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Abstract

Various instrumented systems produce metrics that
capture the state of the system at different points of
time. These could be in the form of logs written to
disk or data records made available to interested con-
sumers through messaging systems. Management ap-
plications utilize such metrics to derive information
needed for decision making. Such applications in-
clude accounting, fault handling, intrusion detection,
resource provisioning etc. However, each such appli-
cation is typically custom built to encode the data
manipulation logic specific to the management task
at hand. These custom solutions are non-reusable,
non-shareable and become increasingly complex and
hard to manage as they evolve to meet ever changing
needs of the environment. We present Metric Service,
a mediation engine that can be shared and configured
to perform data manipulation operations for a wide
variety of management applications. It allows ap-
plication specific manipulation of raw metrics to be
performed in the middleware itself and also enables
integration of data from heterogeneous systems that
may be geographically distributed . We also intro-
duce MS-Policy, an XML based policy specification
language that forms the core of the proposed engine.
It allows the data integration and manipulation logic,
for a particular management task, to be specified in
terms of metrics collection, aggregation and composi-
tion. We describe our prototype implementation and
report the results of performance experiments.

Keywords: XML, Grid Services, Metrics, Medi-
ation, Aggregation

1 Introduction

Most software systems generate monitoring data ei-
ther reported as various kinds of logs or made avail-
able through messaging systems. This data typically
contains metrics that capture the state information

of the associated system at various points in time.
Such information has immense value from manage-
ment point of view as it is used for decision making
purposes. It could be used to study system behavior,
to detect performance bottlenecks, to recover from
faults, for enforcing service level agreements and so
on.

However, most often there is a gap between the
information that a management application requires
and what is made available by existing instrumen-
tation or monitoring agents. This is because mon-
itoring usually comes with a price in terms of per-
formance degradation. System designers are forced
to be selective about the information that they can
make available. Only those metrics are computed
that are deemed important by them. The reporting
frequency and the data format used for making the
metrics available is also geared towards minimizing
the performance hit. Therefore, management appli-
cations need to derive desired information, in terms of
computing new metrics, by applying some manipula-
tion process to the metrics that are available through
existing instrumentation. Furthermore, many a times
it is necessary to be able to collect and aggregate in-
formation from multiple data sources. This is non-
trivial especially since the monitored data may be
available from heterogeneous and geographically dis-
tributed systems.

Mediator architecture [19] was proposed for such
scenarios. A software module, called mediator, ex-
ploits encoded knowledge about the available data,
to create information needed by a higher layer of ap-
plications. It is accompanied by wrappers that trans-
form information available from data sources into a
common model understood by the mediator. How-
ever, most systems [10, 15, 20] utilize the mediation
concept only for solving problems such as informa-
tion integration from heterogeneous data sources and
data conversion from one format to another.

We present Metric Service (refer Fig. 1) – a me-
diation engine that goes beyond addressing the data
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integration and conversion problem. It provides a
mechanism for declaratively specifying and executing
the logic for creation of desired information required
for decision making. Such capability enables entire
management tasks, that are usually custom-built ev-
ery time, to be made available in the middleware it-
self. It is similar to publish-subscribe systems [17] in
the sense that it receives a stream of raw metrics from
a number of data sources (producers) and transforms
them into composite metrics desired by management
applications (consumers). However, the transforma-
tion process can be specified declaratively and does
more than just filtering. It involves aggregation, i.e.
computing aggregate values from multiple instances
of a single metric and/or composition, i.e. comput-
ing the value of a metric from instances of two or
more different metrics. The values of metric(s) be-
ing aggregated or composed may come from multiple
sources and their arrival may be offset in time.
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Figure 1: Metric Service Block Diagram

At the core of the Metric Service is MS-Policy – an
XML based language that allows the specification of
the metrics manipulation process in terms of metrics
collection, aggregation and composition. Each such
specification becomes the definition of a mediator and
is executed concurrently with others in the Metric
Service. The engine can be embedded inside other
systems or it could be made available as a stand-alone
web service [6] or grid service [5].

1.1 An Example Scenario - Account-

ing

To illustrate the working of Metric Service, we chose
the example of accounting on UNIX servers as the
management task. Most UNIX based operating sys-
tems provide accounting capabilities in terms of pro-
cess accounting, project accounting, system activity

reporting etc. [7]. The operating system modules
that monitor various processes and periodically up-
date system logs are the producers of metrics, in this
scenario. The consumers of such information include
management applications such as resource provision-
ing, cluster management systems, fault handling ap-
plications etc.

Specifically, process accounting provides a capa-
bility in the O/S to record a collection of information
for each and every process completed. The log file
created is called pacct and each log entry includes
metrics such as user-id, group-id, cpu usage, memory
usage etc. Connection related metrics such as login,
logout, system reboot time etc. are logged in wtmp
log. Similarly, disk usage and printer usage records
are logged in dtmp and qacct respectively.

