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Abstract

We consider the online scheduling problem for sorting buffers on a line metric. This problem
is motivated by an application to disc scheduling. The input to this problem is a sequence of
requests. Each request is a block of data to be written on a specified track of the disc. The disc
is modelled as a number of tracks arranged on a line. To write a block on a particular track, the
scheduler has to bring the disc head to that track. The cost of moving the disc head from a track
to another is the distance between those tracks. A sorting buffer that can store at most k request
at a time is available to the scheduler. This buffer can be used to rearrange the input sequence.
The objective is to minimize the total cost of head movement while serving the requests. On a
disc with n uniformly-spaced tracks, we give a randomized online algorithm with a competitive
ratio of O(log3

n) against an oblivious adversary. This algorithm also yields a competitive ratio
of O(α−1 log3

n) if we are allowed to use a buffer of size αk for any 1 ≤ α ≤ log n. This is the
first non-trivial approximation for the sorting buffers problem on a line metric. Our technique
is based on probabilistically embedding the line metric into hierarchically well-separated trees.
We show that any determinisitc strategy which makes scheduling decisions based only on the
content of the buffer has a competitive ratio of Ω(k).
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1 Introduction

Disc scheduling is one of the fundamental problems in the design of storage systems. Standard text
books on operating systems contain detailed discussion on disc scheduling. They discuss various
heuristics for scheduling the movement of the disc head. It is to be noted that the difference in the
performance of different scheduling strategies can be seen only when a buffer which can hold more
than one request in order to rearrange sequence is available (See section 13.2 in [9]). In this paper, we
consider the problem of efficiently scheduling the head movement of a disc when a buffer of limited
size is available to rearrange an online sequence of requests. Overlooking certain operational details,
the disc is modelled as a number of tracks arranged on a straight line. The input is a sequence
of requests. Each request is a block of data and specifies the track on which the data needs to be
written. Available to the scheduler is a buffer which can store at most k requests at a time. This
buffer can be used to rearrange the input sequence. To write a block of data onto a track, the disc
head has to be moved to that track. The cost of moving the head from track i to track j is assumed
to be |i − j|. The goal of the scheduler is to serve all the requests while minimzing the overall cost
of head movement. We call this problem the Sorting Buffers problem (SBP) on a line metric to be
consistent with previous work. Note that, in the absence of the sequencing restriction, the optimal
schedule can be found offline by simply sorting the requests.

The Disc Scheduling problem is well studied in the design of storage systems. Several popular
heuristics like SSF, STF, and CSCAN have been proposed. However, this problem has so far been
not studied from the point of view of approximation guarantees. Andrews et. al [1] studied a related
disc scheduling problem in the offline setting. They consider a model in which a convex reachability
function determines how long it takes for the head to move between two tracks. Given a set of
requests, they consider the problem of minimizing the time required to serve all the requests. Note
that, unlike the SBP, their problem does not impose any sequencing restriction. They give a 3/2
approximation for the problem by exploiting its relation to a special case of the asymmetric travelling
salesman problem called ATSP-∆. They also show that the problem can be solved optimally in
polynomial time if the reachability function is linear. They leave the online problem with buffers,
which is essentially SBP, as an open problem.

1.1 Previous work

The SBP can in fact be defined on any metric space. The input is then a sequence of requests each
of which corresponds to a point in the metric space. To serve a request after its arrival, the server
has to visit the corresponding point. The cost of moving the server from a point to another is the
distance between those points. The sorting buffer which can store at most k requests can be used to
rearrange the sequence and the goal is to minimize the total movement of the server to serve all the
requests. Let N denote the total number of requests. It is easy to see that if k = N and there is one
request to each point, then this problem is essentially the Hamiltonian path problem on the given
metric. Thus the offline version of SBP on general metrics is NP-hard. On a line metric, however, it
is not known if the offline version is NP-hard. To the best of our knowledge, no non-trivial lower or
upper bounds on the approximation (resp. competitive) ratio of either deterministic or randomized
offline (resp. online) algorithms are known for a line metric.

The SBP on a uniform metric (in which all pair-wise distances are 1) has been studied before.
Racke et al. [8] presented a deterministic online algorithm, called Bounded Waste that has O(log2 k)
competitive ratio. They also showed that some natural strategies like First-In-first-Out, Least-
Recently-Used, etc. have Ω(

√
n) competitive ratio. Kohrt and Pruhs [7] also considered the uniform

metric but with different optimization measure. Their objective was to maximize the reduction in
the cost from that of the schedule without a buffer. They presented a 20-approximation algorithm
for this version. This ratio was later improved to 9 by Bar-Yehuda and Laserson [2]. It is not known
if the offline version of SBP on the uniform metric is NP-hard.

