
RI 05001 02 February 2005 Computer Science

IBM Research Report

Information Modeling for End to End
Composition of Semantic Web Services

Arun Kumar, Sumit Mittal and Biplav Srivastava

IBM Research Division

IBM India Research Lab

Block I, I.I.T. Campus, Hauz Khas
New Delhi - 110016. India.

IBM Research Division

Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo -

Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for

publication outside of IBM and will probably be copyrighted is accepted for publica-

tion. It has been issued as a Research Report for early dissemination of its contents.

In view of the transfer of copyright to the outside publisher, its distribution outside

of IBM prior to publication should be limited to peer communications and specific

requests. After outside publication, requests should be filled only by reprints or legally

obtained copies of the article (e.g., payment of royalties). Copies may be requested

from IBM T.J. Watson Research Center, Publications, P.O. Box 218, Yorktown

Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available

on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

1



Information Modeling for End to End

Composition of Semantic Web Services

Arun Kumar, Sumit Mittal and Biplav Srivastava

IBM India Research Laboratory

Block 1, IIT Campus, Hauz Khas

New Delhi 110016, India

Email: {kkarun,sumittal,sbiplav}@in.ibm.com

Abstract

One of the main goals of the semantic web services effort is to
enable automated composition of web services. An end-to-end view of
the web service composition process involves automation of composite
service creation, development of executable workflows and deployment
on an execution environment. However, the main focus in literature has
been on the initial part of formally representing web service capabilities
and reasoning about their composition using AI techniques. Based upon
our experience in building an end-to-end composition tool for application
integration in industrial setting, we bring out issues that have an impact
on information modeling aspects of the composition process. We present
pragmatic solutions for problems relating to scalability and manageability
of service descriptions, data flow construction for operationalizing the
composed services and representation of non-functional requirements.

1 Introduction

Most of the work in semantic web services community has focused on the
AI approach of formally representing web service capabilities in ontologies
like OWL-S [7], and reasoning about their composition using goal-oriented
inferencing techniques from planning. Web services pose challenge to existing
planning methods in representation of complex actions, handling of richly
typed messages, dynamic object creation and specification of multi-partner
interactions. Moreover, web services composition (WSC) can not be seen
as a one-shot plan synthesis problem defined with explicit goals but rather
as a continual process of manipulating complex workflows, which requires to
solve synthesis, execution, optimization, and maintenance problems as goals get
incrementally refined [11]. This is because WSC involves concepts from the AI
domain as well as software engineering/programming domain. When viewed
as a program, input and output parameters become important whereas when

2



viewed as an action, the preconditions and effects become dominant [10]. Due
to this, the web service modeling efforts in the semantic web world fall short of
the expectations of real world applications.

We have developed a prototype of end-to-end web service composition
tool for facilitating new service creation and application integration for tele-
com service providers1. Mobile telephony service providers, due to intense
competition, need to continually develop compelling applications (e.g., movie
recommendation system) to attract and retain end-users, with quick time-
to-market. Much of this service/application development is currently done
manually in an ad hoc manner, without standard frameworks or libraries, thus
resulting in poor reuse of software assets. When a new service is needed, the
desired capability is informally specified and then, an application developer
must create this capability using component services available in-house or
from known vendors. A component-oriented software development approach to
application integration where each software is wrapped as a web service would
offer substantial benefits in creating new services by leveraging web services
composition.

Our solution takes an end to end view and synergistically combines
the AI approach of reasoning about web services functionality based on
their preconditions and effects, and the distributed programming approach of
selecting instances to optimize end-to-end runtime metrics, currently adopted by
semantic web community and the industry, respectively. For the AI component,
we represent services using OWL-S markup language [7] that is being defined
for facilitating the creation of web service ontologies. To create deployable
and executable instances of those services, we use Business Process Execution
Language (BPEL) [2]. The solution drives the composition process right from
specification of the business process in OWL-S, through creation of desired
functionality using planning techniques, through generation of a deployable
workflow by selection and binding of appropriate service instances, to finally
deploying and running the composite service. This integrated solution achieves
the best of both worlds and provides scalability to the composition process.