As shown in Fig. 2, the runacct module of the
accounting system, implements a management task
that executes daily to process and report account-
ing data. It collects the information from various
O/S accounting logs such as pacct, dtmp, wtmp etc.
and summarizes them into total accounting records
(taccts). This summarization is done on per user
basis and involves metric aggregation, metric com-
position and event correlation. Examples of these
include computing daily totals of some metrics such
as bytesTransferredForIO, computing cpuUsage from
two metrics systemCpuTime and userCpuTime and
computing connectionTime by correlating login and
logout records respectively.

runacct

tacct

pacct wtmp dtmp fee qacct

process-based

connection-based

disk-based

fee-based

printer-based

runacct

tacct

pacct wtmp dtmp fee qacct

process-based
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disk-based

fee-based

printer-based

Figure 2: Unix Process Accounting

The management software that implements runacct
functionality is currently custom-developed for each
O/S platform. With Metric Service middleware avail-
able, it can be implemented on a given O/S platform
by simply specifying the functionality for that plat-
form in MS-Policy language and instantiating it in a
Metric Service instance. In this scenario, the above
approach, not only helps in managing heterogeneity
and promoting software reuse but enables other types
of accounting as well. For instance, and as described
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later, it can be used to provide unified accounting for
a cluster of heterogeneous servers using existing log
mechanisms.

The rest of the paper is organized as follows. Sec-
tion 2 describes the MS-Policy language. Design and
implementation of the Metric Service engine is dis-
cussed in Sec. 3. Section 4 presents the results of
our performance evaluation experiments. Section 5
discusses some scalability issues and applications of
Metric Service. Finally, Sec. 6 discusses related work
and we conclude in Sec. 7.

2 MS-Policy

Metric Service, being a middleware component, has
to be flexible so that the metrics manipulation logic
specific to each management task can be configured
into it easily. MS-Policy serves as a language for spec-
ifying that logic whereas Metric Service instantiates
that logic as a mediator and executes it. Several is-
sues related to the main aspects – collection, aggrega-
tion and composition of metrics – influence the design
of MS-Policy language. This section identifies those
issues and describes important elements of the MS-
Policy language [9].

2.1 Representation Language

We use XML Schema Definition Language (XSD)1

as the meta language in which the structure and ba-
sic constructs of the MS-Policy language are defined.
Each policy instance is, therefore, an XML document
conforming to this schema. Traditionally, XML has
been used to define, share, and integrate information
from heterogeneous systems and applications. Here,
we go beyond that and apply its structured nature
to enable computation logic to be expressed in an
XML based language. Extensibility of the MS-Policy
language comes as an added benefit by virtue of ex-
tensible nature of XML.

Since Metric Service collects metrics from hetero-
geneous systems, it also has to deal with the tradi-
tional problems of information integration and data
conversion. Mediator architecture comes to rescue
here. A wrapper module obtains raw metrics from
the data producers (i.e. log entries, instrumented
applications etc.) and converts them into a format
understood by the Metric Service engine. We rely
on XML again and use it to specify metric record as
that common format into which all the disparate log
entries get transformed. A metric record is defined

1http://www.w3.org/XML/Schema

<MetricRecordDef name="http://www.ibm.com/ogsa/schema/MetricService/pacct">
<MetricDef>

<!-- user id-->
<Name>ac_uid</Name>
<DataType>integer</DataType>

</MetricDef>
<MetricDef>

<!-- group id -->
 <Name>ac_gid</Name>
     <DataType>integer</DataType>
</MetricDef>
<MetricDef>

<!-- begin time -->
    <Name>ac_btime</Name>
     <DataType>dateTime</DataType>
</MetricDef>
 .....
 .....

</MetricRecordDef>

Figure 3: Metric Record Definition for pacct

as a collection of individual reported metrics, some
of which may represent context information such as
timestamp, user-id, machine-id etc. We consciously
chose to represent metrics in a record because we
observed that each metric is meaningful only in the
scope of its context and a context is common to many
metrics. Moreover, we distinguish between a metric
record definition and a metric record instance which
is a good design for extensibility as demonstrated
in [3, 12].

A metric record definition allows specification of
different types of metric records each of which is given
a unique name. A policy can then refer to these met-
ric record definitions to specify operations on their
instances. Data handling capability of Metric Service
is, therefore, extensible since adding support for new
data simply amounts to adding new metric record
definitions and referring to them in the policies. Fig-
ure 3 shows a fragment of pacct metric record defi-
nition and Fig. 4 shows an example pacct record in-
stance as sent by the wrappers.

<MetricRecord metricRecordDefName="http://www.ibm.com/ogsa/schema/
                                             MetricService/pacct">

<Metric name="ac_uid">123</Metric>
<Metric name="ac_gid">123</Metric>
<Metric name="ac_btime">2003-11-06T14:20:34Z</Metric>
<Metric name="ac_utime">0.238 </Metric>
<Metric name="ac_stime">0.193</Metric>
<Metric name="ac_etime">0.527</Metric>
<Metric name="ac_mem">12.35</Metric>
<Metric name="ac_io">58</Metric>
<Metric name="ac_rw">0</Metric>
<Metric name="ac_comm">ps</Metric>

</MetricRecord>

Figure 4: Metric Record instance for pacct

2.2 Policy Structure

We now describe the structure of a policy specified
using MS-Policy language. It has four components
encapsulated in a MetricRecordDirectiveType (refer
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Fig. 5). The core of the policy, i.e. the metrics ma-
nipulation process, is captured in MetricDirective el-
ements. These are supported by:

• TargetMetricRecord elements that specify which
metric records have to be computed,

• Triggers that specify when those records or their
intermediate metrics have to be computed, and

• InputMetricRecord elements that specify the in-
put metrics, their source and the mechanism to
obtain them.