The offline version of the sorting buffers problem on the uniform metric as well as the line metric
can be solved optimally using dynamic programming in O(N k+1) time where N is the number
of requests in the sequence. The main observation in constructing the dynamic program is the
observation that the buffer can pick from one of the

(

i
k

)

choices in buffering k requests from the first
i requests when it receives the (i + 1)th request. Suppose there is a constraint that a request has to
be served within D time steps of it being released, then, the dynamic program can be modified to
compute the optimal schedule in O(Dk+1) time.

The dial-a-ride problem with finite capacity considered by Charikar and Raghavachari [5] is
related to our problem. In this problem, the input is a sequence of requests each of which is a source-
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destination pair in a metric space on n points. For each request, an object has to be transferred
from the source to the destination. The goal is to serve all the requests using a vehicle of capacity
k so that total length of the tour is minimized. The non-preemptive version requires that once an
object is picked, it can be dropped only at its destination and in the preemptive version the objects
can be dropped at intermediate locations and picked up later. Charikar and Raghavachari [5] give
approximation algorithms for both preemptive and non-preemptive versions using Bartal’s metric
embedding result. Note, however, that the disc scheduling problem enforces a sequencing constraint
that is not imposed by the dial-a-ride problem. In the disc scheduling, if we are serving the ith
request, then it is necessary that at most k requests from first to (i − 1)th request be outstanding.
Whereas, in the dial-a-ride problem, the requests can be served in any order as long as they meet
the capacity requirement. Therefore the techniques used by them can not be used directly for the
disc scheduling problem. They give O(log n) approximation for the preemptive case and O(

√
k log n)

approximation for the non-preemptive case. The capacitated vehicle routing problem considered by
Charikar et al. [4] is a variant in which all objects are identical and hence an object picked from a
source can be dropped at any of the destinations. They give the best known approximation ratio of
5 for this problem and survey the previous results.

1.2 Our results

We first show in Section 3 that natural strategies such as First-In-First-Out, Nearest-First, and
Scan are not appropriate for this problem and that they have a competitive ratio of Ω(k). We also
show that any deterministic algorithm that takes decisions just based on the buffer contents has a
competitive ratio of Ω(k).

Next in Section 4, we provide the first non-trivial competitive ratio for the online SBP on a
line metric. For a line metric {1, . . . , n} with distance between i and j being |i − j|, we present a
randomized online algorithm with a competitive ratio of O(log3 n) against an oblivious adversary.
This algorithm also yields a competitive ratio of O(α−1 log3 n) if we are allowed to use a buffer of
size αk for any 1 ≤ α ≤ log n.

Our algorithm is based on the probabilistic embedding of the line metric into the so-called
hierarchical well-separated trees (HSTs) first introduced by Bartal [3]. Bartal proved that any
metric on n points can be probabilistically approximated within a factor of O(log n log log n) by
metrics on HSTs. This factor was later improved to O(log n) by Fakcharoenphol et al. [6]. In fact it
is easy to see that the line metric {1, . . . , n} can be probabilistically approximated within a factor
of O(log n) by the metrics induced by binary trees of depth 1 + log n such that the edges in level i
have length n/2i. We provide a simple lower bound on the cost of the optimum on a tree metric by
counting how many times it must cross a particular edge in the tree. Using this lower bound, we
prove that the cost of our algorithm is within the factor of O(log3 n) of the optimum.

Our algorithm easily generalizes to the following metrics. We call a edge-weighted rooted tree
“β-growing” if for any edge e in the tree, the total weight of the subtree below e is at most β times
the weight of e. For a metric defined by the shortest paths in an β-growing tree, our algorithm has
a competitive ratio of O(βh) where h is the height of the tree. Since O(log n)-growing trees of depth
O(log n) approximate a line metric within a factor of O(log n), we get an overall competitive ratio
of O(log3 n) for a line metric.

Our algorithm also generalizes naturally to the metric spaces with the property that for any
subset of points, the cost of the minimum spanning tree on those points is comparable to the
maximum pair-wise distance for those points. (*** check!)