However, we ran into important modeling issues not currently addressed
by the semantic web services community. The existing OWL-S service
modeling support is insufficient for the end-to-end composition vision because
(a) the modeling does not allow for best knowledge engineering practices of
modularity, conciseness and generality and (b) composed web services cannot be
automatically operationalized due to lack of contextual information associated
with input and output parameters. Moreover, how to work with non-functional
requirements is unclear. A few alternative formalisms have been proposed to
address OWL-S deficiencies but they focus more on foundational frameworks
to overcome representational weaknesses [6, 12] rather than address ways for
efficient, automatic, end-to-end composition.

We investigate information modeling issues for end-to-end composition of
web services and provide pragmatic extensions to OWL-S. Our contributions

1Reference omitted to facilitate blind review process.

3



are as follows:

• We differentiate between web service types and instances. This helps in
organizing the expected thousands of web services and scaling the OWL-S
ontology for inferencing.

• We introduce support for context to disambiguate intended meanings of
input and output parameters. In other words we add semantics to input
and output parameters that helps in determining the data flow after the
control flow has been worked out by planning.

• We discuss representation of functional and non-functional requirements
and capabilities attached to web services. We also characterize the role of
each of these specifications at each stage of the composition.

• We discuss usage of the proposed information model in an end to end web
service composition tool.

The rest of the paper is organized as follows. We describe an example
scenario and highlight the three problems that surface while using OWL-S for
end-to-end composition - scaling of services ontology, data flow generation and
specification of service capabilities. We then propose pragmatic solutions for
them and apply it in the example, and give concluding comments.

2 End-to-end Service Composition

Suppose a telco wishes to offer its telecom and IT infrastructure, to enterprise
clients, by creating and deploying services that would enable automation of the
client’s business processes. An example of such a business process is a simple
Customer Order Management System for a FlowerDelivery service. Assume
that the registry of available services in the telco’s infrastructure consists of
a Directory service, one or more flower selling services, say, FreshFlowerShop
service, FragrantFlowerShop service, CheapFlowerShop service, etc., multiple
credit card services such as VisaCard service, MasterCard service, etc. and a
Dispatch service. Figure 1 shows the ≺Inputs, Outputs, Preconditions, Effects�
(IOPEs) of some of these services.

The figure also shows a feasible plan for the new service obtainable with
an AI planner. It consists of invocations to directory service for obtaining
addresses of the sender and the recipient. This is followed by invocation to a
flower shop service for obtaining desired flowers. An order receipt is sent to
sender. The pricing details are passed to the credit card payment gateway and
on successful authorization, the shipping details and the flower packet are passed
onto dispatch service for delivery. A delivery receipt is then sent to the sender.
The modeling problems we faced are presented below.

Service Types Vs Instances: The scenario described above has multiple
flower shop services. These services could be offering different kinds of flower
packages (e.g. bouquets, decoration packages, etc.) but essentially they are

4



New Service Requirement
Name: FlowerDeliveryService
Input: PersonName, PersonName, FlowerName, NumOfFlowers, CreditCard
Output: OrderReceipt, DeliveryReceipt
Precon: PersonName notNull, PersonName notNull, NumOfFlowers <= 1000,

FlowerName oneOf FLOWERLIST, CreditCard hasBalance

Effect: Packet deliveredTo PersonName, OrderReceipt sentTo PersonName,
DeliveryReceipt sentTo PersonName, CreditCard debited

Services in Registry
Name: FreshFlowerShop Service
Input: Address, Address, FlowerName, NumOfFlowers
Output: OrderReceipt, Packet, Amount
Precon: Address available, Address available,

FlowerName oneOf FLOWERLIST, NumOfFlowers <= 1500
Effect: OrderReceipt sentTo Address, Amount available, Packet available

Name: FragrantFlowerShop Service
Input: Address, Address, FlowerName, NumOfFlowers
Output: OrderReceipt, Packet, Amount
Precon: Address available, Address available,

FlowerName oneOf FLOWERLIST, NumOfFlowers <= 1200
Effect: OrderReceipt sentTo Address, Amount available, Packet available

Name: CheapFlowerShop Service
Input: Address, Address, ItemCode, NumOfItems
Output: Acknowledgment, Packet, Charges
Precon: Address available, Address available,

ItemCode oneOf ITEMLIST, NumOfItems <= 100
Effect: Acknowledgment sentTo Address, Amount available, Packet available