To enable Metric Service to be shareable across
management applications, it is important to allow si-
multaneous execution of multiple concurrent instances
of such policies. Therefore, each policy is identified
by a name and is instantiated with its own set of
target metric record instances. To apply the same
metric manipulation process for different sets of pro-
ducers/consumers, a copy of the original policy is
made by the administrator and the source of raw in-
put metrics is modified in its InputMetricRecord ele-
ments. This modified policy is then instantiated with
a different name.

Support for multiple concurrent instances also places
other design requirements. The Metric Service has
to take into account the fact that an incoming metric
record may be consumed by more than one policy in-
stance. On the other hand, instances of same kind of
metric record but arriving from different sources may
have to be fed to different policies. It has to take
care that an event (identified by a trigger) may have
to be delivered to different policy instances and mul-
tiple fragments of each policy. It also has to distin-
guish between intermediate and final metric instances
getting computed for different policy instances. The
policy constructs have been designed to support these
situations.

2.2.1 TargetMetricRecord

A TargetMetricRecord element specifies characteris-
tics of a metric record that would contain, at the end
of policy execution, metrics desired by that policy’s
consumer(s). The type of the record represented by a
target metric record is identified by a MetricRecord-
DefName element. Since multiple policies may share
metric record definitions, the definitions for tacct and
all other metric record types are configured into Met-
ric Service engine separately. Management applica-
tions may wish to obtain derived metrics computed
for multiple groups of managed elements. For in-
stance, accounting may be done on a per user ba-
sis or per project basis, resource provisioning may

<complexType name="MetricRecordDirectiveType">
<sequence>

<element name="TargetMetricRecord" type="mrd:TargetMetricRecordType" 
minOccurs="1" maxOccurs="unbounded">

</element>
 

<element name="Trigger" type="mrd:TriggerType" 
minOccurs="0" maxOccurs="unbounded">

</element> 

<element name="InputMetricRecord" type="mrd:InputMetricRecordType" 
minOccurs="1" maxOccurs="unbounded">

</element>

<element name="MetricDirective" type="mrd:MetricDirectiveType"  
minOccurs="1" maxOccurs="unbounded">

</element>
</sequence>

 <attribute name="name" type="string" />
</complexType>

Figure 5: Metric Record Directive (MS-Policy)

be done differently for different classes of customers,
and so on. To cater to this requirement, MS-Policy
supports the notion of a key that consists of a set of
one or more metrics of the input metric records. It
is represented by KeyMetric elements. Derived met-
rics are grouped on the basis of distinct values of the
KeyMetric elements and are collected into separate
target metric record instances – one for each group.
The combination of the values of MetricRecordDef-
Name and KeyMetric elements uniquely identifies a
target metric record within the scope of a policy.

A TriggerChoice element captures the time inter-
vals or the event on the occurrence of which the tar-
get metric record should be computed. It represents
a choice between a new Trigger (described next) or a
reference to an existing one defined somewhere else in
the policy. A MetricRecordPersistence element speci-
fies the retention policy for this target metric record.
Figure 6 shows a policy fragment for specifying a tar-
get metric record of type tacct.

<TargetMetricRecord>
 <MetricRecordDefName>

http://www.ibm.com/ogsa/schema/MetricService/tacct            
</MetricRecordDefName>
<KeyMetric metricName="ta_uid">

<InputRecordKey metricRecordDefName="http://www.ibm.com/ogsa/
 schema/MetricService/pacct">

ac_uid
</InputRecordKey>

</KeyMetric>
<TriggerChoice>

<TriggerName>RD1</TriggerName>
</TriggerChoice>
<MetricRecordPersistenceDirective>

<StorageDuration>P6Y</StorageDuration>
</MetricRecordPersistenceDirective>

</TargetMetricRecord>

Figure 6: Target Metric Record

5



<Trigger name="RD1" xsi:type="ScheduleType">
<startDate>2003-11-21T11:00:00Z</startDate>
<endDate>2006-11-21T14:25:00Z</endDate>
<interval>PT30S</interval>

</Trigger>

<Trigger name="RD2" xsi:type="LogicalExpressionType">
<Predicate operator="Equal">

<Operand>
<MetricOperand>

<MetricDirectiveName>
ut_typeDirective

</MetricDirectiveName>
</MetricOperand>

</Operand>
<Operand>

<Constant dataType="string">RUN_LEVEL</Constant>
</Operand>

</Predicate>
</Trigger>

Figure 7: A Schedule and a LogicalExpression

2.2.2 Triggers

Triggers define the event model of MS-Policy. Each
trigger is activated either by the occurrence of an
event or at pre-determined points in time. On acti-
vation, a trigger initiates the action or a list of actions
associated with it. Trigger type is abstract and is ex-
tended into concrete elements LogicalExpression and
Schedule. A Schedule is specified in terms of start
time, end time and an interval at which the sched-
ule is triggered. It could be used for purposes such
as periodically launching an action for pulling input
metrics from their sources or for driving construction
of a time-series to be used for computing some sta-
tistical aggregation function.

A LogicalExpression represents a condition which,
when evaluated to true, results in the execution of an
action. It is modeled as a boolean expression with re-
lational operators applied to input or derived metrics.
The evaluation of a logical expression happens when
the values of all the involved metrics become avail-
able. It could be used in situations where an action
needs to be triggered on the occurrence of an event
such as detection and handling of faults, provisioning
of resources under heavy load etc. Figure 7 shows an
example of each type.