2 The Sorting Buffers Problem

Let (V, d) be a metric on n points. The input to the Sorting Buffers problem consists of a sequence
of N requests. The ith request is labelled with a point pi ∈ V . There is a server which is initially
located at a point p0 ∈ V . To serve ith request, the server has to visit pi after its arrival. There is
a sorting buffer which can hold up to k requests at a time. The first k requests arrive initially. The
(i + 1)th request arrives after we have served at least i − k requests among the first i requests for
i ≥ k. Thus we can keep at most k requests pending at any time. The ouput is such a legal schedule
(or order) of serving the requests. More formally, the output is given by a permutation π of 1, . . . , N
where the ith request to be served is denoted by π(i). Since we can keep at most k requests pending
at a time, a legal schedule must satisfy that the ith request to be served must be among first i + k
requests arrived, i.e., π(i) ≤ i + k. The cost of the schedule is the total distance that the server has
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Figure 1: Two common ways of constructing worst case inputs

to travel, i.e., Cπ =
∑N

i=1 d(pπ(i), pπ(i−1)) where π(0) = 0 corresponds to the starting point. The
Online Sorting Buffers problem (SBP) is to find a legal schedule π that minimizes Cπ where the
(i+1)th request is revealed only after serving at least i− k requests for i ≥ k. In the offline version,
the entire input sequence is known upfront.

2.1 The disc model

The disc is modelled as an arrangement of tracks numbered 1, . . . , n. The time taken to move a disc
head from track i to track j is assumed to be |i − j|. The Disc Scheduling problem is the sorting
buffers problem on this line metric space ({1, . . . , n}, d) where d(i, j) = |i− j|. We observe that any
schedule which respects buffer constraints has an O(k) approximatio ratio. To see this, note that, for
every 2k consecutive crossings of a track t by the given schedule, any schedule using a buffer of size
k has to cross t atleast once. When considered over all the tracks, it implies an O(k) approximation.

3 Why Natural Strategies Fail

In this section, we show lower bounds for the competitive ratios for some strategies considered for
other scheduling problems. We also show two ways of generating worst case inputs for deterministic
strategies.

Consider the FIFO strategy and let the head be at track 0. The input repeats the following
sequence many times over: {X,−1(k times)−1, 0(k+1 times)} where X is a large integer. For every
k trips to the X that the FIFO strategy makes, the optimal makes just one trip by buffering the k
requests and serving the 0 and -1 requests as they come. Thus, FIFO is Ω(k)-competitive.

Consider the “nearest first strategy”, also called STF. Let the head be at track 0. Let the input
be X (k times) followed by a sequence of {1, 0, 1, 0, . . .1, 0, . . .} where X > 3. The STF strategy
keeps the requests for the track X in the buffer and shuffles between 0 and 1. When the sequence
is very long, the optimal would be to first clear all the requests at X and then save a factor of O(k)
movement between 0 and 1. So, STF is also Ω(k)-competitive.

We could show a lower bound of Ω(k) for many deterministic strategies, some involving compli-
cated decision making. Two common ways of generating worst case inputs emerged. The first way,
as in the case of FIFO schedule, is to generate an input in which the strategy fails to buffer far off
requests. Consider Figure 1(a). The deterministic strategy fails to buffer the requests at the far end
E whereas the optimal travels to the far end after buffering k such requests. The second way, as in
the case of STF, is to force the strategy to keep the same set of requests in the buffer for long time.
Consider Figure 1(b). Suppose there are k − 1 requests at the end E. Let the sequence of nearby
requests at O be very long. Optimal schedule will clear the requests at E and save an Ω(k) on the
long sequence. The deterministic strategy will be forced to keep the requests at E pending and thus
incur a cost of Ω(k) of the optimal.

3.1 Memoryless Deterministic Algorithms

We call a deterministic strategy to be memoryless if it makes its scheduling decisions based purely
on the set of pending requests in the buffer. In this section, we prove the following theorem.

Theorem 3.1 The lower bound on the approximation ratio for deterministic memoryless strategies
is Ω(k).

Proof. Consider k + 1 points, denoted by S, on a straight line at distances of 1, k, . . . , kk from
the origin. Let A be any deterministic memoryless strategy. Start with a request at each point.
Whenever the strategy moves the head from pi to pj , release a new request at pi. Thus, at all times,
the pending requests and the head location together span all the points in S. Construct a directed
graph G on the points in S as follows: add an edge (pi, pj) if the head moves from pi to pj when
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there is a pending request at each of the points in S. Observe that the out-degree of every node is
one and G must have a cycle.