Name: Directory Service
Input: Name
Output: Address
Precon: Name notNull

Effect: Address available

Name: VisaCard Service
Input: Amount, CreditCard
Output: Authorization
Precon: Amount available, CreditCard hasBalance

Effect: CreditCard debited, Authorization available

Name: Dispatch Service
Input: Authorization, Address, Address, Packet
Output: DeliveryReceipt
Precon: Authorization available, Address available, Address available, Packet available

Effect: DeliveryReceipt sentTo Address, Packet deliveredTo Address

A plan for FlowerDelivery Service
// I is for input and O is for output
Step 1: Directory Service1(I:N1, O:A1)

Directory Service2(I:N2, O:A2)
Step 2: FreshFlowerShop Service(I:A3, I:A4, I:FN, I:NUM, O:ORCPT, O:PKT, O:AMT)
Step 3: VisaCard Service(I:AMT, I:CC, O:AUTH)
Step 4: Dispatch Service(I:AUTH, I:A5, I:A6, I:PKT, O:DRCPT)

Figure 1: The FlowerDelivery Service composition scenario

5



all flower shops. This fact could be very useful for efficient representation of
these services. Unfortunately, OWL-S does not capture the notion of types
and instances. Each OWL-S description pertains to a single instance of a
service. It consists of the ServiceProfile that describes the interface of the
service, a ServiceModel, that describes the details of its operation and the
ServiceGrounding that provides information about interoperation with that
service using messages.

There are several drawbacks with this approach. First, given the require-
ments of the new FlowerDelivery service as shown in Figure 1, the composition
tool needs to consider and evaluate each and every instance of such FlowerShop
kind of service available. This seriously affects the performance and scalability of
the composer (planner) since there may be hundreds of such instances available
whereas for obtaining a feasible functional composition different instances of
similar kinds of services need not be considered.

The second drawback of the current approach is related to standardization.
Since there is nothing common defined for similar services, a composition tool
cannot infer anything about the degree of similarity or dissimilarity of those
services. For instance, each of the FlowerShop kind of service may have different
profiles even though their underlying process model may be same. In figure 1 the
FreshFlowershop Service has a different profile than that of CheapFlowerShop
Service. We can try to rectify this by adding some relations in the ontology
such as OrderReceipt isEquivalentTo Acknowledgment, but it does not always
work as in the case of FlowerName and ItemCode. Since the profile model is
used to advertise a service, they appear to be different kinds of services.

The third drawback relates to the service grounding part. Since the
grounding is specific to each service instance, a composition taking that into
account is less likely to be stable. This is because changes at the level of
individual service instance operation take place much more frequently than
at the level of service functionality. The composition becomes prone to
small implementation changes made to the service instance and this is highly
undesirable. For instance, if the VisaCard Service originally supported 64-bit
encryption protocol (specified in its grounding, not shown in figure) then the
plan in Figure 1 may break if VisaCard service upgrades to 128-bit encryption.

Support for Data Flow Construction: When we seek to operationalize
composed plans, we are in fact generating programs. A program contains the
specification of both its control flow (the dependence among activities) and
the data flow (the dependence among data manipulations). One of the main
differences between knowledge engineering and programming, as described in
[9]2, is that while logic sentences in the former tend to be self-contained, the
statements in a program depend heavily on surrounding context. Planning
techniques can be used to easily generate the control flow for the composite
service given the precondition and effect information for available service types,
but generating the complete data flow needs reasoning with contexts of inputs
and outputs.

2Chapter 8, Page 222

6



In programming languages this issue is resolved by specifying an ordering
among the parameters of a function or procedure. A human developer could
then look at the language specification and specify the parameters accordingly.
However, in the web service composition scenario, software programs cannot
automatically derive and interpret semantics of all parameters just from the
available ordering. The context for the inputs and outputs need to be made
explicit. One provision to model the semantics associated with the input/output
parameters is by creating new concepts in the domain ontology. But this will
make the ontology large and brittle. The latter consequence is well understood
in knowledge engineering[9] and that is the reason very specific terms are not
recommended in an ontology.

In Figure 1, the FreshFlowerShop Service accepts two addresses. As per the
semantics of the operation, one of the addresses is that of the sender and the
other is that of the recipient. Even if the distinction among their semantics is
not necessary for generating the control flow, and hence not modeled, it could
be important for the data flow. Specifically, the two addresses can have different
semantics and different data (message) types. For the full composition, the data
flow has to be produced between dependent services to make it executable. In
the FlowerDelivery scenario, to determine the relation between input/output
of component services, we must (automatically) figure out things such as the
following:

• CreditCard information from the user goes directly to the VisaCard
Service.