All common triggers of a policy are placed in the
Trigger element of MetricRecordDirective (refer Fig. 5)
and different portions of a policy either use them or
define their own. Use of common triggers achieves the
effect of synchronization among those policy portions.
Triggers, as specified above, are local to a policy but
the Metric Service engine can optimize by instanti-
ating a single instance if a trigger is common across
policy instances.

<MetricDirective name="ta_rwDirective"  
 xsi:type="CompositeMetricDirectiveType" initialValue="0.0">

<MetricName metricRecordDefName="http://www.ibm.com/ogsa/
 schema/MetricService/tacct">
 ta_rw
</MetricName>
<Function resultType="double" xsi:type="SumAccumulatorFunction" 

                                                                 initialValue="0">
<Operand>

<MetricOperand>
<MetricDirectiveName>ac_rwDirective</MetricDirectiveName>

</MetricOperand>
</Operand>
<TriggerChoice>

<TriggerName>RD1</TriggerName>
</TriggerChoice>

</Function>
</MetricDirective>

<MetricDirective name="ac_rwDirective" xsi:type="LeafMetricDirectiveType">
<MetricName metricRecordDefName="http://www.ibm.com/ogsa/
 schema/MetricService/pacct">

ac_rw
</MetricName>
<InputMetricRecordName>

http://www.ibm.com/irl/OSlogs/pacct_push
</InputMetricRecordName>

</MetricDirective>

Figure 8: Metric Directives

2.2.3 MetricDirectives

A MetricDirective element specifies how a metric’s
value is obtained. It contains an element MetricName
that specifies the name of the metric for which the
metric directive is defined. Collection of MetricDirec-
tives of a policy represents the metric manipulation
process enabled by that policy.

MetricDirective is an abstract type and is extended
into a LeafMetricDirective and a CompositeMetricDi-
rective. LeafMetricDirective is used when the desired
metric is directly available as a raw input metric.
It simply refers to an InputMetricRecord (described
next) that contains the desired metric. For other
metrics that are derived from raw metrics, Compos-
iteMetricDirective specifies the aggregation and com-
position process. It consists of an element Function
and an attribute initialValue. The attribute initial-
Value allows a default value to be used, wherever ac-
ceptable, if no new value could be computed for the
metric on the expiry of a schedule. The element Func-
tion is also an abstract type and acts as a placeholder
for various mathematical functions such as plus, di-
vide etc., and statistical functions such as mean, max,
percentile etc. that have been modeled as its con-
crete subtypes. Functions operate on other functions,
available metrics (specified by their metric directives)
and constants. Functions that act on multiple values
of the same metric (e.g. sum, mean etc.) enable
aggregation functionality. Other functions that op-
erate on multiple metrics (e.g. divide, multiply etc.)
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enable composition functionality. When completely
specified, a function takes the form of a hierarchy of
computations with input metrics as the leaves and a
derived metric as the root.

There is a LeafMetricDirective for each input met-
ric and a CompositeMetricDirective for each metric
in the target metric record(s) as well as for all those
intermediate metrics that may be shared among pol-
icy fragments. Sharing of a metric computation pre-
vents duplication when multiple target metrics need
to be derived using some common intermediate met-
rics. To enable this, each MetricDirective is assigned
a unique name specified in its name attribute so that
other metric directives can refer to it. The name of
the MetricDirective is also used to register it as a re-
ceiver of new values of its operand metrics. Figure
8 shows an example composite metric directive for
ta rw metric in tacct record. ta rw represents number
of cumulative blocks read/written and is computed
from ac rw metric of pacct as represented by the leaf
metric directive, also shown in the same figure.

2.2.4 InputMetricRecord

InputMetricRecord element is identified by a name
attribute. It is used in a LeafMetricDirective to cap-
ture the details of the type of metric record whose
instances would be accepted by the executing policy
in order to obtain the required input metric(s).

It has a MetricRecordDefName element that refers
to the definition of the required input metric record.
The Metric Service uses the metric record definition
names to select the appropriate input metric record
instances, for each executing policy, from the set of
all instances that it receives/obtains. The metric
record definition represented by this name is also re-
quired to interpret the contents of the received met-
ric record instances. A Locator element specifies the
data-source(s) of this policy, i.e. the set of URLs
from which the policy would accept metric record in-
stances.

It also has a CommunicationMethod element that
specifies the mechanism to be used for obtaining the
input records. Depending upon the nature of wrap-
pers available, the records may either be pushed to
the Metric Service asynchronously or they may have
to be pulled synchronously from the wrappers. Both
these semantics are supported in order to maintain
the generality of the Metric Service. An optional
TriggerChoice element specifies the schedule for pulling
the input records from their sources. Figure 9 shows
an example input metric record for pacct records.

