
that is requiredby thenon-grammarspecificportionof thespeech
recognitionsystem.This memoryis usedto computeandstorethe
cepstrumfeaturesfrom the speechsignal,andto storethe HMM



Table2: Memory capacityof various devices.
Index Device MemoryCapacity
A CompaqIpaqH3970 64MB
B Mitac Mio 338 40MB
C Sony Clie PEG-NX70V 16MB
D Nokia 6600 3 MB
E Nokia 7650 1.4MB
F Nokia 6585 512KB
G Nokia 3100 210KB

parameters.Theadditionalmemoryrequirementwith theincrease
of grammarsizeis highlightedwhenthesamefront-endprocessing
andthesameHMM is usedfor varyingsizesof memory. Therefore
theexperimentvalidatesthatincreasingthegrammarsizeresultsin
anincreasedrequirementfor decodingthesamespeechutterance.

The memoryrequiredby a speechrecognitionsystemhastwo
components:onethat varieswith the increasein vocabulary size,
andthe otherthat is constant.The latter part is dueto the mem-
ory by theacousticmodelandthecodestoreof thespeechrecog-
nition system.To estimatethe memory requiredby the constant
portion of a speechrecognitionsystem,we usethe productbrief
of SensoryR

¯
Fluent Speech

TM
software [11]. The footprint of the

FluentSpeech
TM

recognitionengineasobtainedfromtheirSDK [10]
documentis 750 Kb for a vocabulary of 500 words. The mem-
ory requiredfor additionalwordsis 250bytesperword [11]. As-
suminga linear relationshipbetweenthe vocabulary of the sys-
tem and its memoryrequirement,we estimatethe memoryfoot-
print of the constantportion of a speechrecognitionsystemas°¡±¡² 4 ±
² ²�³�² F � ± �X´�� ± Kb. Next, weestimatethememoryrequire-
mentfor a givencall-flow. For this,we assumethatthevocabulary
sizeof the speechrecognitionsystemfor a particulargrammaris
equalto thenumberof choicesin thatgrammar.We do not handle
thecomplicationsin designinggrammarsthatarisedueto thenat-
ural languageoptions.

Table2 shows thememorycapacityof varioushandhelddevices
including mobile phones.The numbersvary from as low as210
KB to ashigh as64 MB. Eachof thesedeviceshastheprocessing
power to beableto run a speechrecognitionsystemlocally. Such
variationin memorycapacitiesprovidesa justificationfor device-
specificcall-flow reorganisation.

4.1.1 Example:Airline ReservationCall-flow
Figure9(a)shows theatomiccall-flow of anAirline Reservation

system.This is asequentialcall-flow whichmeansthatafollowing
questionaskedby thesystemis independentof theuser’s response
to a previous one. Eachatomic dialog is of the form wherethe
systemasksthe usera questionsuchas“What is your ‘departure
city’?”, and collectsatomic information when the userresponds
with a valid choice(a valid city namein this case). For eachdi-
alog the grammarcorrespondingto the answerof the questionis
loadedfor speechrecognition. The memory(in KB) requiredby
thespeechrecognitionsystemto processthegrammaris shown in8 9 againsteachdialog in figure 9. Oncethe user’s responseis
recognised,thesystemasksthenext question.It requires13 fields
to beprovidedby theuser. Theminimummemoryrequiredfor this
atomic call-flow over andabove the recognitionenginefootprint
is 29 Kb, which correspondsto the largestgrammar(‘Departure
city’/‘ Arrival city’). Table2 shows thememoryrequirementof the
atomicgrammarsof thecall-flow.

Thereorganisationconstraintsfor thecall-flow areindicatedby
the dottedlines in figure 9(a). Therearefive reorganisationcon-

straintsasshown in thefigure. Theconstraintsareasfollows: Do
not merge ‘Departurecity’ with ‘Arrival city’, ‘Arrival city’ with
‘Day of journey’, ‘Month of journey’ with ‘Airline name’,‘Num-
berof seats’with ‘Credit cardtype’ and‘Credit cardexpiry year’
with ‘Contactnumber’.

4.2 RESEQUENCE

The atomiccall-flow (figure 9(a)) alongwith the memorycon-
straint of the particulardevice and the reorganisationconstraints
areinputsto theRESEQUENCE algorithm.Thealgorithmoutputs
theoptimaldialogcall-flow for thedevice. We show in figure9(b)
and9(c) two suchcall-flows with different � values. Figure9(b)
shows the call-flow with �l�¶µ . Theminimum memoryrequired
for thiscall-flow overandabove therecognitionenginefootprint is
70 Kb, which correspondsto thegrammar‘Airline name& Flight
number’.Thisoptimalcall-flow is obtainedby mergingthefollow-
ing questions: (‘airline’ & ‘flight number’),(‘classof reservation’
& ‘numberof seats’),(‘credit cardtype’ & ‘credit cardnumber’),
(‘credit cardexpiry month’ & ‘credit cardexpiry year’).