• the Address output from the second DirectoryService instance goes to
both FreshFlowerShop Service as well as DispatchService

• DeliveryReceipt from DispatchService and OrderReceipt from FreshFlow-
erShop Service together constitute the output for the user.

Non-functional Service Requirements & Capabilities: The end-user
requirements for the composite service, like that of any software program, can
consist of functional as well as non-functional requirements (FRs and NFRs,
respectively). The first part deals with the desired functionality of the composite
service while the second part relates to performance, reliability and other user-
acceptance issues. In terms of representation, the NFRs can be expressed as
qualitative or quantitative properties. In terms of usage, the NFRs are expressed
across the composite service (e.g., flower delivery time should be less than 24
hours). Like requirements, the capability of existing web services can also be
characterized along functional and non-functional features.

Currently, OWL-S supports specification of FRs through IOPE and NFRs
through profile attributes. NFRs are soft constraints and they distinguish
individual instances but do not reflect on the nature of their functionality. The
challenge is to model and reason with them efficiently by characterizing their
role in the composition process.

7



3 Scaling Services Ontology

As mentioned in Section 2, currently OWL-S is designed to model a single web
service instance [7]. However, in order to work with large collections of web
services – categorizing them, supporting multiple views [5], standardization and
for stable functional compositions – we need to support web service types that
are described independent of individual web service instances.

We propose to separate the representation of web service type definitions
from instance definitions. This means that the OWL-S upper ontology needs
enhancements to have a ServiceType class hierarchy in addition to the Service
hierarchy (see Fig. 2). The ServiceProfile model of the current OWL-S
Service hierarchy is essentially a type definition and can be moved to the
ServiceType hierarchy. The ServiceProfile of a Service could then point to the
ServiceProfileType of ServiceType for structure, and contain the actual values of
the Inputs, Outputs, Preconditions and Effects (IOPE) parameters applicable
for that service instance.

ServiceGrounding is a concept that applies to instances rather than types
and can stay as it is. ServiceModel should ideally be encapsulated inside the
service interface and not exposed to the external world. Making the model
visible outside the service is useful only if it describes the conversational aspect
of the web service that would be needed to interoperate with it. In such a case,
it should be included in the ServiceType hierarchy since a common conversation
model should be applicable to all instances of a service type. In other words, we
propose to have an ontology for ServiceType that consists of ServiceProfileType
and ServiceModelType model. This would be in addition to an ontology for
Service instances that consists of a ServiceProfile and a ServiceGrounding.

This approach has various modeling benefits. A new kind of service can
be easily introduced by adding to the ontology an object of type ServiceType.
This would include defining the parameters in its profile by populating the
ServiceProfileType model, and describing the conversation model by populating
the ServiceModelType model. Each actual running web service would be
represented by an object of type Service and include a reference to its
ServiceType object. Its ServiceProfile model would contain the actual values of
the parameters listed in the ServiceProfileType of the corresponding ServiceType.
This approach of separating type definitions from instance definitions has been
used successfully in data models for distributed systems management [1].

Now, service composition can happen in two phases:

1. Logical Composition: This phase provides functional composition of
service types to create new functionality that is currently not available.

2. Physical Composition: This phase enables the selection of component
service instances based on non-functional requirements, that would then
be bound together for deploying the newly created composite service.

Discussion: Our proposal raises the question of what kind of relationship a
web service type has with its various instances. A web service type captures the

8



ServiceType

Service

ServiceProfileType

ServiceModelType

ServiceProfile

ServiceGrounding

IS-A

IS-A

presents

presents
supports

describedBy

Figure 2: Modified OWL-S upper ontology

core functionality of a class of web services. Individual instances belonging
to that class of services must adhere to the basic type definition but may
be allowed to offer minor variations under some constraints. An important
desiderata is that any composition which is produced with the web service type
should be still valid when any of its web service instance is selected. This is
ensured if the precondition of a web service type is the strongest precondition
from that of its instances and its effect is the weakest effect from those of its
instances. Formally, ∀Sinstance of Stype, Stype

precondition ⊇ Sinstance
precondition and Stype

effect

⊆ Sinstance
effect . We adopt it as the guideline for domain modeling. In Figure 3,

FlowerShopService type captures the category of flower shop services whose
instances are Fresh, Fragrant and Cheap Flower shop services. Now IOPEs of
the types and instances can be related, e.g., the ItemCode in the last instance
corresponds to FlowerName in the service type.