<InputMetricRecord name="http://www.ibm.com/irl/OSlogs/pacct_push">
<MetricRecordDefName> 

http://www.ibm.com/ogsa/schema/MetricService/pacct
</MetricRecordDefName>
<Locator>*.in.ibm.com</Locator>
<CommunicationMethod>Push</CommunicationMethod>

</InputMetricRecord>

Figure 9: Input Metric Record

2.3 Accumulator

Metric aggregation functionality requires that a set of
values of a metric be collected over an interval of time
and then aggregated by applying an appropriate func-
tion such as sum, mean etc. In [8], Time-series and
Queue data-structures have been used to accumulate
these raw values periodically and asynchronously re-
spectively. The function is then applied over these
accumulated values. In addition to supporting those
data-structures, we introduce the notion of an accu-
mulator function that enables this functionality with-
out having to store all the raw values, wherever pos-
sible. It essentially maintains a running aggregation
of the raw values. A separate accumulator is defined
to support each statistical function that can be com-
puted in this manner. An accumulator has an asso-
ciated trigger that determines when the accumulated
value is ready to be reported. SumAccumulatorFunc-
tion has been used in the example in Fig. 8.

2.4 Event Correlation

While aggregating metrics, certain scenarios require
that the incoming metric values be correlated across
time. For instance, in the UNIX accounting example
the wtmp record from the connection based account-
ing logs contains login and logout events for each user
session. There may be system reboot events that may
mark end of all open connections. For accounting
purposes such events need to be detected and corre-
lated to compute the effective user connection time
represented by ta con metric in tacct record. To sup-
port event correlation, there are different mechanisms
available such as finite state machines, rule based rea-
soning, model based reasoning etc. [11].

We modeled a deterministic finite state machine
in XML for handling such event correlation and in-
corporated it as a construct available in MS-Policy
language. It can be used as an operand to a func-
tion. We specify StateMachineType as a collection
of one or more State elements. Each State element
is identified by an id attribute that has a value of
StartState and EndState for the initial state and the
terminating states respectively. A State consists of
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a collection of EventAction elements each of which
specifies an event accepted in that state and a set
of actions to be executed on the occurrence of that
event. EventAction element also contains a default
action, GotoState, that is executed after all the other
actions for that event have been executed. An event
is represented by a UserEvent element that is of type
Trigger. An action is represented by an Action el-
ement that contains a Function and an isResult at-
tribute.

<StateMachine>
  <State id="StartState">
    <EventAction>
      <UserEvent>
        <Trigger>
          <Condition>
            <Predicate operator="Equal">
              <Operand>
                <MetricOperand>
                  <MetricDirectiveName>ut_typeDirective</MetricDirectiveName>
                </MetricOperand>
              </Operand>
              <Operand>
                <Constant dataType="string">BOOT_TIME</Constant>
              </Operand>
            </Predicate>
          </Condition>
        </Trigger>
      </UserEvent>
      <Action>
        <Function resultType="boolean" xsi:type="StoreFunction">........</Function>
      </Action>
      <Action>……..</Action>
      <GotoState>1</GotoState>
    </EventAction>
     ........
  </State>
  <State id="1">
    <EventAction>
      <UserEvent>……..</UserEvent>
      <Action isResult="true">……..</Action>
      <GotoState>EndState</GotoState>
    </EventAction>
      .......
  </State>
    ……..
</StateMachine>

Figure 10: State Machine for Event Correlation

Our main purpose of modeling state machines is
to correlate events and perform some computation on
the basis of that correlation. The isResult attribute
specifies whether the result of the associated action
is to be treated as the final result of the computation
performed by the state machine. It distinguishes the
result from other intermediate computations and also
specifies clearly what to propagate out once the state
machine reaches the end state. The collection of all
accepted events for all states forms the input alpha-
bet of the state machine. Set of all <(State), (set of
EventAction elements)> pairs captures its transition
function.

Since we support multiple concurrent policies and
multiple key values in each policy, event correlation
mechanism has to distinguish between events arriv-
ing for different policies and within that for differ-

ent entities (i.e. key values). Therefore, a separate
state machine instance is created for each set of Key-
Metric values in the target metric record. Each exe-
cuting policy has its own state machine instances all
of which are instantiated inside a StateMachineCon-
tainer. From the input metric records arriving at the
Metric Service, the state machine container identifies
the relevant events (i.e. metric-value pairs) for each
state machine instance and delivers them. It also
handles the creation of new state machine instances
whenever an event for a new key value arrives. Apart
from that it also propagates the results of computa-
tions to the Function element of which the state ma-
chine is an operand. Figure 10 shows a partial frag-
ment of a state machine. A value of BOOT TIME
for the metric utType (available from wtmp logs and
represented by utType directive) is accepted as a valid
event by its StartState. State with id 1 has an action
that leads to EndState. Two special functions Load
and Store are defined for state machines to provide
internal data persistence across state transitions.

3 Design and Implementation
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Figure 11: Metric Service Design

Figure 11 shows the software architecture of the
Metric Service engine. Metric producers P1, P2, P3
are basically wrappers that retrieve or receive log en-
tries from instrumented systems, convert them into
appropriate metric records and send those metric records
to the Metric Service. Consumers, on the other hand,
represent management applications that are inter-
ested in one or more derived metrics. They may ei-
ther subscribe to receive those metrics asynchronously
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as and when they are computed or they may query
the Metric Service, whenever required, to retrieve the
composite metrics that have been computed. The
Metric Service is given one or more policies speci-
fying the mediators to be instantiated. We restrict
this operation to an administrator even though the
configuration interface of the Metric Service makes it
possible for customers to add such policies directly.
Since multiple active mediators can co-exist simulta-
neously, the Metric Service acts as a hosting service
for them. A mediator once instantiated, executes un-
til it is explicitly removed by the administrator or its
target metric record’s schedule expires.