Suppose there is a cycle of length two between pi, pj ∈ S. Let the head be at pi (with pending
requests at all other points). Consider a long sequence of the form pi, pj , pi, pj , . . . ,. The strategy A
will traverse the cycle keeping the other k − 1 requests in the buffer. The optimum algorithm will
instead serve the other k − 1 requests and use the buffer to save Ω(k) factor of the trips between pi

and pj . Observe the similarity with the situation in Figure 1(b).
Suppose all the cycles are of length greater than two. Consider a cycle C between points

p1, p2, . . . pc ∈ S where c > 2. The points in S are such that, there must exist an edge e ∈ C
whose length is O(k) times more than the total length of all the other edges in C. Let the edge e
be from pi to pj . Let the head be at pi with requests on all other points. Consider a long repeating
sequence of pi, pj , . . . , pc, p1, . . . , pi−1. If there are X repetitions of the cycle, then the strategy A will
make X trips of the cycle C. The optimal on the other hand chooses to first serve all the requests
except the one at pj . After that, it clears the requests as they appear while buffering the requests
to pj . Thus, it makes X/Ω(k) trips to pj . Thus, its overall cost is a factor Ω(k) less than that of A.
Observe the similarity with the situation in Figure 1(a).

Thus, any deterministic memoryless strategy has a competitive ratio of Ω(k).

4 Algorithms for Sorting Buffers

4.1 A lower bound on OPT for a tree metric

Consider first an instance of SBP on a two-point metric {0, 1} with d(0, 1) = 1. Let us assume that
p0 = 0. There is a simple algorithm that behaves optimally on this metric space. It starts by serving
all requests at 0 till it accumulates k requests to 1. It then makes a transition to 1 and keeps serving
requests to 1 till k requests to 0 are accumulated. It then makes a transition to 0 and repeats. It is
easy to see that this algorithm is optimal. Consider the First-In-First-Out algorithm that does not
use the buffer at all and serves any request as soon as it arrives. It is again easy to see that this
algorithm is O(k)-competitive.

We use OPT(k) to denote both the optimum algorithm with a buffer of size k and its cost. The
following lemma states that OPT(k) scales linearly with the buffer size.

Lemma 4.1 For a two-point metric, for any 1 ≤ l ≤ k, we have OPT(k) ≥ OPT(dk/le)/2l.

Proof. Let p0 = 0. By the time OPT(dk/le) makes l trips to 1, we know that OPT(k) must have
accumulated at least k requests to 1. Therefore OPT(k) must travel to 1 at least once. Note that the
l trips to 1 cost at most 2l for OPT(dk/le). We can repeat this argument for every trip of OPT(k)
to prove the lemma.

Using the above observations, we now present a lower bound on the optimum cost for the sorting
buffers problem on a tree metric.1 Consider a tree T with lengths de ≥ 0 assigned to the edges
e ∈ T . Let p1, . . . , pN denote the input sequence of points in the tree. Refer to Figure 2. Fix an
edge e ∈ T . Let Le and Re be the two subtrees formed by removing e from T . We can shrink Le

to form a supernode 0 and shrink Re to form a supernode 1 to obtain an instance of SBP on a
two-point metric {0, 1} with d(0, 1) = de. Let LBe denote the cost of the optimum on this instance.
It is clear that any algorithm must spend at least LBe for travelling on edge e. Thus

LB =
∑

e∈T

LBe (1)

is a lower bound on the cost OPT of the optimum of the original tree instance. Again the First-In-
First-Out algorithm that does not use the buffer and serves the requests as soon as they arrive is
O(k)-competitive.

Let LB(k) denote the above lower bound on OPT(k), the optimum with a buffer of size k. The
following lemma follows from Lemma 4.1.

Lemma 4.2 For any 1 ≤ l ≤ k, we have LB(k) ≥ LB(dk/le)/2l.

1Recall that a tree metric is a metric on the set of vertices in a tree where the distances are defined by the path

lengths between the pairs of points.
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Figure 2: Lower bound contributed by edge e in the tree
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Figure 3: Partition of the leaves in a phase of the algorithm

4.2 An algorithm on a binary tree

Consider rooted a binary tree T on n = 2h leaves. The height of this tree is h = log n. The edges
are partitioned into levels 1 to h according to their distance from the root; the edges incident to the
root are in level 1 while the edges incident to the leaves are in level h. Figure 3 shows such a tree
with n = 8 leaves. Let each edge in level i have cost n/2i. Consider a metric defined on the leaves
of this tree. In this section, we present a deterministic online algorithm for SBP on this metric that
has a competitive ratio of O(log2 n). Since the First-In-First-Out algorithm has a competitive ratio
of O(k), we assume that k > h = log n. We also assume for simplicity that h divides k.