4 Generation of Data Flow

The semantics of each input/output parameter can be expressed along two
dimensions. The first one specifies the meaning of the parameter as intended
by the service designer. For instance, the designer of FreshFlowerShop Service
could designate one Address parameter as the From address and the other one
as the To address. The second dimension is dictated by the composition of
which this service becomes a component. For instance, in Figure 1, if both
PersonName and FlowerName were concepts derived from Name then it would
be difficult to figure out whether FlowerName is a valid input to the Directory
Service. The problem is to encode the fact that the address obtained from
a single invocation of Directory Service should not be supplied to both the
input parameters of succeeding FlowerShop Service. Furthermore, we have the
problem of specifying which address value (out of the two invocations) goes to
which input parameter.

We seek to solve the above problems by explicitly encoding the context for
inputs and outputs. In [3], the authors give an extensive coverage of how context
is handled in knowledge representation in AI. They note that the contextual need
in OWL-S is to qualify information at a large scale but the solutions in AI focus
on generalizations to support for nested contexts, ephemeral contexts and the
ability to transcend contexts, which are not needed in the semantic web. Their

9



New Service Requirement
Name: FlowerDeliveryService
Input: PersonName (From), PersonName (To), FlowerName,

NumOfFlowers, CreditCard
Output: OrderReceipt, DeliveryReceipt
Precon: PersonName (From) notNull, PersonName (To) notNull,

CreditCard hasBalance, FlowerName oneOf FLOWERLIST,
NumOfFlowers <= 1000

Effect: Packet deliveredTo PersonName, OrderReceipt sentTo PersonName,
DeliveryReceipt sentTo PersonName, CreditCard debited

Service Types in Registry
Name: FlowerShop Service Type
Input: Address (From), Address (To), FlowerName, NumOfFlowers
Output: OrderReceipt, Packet, Amount
Precon: Address (From) available, Address (To) available

Effect: OrderReceipt sentTo Address (From), Amount available, Packet available

Name: Directory Service Type
Input: Name
Output: Address
Precon: Name notNull

Effect: Address available

Name: CreditCard Service Type
Input: Amount, CreditCard
Output: Authorization
Precon: Amount available, CreditCard hasBalance

Effect: CreditCard debited, Authorization available

Name: Dispatch Service Type
Input: Authorization, Address (From), Address (To), Packet
Output: DeliveryReceipt
Precon: Authorization available, Address (From), Address (To) available,

Packet available

Effect: DeliveryReceipt sentTo Address (From), Packet deliveredTo Address (To)

Service Instances in Registry

— Same as the services in Registry of Figure 1 —

A logical Plan for FlowerDelivery Service
// I is for input and O is for output
Step 1: Directory Service Type(I:N1, O:A1)

Directory Service Type(I:N2, O:A2)
Step 2: FlowerShop Service Type(I:A3, I:A4, I:FN, I:NUM,

O:ORCPT, O:PKT, O:AMT)
Step 3: CreditCard Service Type (I:AMT, I:CC, O:AUTH)
Step 4: Dispatch Service Type (I:AUTH, I:A5, I:A6, I:PKT, O:DRCPT)

Figure 3: The proposed modeling for FlowerDelivery scenario with service types,
roles and NFRs.

solution is to explicitly model context as a resource and they introduce terms
to specify lifting rules so that propositions could be generalized across contexts
to serve their data aggregation application.

To associate semantics with input/output (IO) parameters, we propose the
notion of roles. A role is a term that qualifies a concept. That is, for any
concept ϕ, (ψ ϕ) specifies that the role played by ϕ is ψ. Roles are optionally
specified on the inputs and outputs by the service developer. They come from a
separate ontology, and are standardized and structured in a domain similar to
concepts. Figure 4 shows a sample role ontology for roles that could be played
during information processing, item transfer and expertise lookup. Depending
on need, an input/output parameter can have either one, multiple or no specific
roles. In comparison to the roles, the context of [3] means that if ist(ci, ϕ),
the proposition ϕ is true in context ci. The two usages can be combined - for
example, ist(ci, ψ ϕ) means that the proposition ϕ has the role ψ in the context
ci. In Figure 3, the user assigns the roles of From and To to the two input
addresses in the input specification.