3.1 Software Architecture

The Metric Service consists of the following compo-
nents:

1. Policy Parser receives the policies from the
configuration interface. It parses each policy
and forwards its components to different mod-
ules. For instance, metric directives are sent to
the composition engine and triggers to the event
handler.

2. Event Handler allows triggers to be registered
by the policy parser. If the trigger is a sched-
ule, the event handler initiates the associated
action at the intervals specified. For logical ex-
pressions, it evaluates the condition whenever
new values of its operand metrics arrive and
initiates the associated action if it evaluates to
true.

3. Notification Sink module is responsible for
receiving notifications, that contain metric records,
from the producers (i.e. wrappers).

4. Metric Record Parser receives metric records
from the notification sink interface, parses them
and extracts the raw input metrics out of those.
These are then forwarded to the entities that re-
quire them. Event handler uses some of these
metrics to evaluate the triggers registered with
it, the composition engine uses them in the deriva-
tion process of composite metrics.

5. Composition Engine is the heart of the Met-
ric Service. It instantiates and executes the
metric directives of the policies supplied to it
by the policy parser. The triggers, of those
policies, registered with the event handler con-
trol the behavior of the engine while comput-
ing composite metrics. Owing to the object

oriented design of the composition engine and
presence of context information in metric records,
the Metric Service can execute multiple instances
of the same policy or instances of different poli-
cies simultaneously.

6. Target Metric Record Generator receives
individual computed metrics from the Compo-
sition Engine, and generates target metric records
from those. These target metric records are
then dispatched to the consumers who have sub-
scribed to them, through the Subscription in-
terface. These are also stored into the local
database for later retrieval by the consumers.

7. DB is the local database that stores the input
metric records as well as computed target met-
ric records as per their persistence policies.

8. Subscription module allows consumers to sub-
scribe to the target metric records that contain
composite metrics of interest to them.

9. Query module is composed of a query interface
that enables the consumers to submit queries
and a query processor that evaluates these queries
to retrieve stored target metric records that have
been queried for.

3.2 Engine Implementation

We implemented the Metric Service Engine in Java2

and provided it a grid service interface using Globus
OGSA v3.03. Each of the MS-Policy elements is im-
plemented as a Java class with sub-elements imple-
mented as components of the parent class. As men-
tioned earlier, due to the nature of Functions a Com-
positeMetricDirective takes the form of a hierarchy of
computations. A separate instance of this hierarchy
is created for each distinct value of the KeyMetric el-
ements of the target metric record. The event model
of the policy drives the computations in this hierar-
chy. In the current implementation, the metrics ob-
tained from the input metric records enter through
LeafMetricDirectives and are pushed up in the Met-
ricDirective hierarchy. At each level the function(s)
accept outputs of functions from lower levels, other
metrics and constants as operands. The computation
at this level leads to a new value that is pushed up to
be used in further computations. The computation
for a target metric stops when the value reaches the
top element of the hierarchy.

2Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the U.S., other countries, or both.

3Globus Toolkit 3.0. http://www-unix.globus.org/toolkit
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In order to support good request rate, the delivery
of input metric records, to the policy elements that
require them, should be optimized. This is non-trivial
since an input metric record may be required by many
elements across many executing policies. Moreover,
the specific instances that get delivered to a policy de-
pends upon the source of that metric record instance.
We implemented a data-structure that, on arrival of
first metric record instance from a particular source,
creates and stores a mapping from the <data-source-
address, metric-record-name> to the set of destina-
tion elements. For all subsequent instances of those
input records, it takes O(1) time to determine the
set of destination elements where the metric record
instance has to be delivered. Since actual delivery of
metric records to the destination elements involves a
synchronous call, we used a multi-threaded approach
to avoid any bottlenecks in that phase. For delivery
of composite metrics (in the form of target metric
records), our current implementation supports sub-
scription interface and we plan to support the query
interface in future.

4 Performance Evaluation

We now present the details of the experiments that
we conducted to study the performance of our Metric
Service implementation. For the experiments, we re-
quired a client that could generate requests at speci-
fied rate for a given duration. The QoS parameters to
be reported included Achieved Request Rate, Achieved
Reply Rate and Average Response Time, among oth-
ers, for each execution of the client. Since, we could
not find a suitable client for grid services, we imple-
mented our own multi-threaded client in Java similar
to httperf [13].

4.1 Experimental Setup

The testbed consists of one server and one client sys-
tem each running RedHat Linux on a 2.66 GHz Pen-
tium IV processor4, 2 GB RAM, and a 100 Mbps
ethernet network interface. The server system runs
Globus OGSA toolkit v3.0 on Apache Tomcat. Tests
were conducted to study the following behaviors with
increasing request rate:

1. Effect of the policy complexity: The com-
plexity of a policy varies with the number and
kind of computations involved in the metric deriva-
tion procedure. We studied the effect of increas-

4Pentium is a trademark of Intel Corporation in the U.S.,
other countries, or both

ing number of composite metrics to be com-
puted on the server performance. We used kcore
metric of tacct record, that represents cumula-
tive memory usage, as our test metric. Each
composite metric derivation process involved one
division, one multiplication and one addition
for each input metric record.

2. Effect of number of policies: Since multiple
policies may exist and execute simultaneously
in the Metric Service engine, we studied the ef-
fect of varying number of policies on the per-
formance of the system. Each policy consisted
of a single composite metric computation.