4.2.1 Algorithm.

The algorithm goes in phases. Suppose that in the beginning of a phase, the server is present at a
leaf v as shown in Figure 3. We partition the leaves other than v into h subsets as shown in the
figure. Consider the path Pv from v to the root. Let Ti be the tree hanging to the path Pv at
level i for 1 ≤ i ≤ h. Let Vi be the set of leaves in Ti. We think of the sorting buffer of size k
as being divided into h sub-buffers of size k/h each. We associate the ith sub-buffer with Vi, i.e.,
we accumulate all the pending requests in Vi in the ith sub-buffer. The algorithm maintains the
following invariant.

Invariant. Each of the h sub-buffers has at most k/h requests, i.e., there are at most k/h
pending requests in any Vi.

We input new requests till one of these sub-buffers overflows. Suppose that the jth sub-buffer
overflows. The algorithm then clears all the pending requests in the subtrees Tj , Tj+1, . . . , Th. To
serve these requests, the server performs a Eulerian traversal of the trees Tj , . . . , Th and in the end
resides at an arbitrary leaf of the tree Tj . The algorithm then goes to the next phase.
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4.2.2 Analysis.

To prove the correctnes of the algorithm we have to argue that at most k requests are pending at
any point in the algorithm. This is in fact guaranteeed by the invariant.

Lemma 4.3 The invariant is satisfied in the beginning of any phase.

Proof. Initially, when no requests have arrived, the invariant is trivially satisfied. Suppose that it is
satisfied in the beginning a phase and that the jth sub-buffer overflows in that phase. The division
into trees and sub-buffers changes after the move. However since the server resides in Tj , all the
trees T1, . . . , Tj−1 and their corresponding sub-buffers remain unchanged. Also since the algorithm
clears all the pending requests in the trees Tj , . . . , Th, the jth to hth sub-buffers after the move are
all empty. Thus the invariant is also satisfied in the beginning of the next phase.

Next we argue that the algorithm is O(log2 n) competitive.

Theorem 4.4 The total distance travelled by the server in the algorithm is O(OPT · log2 n). (***
is there an additive term?)

Proof. For an edge e ∈ T , let LBe(k) be the lower bound on OPT(k) contributed by e as defined
in Section 4.1. Let LB(k) =

∑

e LBe(k). Let LBe(k/h) and LB(k/h) be the corresponding quantities
assuming a buffer size of k/h. We know from Lemma 4.2 that

OPT(k) ≥ LB(k) ≥ LB(k/h)/2h = LB(k/h)/2 logn.

To prove the lemma, next we argue that the total cost of the algorithm is O(LB(k/h) · log n).
To this end, consider a phase t. Suppose jth sub-buffer overflows in this phase. Let v be the leaf

corresponding to the current position of the server and let u be the vertex on the path from v to the
root between the levels j and j − 1. In this phase, the algorithm spends at most twice the cost of
subtree below u. Let e be the parent edge of tree Tj , i.e., the edge that connects Tj to u. Note that
the cost of e is n/2j while the total cost of the subtree below u is 2(log n−j) ·n/2j = O(log n ·n/2j).
With a loss of factor O(log n), we charge the cost of clearing the requests in Tj ∪ · · · ∪Th to the cost
paid in traversing e in this phase. We say that the phase t transfers a charge of n/2j to e.

Now fix an edge e ∈ T . Let Ce denote the total charge transfered to e from all the phases. We
now argue that Ce ≤ LBe(k/h). Refer to Figure 2. Let Le and Re be the two subtrees formed by
removing e from T . Now Ce is the total cost paid by our algorithm for traversing e in the phases
which transfer a charge to e. Note that in these phases, we traverse e to go from Le to Re or
vice-versa only since there are at least k/h pending requests on the other side. Thus Ce is a at
most LBe(k/h), the lower bound contributed by e assuming a buffer size of k/h. Therefore we have
∑

e Ce ≤ ∑

e LBe(k/h) = LB(k/h) and the proof is complete.

Lemma 4.5 For any 1 ≤ α ≤ log n, there is an O(α−1 log2 n) competitive algorithm for SBP on
the binary tree metric defined above if the algorithm is allowed to use a buffer of size αk.