10



Figure 4: Sample Role Ontology

Roles can be propagated so that input or output or both IO can be associated
with new roles in the presence of IO roles of requirement specification and/or
other services. They can be propagated while matching a specification with a
service instance or from the input to the output of a service and vice-versa. How
a role can or cannot be propagated will be specified by the service modeler for
a service using a rule language like SWRL. The rules cannot be generic because
the service implementation may not allow propagation - a service which takes a
From address as input and gives the address of where the flowers were delivered,
cannot propagate the input role. Some rules are given in Figure 5. Rule 1 says
that if the inputs (or outputs) of a service has parameters of the same type, no
role is propagated. Rule 2 says that the input role of the specification can be
propagated to input of an instance, Rule 3 says that they can be propagated
from the input to the output of a service while Rule 4 says that it can be
propagated from the output of one service instance to input of a successor.

Going back to the data flow problems raised in Section 2, credit card
and receipts can be deduced from the IO data types of the services in the
composition. For address, the role propagation rules can be used with Directory
Service to automatically deduce the data flow. Rule 2 will associate different
roles to the two directory Service instance and Rule 3 will propagate them to
the outputs. Now, using the roles on outputs of Directory Services, the data
flow with the next service - FlowerShopService - is found automatically.

Given service S with inputs I and outputs O

1. If ((∃Ii, Ij , i 6= j s.t. I
type
i

= I
type
j

) ∨

(∃ Oi,Oj , i 6= j s.t. O
type
i

= O
type
j

)

Then do not propagate

2. If ψinstance
I

= {} and ψ
spec
I

6= {}

ψinstance
I

= ψ
spec
I

3. If ψO = {} and ψI 6= {}
ψO = ψI

4. If ψ
next−instance
I

= {} and ψ
prev−instance
O

6= {}

ψ
next−instance
I

= ψ
prev−instance
O

Figure 5: Some rules for role propagation.

Discussion: Assigning roles has two benefits - on the one hand, role
disambiguates between multiple instances of the same concept in a service profile

11



thus clarifying the intended usage of the concept in the service. On the other
hand, it enables the creation of a context using which the data flow from other
service to this service and vice-versa can be constructed. Association of roles
with parameters of a web service provides an extra dimension for matching
requirements. A match-making tool would try to search services for which
the input parameters have roles that fit the description of the requirement,
thereby incorporating both the syntax as well as semantics of the available
services. Our solution is related to [4] who describes an environment for building
reusable ontologies based on the concept of roles which they informally define
as a characteristic that a basic domain concept exhibits in a context. We can
use their tool to build role ontology in parallel with the domain ontology. An
alternative proposal to OWL-S is the SESMA[8] model which directly handles
inputs and outputs. Here, a notion of conversation data set is introduced to
hold the input and output variables with values, and these could be evaluated
as part of reasoning with the service’s preconditions and effects.

5 Specifying Non Functional Service Require-

ments and Capabilities

The functional capability (FC) of a web service expresses the core functionality
through IOPEs that capture the transformation performed by the service. The
non-functional capabilities (NFCs) help in characterizing the service further
by capturing its optional features, such as cost, QoS. OWL-S has provision to
represent NFCs through profile attributes which may contain parameters other
than the functional IOPEs but it is unclear how to reason with these NFCs. In
this section, we present our interpretation of NF attributes that may be used
for enabling end-to-end composition.

NF requirements (NFRs) and NFCs can be formulated using the qualitative
or the quantitative model. In the former, non-functional attributes are expressed
using abstract, high level terms and goals. In the latter, specifications are
represented using concrete, numeric values. It is also possible to categorize
quantitative NFCs into coarse qualitative categories (e.g., fast, medium and
slow services for response time ≺ 40 sec, 40-80 sec and � 80 sec, respectively)
and reason about them first at the broad level before working with specific
numeric values.