3. Effect of number of Key values: As ex-
plained in Sec. 2, for a given data source a
separate target metric record is computed for
each distinct value of KeyMetrics. The num-
ber of distinct values could be very large. For
instance, a server in the Unix accounting ex-
ample may have thousands of users. If used-id
is the KeyMetric then on receipt of the first
pacct record for a user, the Metric Service in-
stantiates a separate MetricDirective instance
corresponding to that user. We conducted ex-
periments to study the behavior of the engine
with respect to varying number of key metric
values in the input data set.

In each of the above cases, to measure the maxi-
mum request rate that the server can handle before
reaching saturation, the client sends requests at rate
starting from 100 per sec. till the server saturates.
Each request used a separate connection. Each ex-
periment consisted of client sending requests at the
specified rate for a duration of 120 seconds.

4.2 Results

Twenty runs of the above described experiments, for
each request rate, were conducted. The results were
measured as the observed reply rate i.e. total number
of requests served divided by the experiment dura-
tion. Figures 12 to 14 depict the mean of the observed
reply rate for twenty runs of various experiments.

Figure 12 shows the plot of the observed reply rate
with the request rate for varying policy complexity.
We performed this test for policies containing 1, 50,
100, 150, 200, and 250 composite metrics to be com-
puted. From the graph we can observe that for the 1
metric case, the reply rate is same as the request rate
till about 200 requests/sec. As the load is increased
beyond this, the server begins to saturate and the
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Figure 12: Effect of policy complexity

observed reply rate levels off. Also as the complex-
ity of the policy is increased from 1 metric to 250
metrics, the server starts saturating at about 180 re-
quests/sec. Assuming that an average policy consists
of 10-20 composite metrics and each metric requires
5-8 computations, our system can support a request
rate of about 200 requests/sec even for complex poli-
cies.
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Figure 13: Effect of number of policies

Figure 13 shows a similar plot for increasing num-
ber of policies from 1 to 25. Here, the server saturates
at about 200 requests/sec for small number of polices,
whereas it saturates at 180 requests/sec for 25 poli-
cies. Hence, the system is scalable enough to support
180 requests/sec for large number of consumers.

Figure 14 shows a similar plot for increasing num-
ber of key metric values in the input data set. Here
we observe that the server saturates after 200 re-
quests/sec. Moreover, the plots are approximately
the same for any number of key metric values. This
shows that the system performance is not effected by
the number of key metric values in the input data set.
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Figure 14: No effect of number of key values

This is as expected because one input record belongs
to only one key metric value and therefore, only the
computation for that key metric value is performed.
Since, the computation procedure is the same for all
key metric values, there is no change in the perfor-
mance.

To measure the “capacity” of our experimental
setup, we implemented a simple grid service that out-
puts ”Hello World” on invocation. Using experiments
similar to the ones described above, we observed that
this service saturated at a request rate of about 525
requests/sec.

5 Discussion

In this section we discuss scalability issues and some
applications of Metric Service.

5.1 Distributed Architecture for Scal-

ability

Metric Service may be used in high load applications
varying from fault handling in complex IT environ-
ments to telecom billing. In such environments scale-
up can be achieved by deploying multiple cooperat-
ing instances. A distributed architecture is feasible
for Metric Service since both its input and output
streams consist of metrics alone. Therefore, in many
cases it is possible to split a policy into fragments or
to create multiple instances of the same policy, each
of which can be executed by a different Metric Service
instance. Four alternatives are possible:

1. Vertical Partitioning: If a policy accepts dif-
ferent kinds of metric records as input then
its computation can be partitioned so that in-
put record types that generate heavy load are
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processed by different Metric Service instances.
The policy tree can be split at those nodes which
segregate the LeafMetricDirectives of these in-
put records. By distributing the incoming met-
ric records to different instances, this approach
helps in scaling up the overall request rate.

2. Horizontal Partitioning: By splitting the
policy in a layered manner we can scale up com-
putational capacity in situations where a small
number of metric directives constitute the bulk
of computation load.

3. Data Source Partitioning: It applies when-
ever the fragments of a policy that involve in-
put metrics from different sources are indepen-
dent of each other. An example includes fault
handling application in a data center where the
goal is to receive and interpret fault related
events from the servers. In such cases, records
from different data sources (e.g. sets of servers
grouped on the basis of clients etc.) can be sent
to different Metric Service instances. It scales
the overall request rate.

4. Random Load Distribution: This approach
involves randomly distributing the input records
to multiple servers each running an instance of
the same policy. It is applicable in situations
where the metrics being computed in those mul-
tiple instances can be aggregated later without
breaking the semantics of the policy.

5.2 Applications of Metric Service

Metric Service finds applications in a variety of com-
plex management scenarios. A few of them are pre-
sented here.

Telecom Mediation: Telecom infrastructures
require mediation between business support systems
and network elements. This includes collecting, man-
aging and delivering subscriber data, subscriber ser-
vice data, usage data and billing information. In tra-
ditional circuit-switched networks this information is
reported in a Call Data Record (CDR) which has a
simple format [14]. It includes fields such as calling
and called numbers, local and remote node names,
date and timestamp, etc. Since the CDR format was
standardized, the same billing software could work
across different network products, providers and so-
lutions. However, for IP based networks more infor-
mation is required to rate the service and content
used in IP services. Also, not all such information
is relevant to every IP service and newer IP services

may require new fields to be introduced. Therefore,
a new extensible record format has been proposed
by IPDR.org [1]. However, now the content of the
IPDRs is no longer fixed and a single billing system
cannot be expected to handle all existing and new IP-
DRs that shall emerge with new IP services. Metric
Service can help such systems achieve customizability
to adapt to newer IP services.