Thedialogcall-flow in figure9(c) is thecall-flow with minimum
possiblequestions,�£�·´ , taking into considerationthe reorgan-
isationconstraints.The minimum memoryrequiredfor this call-
flow over andabove the recognitionenginefootprint is 2400Kb.
This optimalcall-flow is obtainedby merging the following ques-
tions: (‘day of journey’ & ‘month of journey’), (‘airline’ & ‘flight
number’),(‘classof reservation’ & ‘numberof seats’),(‘credit card
type’, ‘credit cardnumber’, ‘credit cardexpiry month’ & ‘credit
cardexpiry year’).

The ������� � characteristicsof theabovecall-flow is shown in Fig-
ure11. Thex-axisof this barchartreflectsto thenumberof ques-
tions in thedialogcall-flow andthey-axisshows thememorythat
would be requiredto executethe particularcall-flow5. Note that
eachbar in thechartcorrespondsto a uniquecall-flow. Thevalue
on they-axis refersto thememoryrequiredto executethe largest
grammarin therespectivecall-flow. Theplot hasbeengeneratedby
runningthe RESEQUENCE algorithmon the call-flow mentioned
in Figure9(a)by varying � andfindingthecorresponding� values.

4.3 MASQ

Figure10(a)shows an idealcall-flow correspondingto thecall-
flow shown in figure 9(a). The ideal call-flow, atomic call-flow,
reorganisationconstraintsandthedevice’s memoryresourcesform
aninput to MASQ. Theoutputof thealgorithmis theoptimalcall-
flow with minimumdistancebetweentheoutputandtheidealcall-
flow. Figure10(b) shows a call-flow for �£�V6'� . The minimum
memoryrequiredfor this call-flow over andabove therecognition
enginefootprint is 29Kb.

The implication of the distancebetweentwo call-flows canbe
observed by comparingthe outputof RESEQUENCE andMASQ.
With referenceto theatomiccall-flow describedin figure9(a), for
�.�¸6�� the outputof the two algorithmswould be different. RE-
SEQUENCE canoutputamergedgrammarcorrespondingto either
‘Flight number’ with ‘Class of reservation’ or ‘Class of reserva-
tion’ with ‘Numberof seats’.Theoutputis suchbecausethemem-
ory requirementfor both the mergedgrammarsis same. So RE-
SEQUENCE algorithmcanarbitrarily pick oneof them. However
in MASQ, the outputcall-flow would have a mergedgrammarof
‘Classof reservation’ and‘Number of seats’. This is becausethe
resultingcall-flow is at the leastdistancefrom the ideal reference
call-flow 10(b).

5Thisdoesnot includethememoryrequiredby therecognitionen-
gine.
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Figure 9: (a)An exampleatomic call-flow. (b)Output of the RESEQUENCE algorithm with q=10. (c)Output of the RESEQUENCE
algorithm with q=6. The memory (in KB) requiredby the speechrecognitionsystemto processthe grammar is shown in 8 9 against
eachdialog.
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Figure 10: (a)An ideal referencecall-flow, (b) Output of the
MASQ for q=12.

Thereare other partsto the dialog suchas the welcomemes-
sageandgoodbyegreeting. Thesemake the dialog morehuman-
friendly, but have noeffect on theexecutionof thealgorithms.

5. SUMMARY AND FUTURE WORK
Ubiquitousinformationaccessvia multiple modalitiesandde-

vicesdefinesa growing need.Transformingthis needinto a real-
ity will requireenormousefforts and insights. The development
of specificationssuchasVoiceXML coupledwith improvementin
speechrecognitionandspeechsynthesishavemadespeechaviable
alternative today.

Multi-device accessposesa further challenge.Speechapplica-
tions needto be adaptedto differentdevices. We investigatedthe
problemof dialog call-flow reorganisationfor pervasive devices
with memorysizerestrictions.Thecrux of the reorganisationlies
in altering the memoryrequirementsof the underlyinggrammar.
We achieve this by merging atomic grammarswhile minimising
thenumberof questions,thusaccountingfor oneaspectof usabil-
ity. Wepresentedoptimalalgorithmsto achieve this.

Our work providesa key componentaroundwhich toolscanbe
developedfor automaticadaptationof speechdialogsfor multiple
devices.Wehave takenasmallstepin thatdirectionby identifying
somerealrequirements,formalisinga subproblemandarticulating
someideasthatmight hint towardsa possiblesolution.

As is thecasewith all userinterfacetechnologies,usability is a
critical factorthatmeasuresthegoodnessof theautomaticallyde-
signedcall-flows. Futureefforts in this directioncanbeto formu-
latea constrainedoptimisationproblemby integratingtheexisting
dialog evaluationmethods[13] with the device specificoptimisa-
tion techniquesmentionedin this paper.
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