Since NFCs inherently capture properties of service instances they are not
needed during functional composition. In contrast, FCs form the core of
the functional composition process. However, NFCs play an important role
during selection of appropriate service instances in order to meet the end-
user requirements. The current OWL-S only deals with service instances and
therefore all the functional as well as non-functional attributes are in the
ServiceProfile. In the modified OWL-S upper ontology (presented in Section 3),
the FCs get represented in ServiceProfileType. The ServiceProfile of an instance
inherits those FCs from the ServiceProfileType and also adds the NFCs to it.

12



In some domains it may be desirable to model certain service features
as mandatory for all instances of a service type. For example, in military
applications it may be necessary to make all service instances secure. In such
domains, it would make more sense to model NFCs such as security in the service
type itself. In doing so, we essentially have converted some non-functional
capabilities to functional capabilities since as far as that domain is concerned,
they form a part of the core functionality. In this case, these NFCs are included
in ServiceProfileTypes and act as FCs in selecting the service types during
composition.

Table 1 shows the NFRs for the flower services. Note that NumOfFlowers
is not modeled in FlowerShopService type in Figure 3. The NumOfFlowers
requirement was for ≺ 1000 and this would be ensured while picking instances.

Instance Name Security Level Response Time Max #Flowers

FreshFlowerShopService Restricted 70 sec 1500

FragrantFlowerShopService Confidential 240 sec 1200

CheapFlowerShopService Public 30 sec 100

Table 1: Representing Instances for FlowerShop Services

Discussion: The end-to-end NFRs can be handled in physical composition
module by a two-fold approach - a) breaking the composite non-functional
requirements into individual component requirements, and b)choosing the best
available component service instance corresponding to the requirements. Some
initial work on this is in [13]. Rules can be used to specify priority among NFRs
to resolve conflicts during instance selection.

6 Conclusion

We presented several issues that arise when we view the composition of web
services from an end-to-end perspective. Concretely we delved into the aspects
pertaining to scaling of service ontologies, lack of support for generation of data
flow information and modeling of non-functional requirements. We discussed the
need for separating service type from service instances, introduced the notion
of roles to help disambiguate the semantics of IO parameters and discussed
representation and usage of non-functional requirements. We showed that the
proposed guidelines are helpful in an end-to-end composition scenario.

References

[1] Common Information Model (CIM) Metrics Model, V 2.7.
www.dmtf.org/standards/documents/CIM/ DSP0141.pdf, June 2003.

[2] F. Curbera et al. Business Proc. Exec. Lang. for Web Serv. www-
106.ibm.com/developerworks/webservices/library/ws-bpel/, 2002.

[3] R. Guha, R. McCool, and R. Fikes. Contexts for the semantic web. In
Proc. ISWC, 2004.

13



[4] K. Kozaki et al. Hozo: An Environment for Building/Using Ontologies
Based on a Fundamental Consideration of ”Role” and ”Relationship”. In
13th Int. Conf. on Know. Engg. and Know. Mgmt., 2002.

[5] R. Lara et al. Semantic Web Services: Description Requirements and
Current Technologies. In Intl. Work. on Elec. Commerce, Agents and Sem.
Web Serv., September 2003.

[6] P. Mika, D. Oberle, A. Gangemi, and M. Sabou. Foundations for service
ontologies: Aligning owl-s to dolce. In Proc. WWW, 2004.

[7] OWL-S. OWL-S: Semantic Markup for Web Services.
http://www.daml.org/services/ owl-s/1.0/owl-s.html, Nov. 2003.

[8] J. Peer. Semantic service markup with sesma - language spec., v0.7. In
elektra.mcm.unisg.ch/pbwsc/docs/sesma 0.7.pdf, 2004.

[9] S. Russell and P. Norvig. Artificial intelligence: A modern approach (first
ed.). In Prentice Hall Publ., ISBN: 0131038052., 1995.

[10] M. Sabou, D. Richards, and S. van Splunter. An experience report on using
DAML-S. In Proc. of 12th WWW Conf., May 2003.

[11] B. Srivastava and J. Koehler. Planning with Workflows - An Emerging
Paradigm for Web Service Composition. ICAPS 2004 Workshop on
Planning and Scheduling for Web and Grid Services, 2004.

[12] WSMO. Web services modeling ontology. In http://www.wsmo.org, 2004.

[13] T. Yu and K. Lin. Service selection algorithms for web services with end-
to-end qos constraints. In IEEE Int. Conf. on E-Commerce Technology,
2004.

14