Distributed Unix Accounting: In the UNIX
accounting example we saw that MS-Policy could be
used to specify the mediator for accounting process
of a UNIX server. This can be extended further to
a cluster of servers running different UNIX variants
such as Linux, Solaris, AIX5, etc. Assuming a cluster-
wide notion of user-id, the same mediator could be
used to perform accounting for the whole cluster. The
wrappers on each of the machines would map the
pacct variants on those systems into a common pacct
metric record. The wrappers could further be en-
hanced to report server details as well. Cluster-wide
accounting enabled in this way could be used for ca-
pacity planning, quota enforcement and resource al-
location kind of decision making applications. The
accounting mediator specification could also be used
to augment more general purpose accounting systems
that require metrics composition functionality [3].

Web Service Management: Web Services
have recently emerged as the technology of choice
for building distributed applications. However, their
success depends upon the availability of middleware
infrastructure for management tasks. Various such
middleware components that require derivation of in-
formation from the available raw instrumentation data
can benefit from the Metric Service engine. Such
management components include provisioning, SLAs [8],
metering and accounting [2] etc.

6 Related Work

XML and similar languages have been used for me-
diation, information integration and information ex-
change. [16] describes a semistructured Object Ex-
change Model (OEM) which is similar to XML. The
OEM model forces no regularity on data and each
object has an associated descriptive label that repre-
sents its schema. The authors describe OEM’s suit-
ability in mediating over heterogeneous databases and

5Linux is a trademark of Linus Torvald, Solaris is a trade-
mark of Sun Microsystems, Inc. and AIX is a trademark of
IBM Corp. in the U.S., other countries, or both.
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Internet sources. Unlike OEM, we do not allow met-
ric records with arbitrary nesting that varies from
instance to instance. Instead such nesting is normal-
ized, by wrappers, into multiple metric records each
conforming to the same definition. The simplicity of
this approach coupled with the ability to define new
metric records makes our system applicable to a wide
variety of applications.

The MedMaker [15] system describes a media-
tor specification language that uses declarative rules
to describe the functionality of a mediator. Using
those rules mediators can be generated automatically.
However, their language focusses on mediators that
change the view of data, expressed in OEM, from one
format to another. This enables the system to present
a common view of data to the user.

XMF [10] is an XML based mediation framework
that is aimed at providing uniform view of data from
heterogeneous Internet data sources such as online
stores. They provide a mediator architecture, a wrap-
per architecture and XML based mediation rules to
accomplish this. [18] proposes a new operation called
Merge that operates on streams of XML documents,
with no schema specified, and combines them into a
new XML document. XML Data Mediator (XDM) [20]
is a lightweight mediator for bi-directional data con-
version between XML and structured data formats
such as relational or LDAP data. Most of the sys-
tems described above have been aimed at a media-
tor that selects, restructures and merges information
from multiple autonomous sources or sites. This is
done for exporting an integrated view of the hetero-
geneous data for enabling applications such as vir-
tual shopping malls, virtual agencies etc. [4]. In con-
trast, Metric Service uses the mediator architecture
and the flexibility of XML to specify mediator func-
tionality that enables decision making applications to
obtain/derive desired information from heterogenous
data sources.

Web Service Level Agreement (WSLA) project6

has developed a framework that allows specification
and monitoring of SLAs for web services[8]. MS-
Policy has constructs inspired from and, in some cases,
directly adopted from the WSLA language. How-
ever, certain key differences distinguish the two sys-
tems. While WSLA is focussed towards specification
of SLAs, Metric Service provides a more generic me-
diation layer applicable to various management ap-
plications. It deals with metrics in conjunction with
their associated context information that enables it
to handle multiple producers and consumers. Ab-
sence of explicit context, in WSLA, allows only one

6http://www.research.ibm.com/wsla

value of a metric to be represented at a point of time
and aggregation of metric values cannot be grouped
on the basis of some key. WSLA also does not have
support for event correlation.

7 Conclusion

We described a configurable middleware component
– Metric Service – that provides a mechanism for
declaratively specifying and executing the logic for
creation of information required by management ap-
plications. We introduced – MS-Policy – an extensi-
ble XML based language that allows specification of
the information derivation process in terms of met-
rics aggregation and composition. We described the
system design and demonstrated it through a pro-
totype implementation. Metric Service allows infor-
mation manipulation in addition to filtering allowed
in publish-subscribe systems and also handles tra-
ditional information integration issues. We demon-
strated that Metric Service enables concurrent exe-
cution of multiple policies making it shareable among
multiple management applications simultaneously. We
evaluated our implementation and discussed how it
can be scaled up further for high load environments.

The ability to specify a management task declar-
atively can be of great importance in management
frameworks such as Distributed Management Task
Force’s CIM7. This is mainly because such frame-
works enable a common management infrastructure
for the whole IT environment but lack the ability to
provide management functionality in the middleware
itself. Metric Service can help fill some of that gap
and we are investigating it further.
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