The algorithm is similar to the above one except that it assigns a sub-buffer of size αk/h to each of
the h subtrees. The proof that it has the claimed competitive ratio is similar to that of Theorem 4.4
and is omitted. The algorithm presented above generalizes naturally to the following metrices.

Definition 4.1 An edge-weighted rooted tree is called β-growing if for any edge e in the tree, the
total weight of the subtree below the parent of e is at most β times the weight of the edge e.

Note that the binary tree considered in Section 4.2 is O(log n)-growing tree. The proof of the
following theorem is very similar to that of Theorem 4.4 and is omitted.

Theorem 4.6 Consider a metric on the leaves of an β-growing tree where the distances are defined
by the shortest path lengths. There is a deterministic online algorithm for SBP on this metric with
a competitive ratio of O(βh) where h denotes the height of the tree. Furthermore for any 1 ≤ α ≤ h,
the competitive ratio can be improved to O(α−1βh) using a buffer size of αk.

4.3 An algorithm on a line metric

Our algorithm for a line metric is based on the probabilistic approximation of the line metric by a
binary tree metric considered in the previous section. We first define some notions.
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Definition 4.2 (Bartal [3]) A set of metric spaces S over a set of points V α probabilistically
approximates a metric space M over V , if

• every metric space in S dominates M , i.e., for each N ∈ S and u, v ∈ V we have N(u, v) ≥
M(u, v), and

• there exists a distribution over the metric spaces N ∈ S such that for every pair u, v ∈ V , we
have E[N(u, v)] ≤ αM(u, v).

Definition 4.3 A r-hierarchically well-separated tree (r-HST) is a edge-weighted rooted tree with
the following properties.

• The weights of edges between a node to any of its children are same.

• The edge weights along any path from root to a leaf decrease by at least a factor of r.

Bartal [3] showed that any connected edge-weighted graph G can be α probabilistically approxi-
mated by a family r-HSTs where α = O(r log n log log n). Fakcharoenphol, Rao and Talwar [6] later
improved this factor to α = O(r log n). It is very easy to see that the following lemma holds. We
provide the proof for completeness.

Lemma 4.7 A line metric on uniformly-spaced n points can be O(log n) probabilistically approxi-
mated by a family of binary 2-HSTs.

Proof. Assume for simplicity that n = 2h for some integer h. Let M be a metric on {1, . . . , n}
with M(i, j) = |i − j|. Consider a binary tree T on 2n leaves. Label the leaves from left to right as
l1, . . . , l2n. Partition the edges into levels as shown in Figure 3, i.e., the edges incident to the root
are in level 1 and those incident to the leaves are in level 1 + log n. Assign a weight of n/2i to each
edge in level i. Now pick r uniformly at random from the set {0, 1, . . . , n− 1}. Let N be the metric
induced on the leaves lr+1, lr+2, . . . , lr+n and consider a bijection from {1, . . . , n} to {lr+1, . . . , lr+n}
that maps i to lr+i.

It is easy to see that under this mapping, the metric space N dominates M . Now consider any
pair i and i + 1. It is easy to see that E[N(lr+i, lr+i+1)] = O(log n). By linearity of expectation,
we have that for any pair 1 ≤ i, j ≤ n, we have E[N(lr+i, lr+j)] = O(log n · |i − j|). Therefore this
distribution over the binary 2-HSTs forms O(log n)-approximation to the line metric as desired.

It is now easy to extend our algorithm on binary 2-HSTs to the line metric. We first pick a binary
2-HST that from the distribution that gives O(log n) probabilistic approximation to the line metric.
Then we run our deterministic online O(log2 n)-competitive algorithm on this binary tree. It is easy
to see that the resulting algorithm is a randomized online algorithm that achieves a competitive
ratio of O(log3 n) against an oblivious adversary. It is necessary that the adversary be oblivious to
our random choice of the 2-HST metric. Again for 1 ≤ α ≤ log n, we can improve the competitive
ratio to O(α−1 log3 n) by using a buffer of size αk.

5 Conclusions

No complexity results are known for even the special case of sorting buffers on uniform metrics.
This includes hardness results for the offline version and lower bounds on competitive ratios for
online algorithms. Any result in this direction will be very interesting. The O(log2 k) approxima-
tion algorithm for the sorting buffers on uniform metrics is deterministic. It looks unlikely that a
deterministic strategy will give non-trivial approximation ratios for the disc scheduling problem. An
O(k) lower bound on the competitive ratio of any deterministic strategy would be interesting.
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