
�
����������	
�	��
���

�

���

�

�

���������	
�����	��
�

�

��������������	����������	��

����	������������	����������� ������
�

�

!�����"�����

��������	�����������
�

�����
��	�����	���� 	!�

�"��#�����$�$%$��	������&	�'�(�	��

)�*���"���+����������
��	�

�

�

��#	���"�� �����

��������	�����������
�

�����
��	�����	���� 	!�

�"��#�����$�$%$��	������&	�'�(�	��

)�*���"���+����������
��	$�

�

��

�

"�����������	��

����%$�$,	���
�����	������
����

&	*����
���)�*�-��#��.�/�

�

�

���������	
����������

��������$���������$����%�� �$�������$�&�����$��'('�)�����$��#*�$�+�	�
��

�

,���������"����-��./�/.����0��%������������	��!��
���!�������1�����!"��	���
�

���������1�����	
��*�""����!	!"�!�������2����� �1�	��������1�����!"��	���
$������	��

!��
��������	��	�����	�����������1����	�"��������
	���
��1�������
��
��$���
����*��1�

������	
�1����1������2��������������������!"�����������������!����
����������1�����������

�����!"��	���
�����"��!��"��������������������
��	���
��	
�������1�����3�����$��/1����

�������� ��!"��	���
�� ��3������ ����"�� !�� 1�""��� �
"� !� �����
��� ��� "�2	""� �!�	�
���

��������1�����	����"��4�2���	��
���1���	"����5$����������	�!����3�������1��������

%$�$� ,	���
� ����	���� ��
����� 6�!"��	���
��� 6$7$� ��8� ��9�� -��#��*
� &��2�����)-�

��:;9� .�/� 4��	�"0� � �������<��$�!�$���5$$� � � ����� �������� 	��� 	�	�"	!"�� �
� ����

�
���
���	������0==����
�$*	���
$�!�$���="�!�	�=�!����2$
�1=�����$

�

 2

It is now widely believed [1] that to reduce “friction” between stakeholders, collaboration needs
to be a central aspect of software lifecycle tools. We feel this is particularly true for the
collaboration-intensive phase of requirements management. Keeping today’s distributed teams in
mind, we have prototyped an Eclipse-based collaborative requirements tool called EGRET. This
report provides the context in which EGRET has been developed, presents a detailed tool
overview, and also discusses our plans for piloting EGRET. We conclude with a summary of
related work, and directions for future research.

1 INTRODUCTION... 3
2 BACKGROUND ... 4
3 TOWARDS A COLLABORATIVE REQUIREMENTS MANAGEMENT TOOL ……………5

3.1 EXAMPLE USE CASES... 5
3.2 DESIGN CONSIDERATIONS.. 7

4 EGRET: BRINGING COLLABORATION INTO DISTRIBUTED REQUIREMENTS
MANAGEMENT.. 9

4.1 GENERAL OVERVIEW ... 9
4.2 INFORMAL COLLABORATION USING EGRET... 11

Synchronous and asynchronous communication: ... 11
4.3 PROMOTING AWARENESS... 13
4.4 MANAGING CHANGES THROUGH FORMAL COLLABORATION ... 14

Submitting Change Requests: ... 15
Processing Change Requests:... 15
Acting on Change Notifications:... 16

4.5 KNOWLEDGE MANAGEMENT ... 17
5 IMPLEMENTATION OVERVIEW... 18

Eclipse Plug-ins:... 18
EGRET Meta-model.. 19

6 PILOTING EGRET.. 22
6.1 USAGE ANALYSIS... 22
6.2 META-DATA ANALYSIS ... 22

7 RELATED WORK ... 22
8 CONCLUSIONS AND FUTURE WORK .. 24
9 REFERENCES.. 24

 3

1 Introduction

During the last two decades, the software industry has witnessed a paradigm shift, whereby the
management, development and maintenance of software have evolved from being concentrated at
a single site to being geographically dispersed across the globe. This phenomenon is variously
referred to as the “globalization of software” or “distributed / multi-site development”. A number
of business reasons have contributed to this trend. To start with, the global demand for software
products and services beginning in the late 1980s led to a flood of mergers and acquisitions, as IT
firms strived to penetrate new markets and complement their product lines. At the same time,
companies increasingly chose to focus on core competencies and hand-off or “outsource” some of
the other necessary activities to firms specializing in those areas. “Offshoring” brought in further
benefits: low labor cost in developing countries, availability of a large pool of skilled labor, and
the prospect of being able to do round-the-clock development. Of course, the process has also
been aided by significant technological advances; most importantly, the explosive growth of the
Internet, which often makes distances irrelevant, and has brought remote collaboration into the
realm of possibility. Little wonder then, that a study in 2000 [2] revealed that 70% of US firms
have outsourced some kind of business process, and 203 of US Fortune 500 companies engage in
offshore outsourcing; or, that according to a Gartner Inc. estimate [3] in 2004, one of every 10
jobs in US tech companies would have moved to emerging markets by the end of the year.

Distributed/ multi-site software development is a natural consequence of these business drivers.
However, the perceived benefits notwithstanding, multi-site development is also fraught with
innumerable challenges. The critical issue is the inability to communicate effectively across
distances, cultures and time-zones. This in turn, gives rise to other problems like lack of trust,
lack of information sharing, and ultimately, lack of co-ordination. These and other challenges in
distributed development have been well-documented in the literature [4] [5] [6]. Given that global
software development appears to be an irreversible trend for now, ample motivations exist for
exploring new methodologies and tools that make distributed software development more
effective, particularly by facilitating collaboration and coordination between remote team
members.

This paper presents a step in that direction. In particular, we describe a tool called EGRET
(Eclipse based Global REquirements Tool) that has been designed to support one of the most
collaboration-intensive activities in software development - that of requirements management – in
a distributed setting. EGRET seamlessly weaves together a set of ad-hoc and process-driven
collaboration services, along with rich awareness features, tailored to the needs of remote
stakeholders working off a shared repository of requirements. EGRET may be looked upon as a
natural adaptation of the emerging concept of Collaborative Development Environments [1] for
the requirements space.

The rest of this paper is structured as follows. In the next section, we explain the challenges
associated with multi-site requirements management, and motivate the need for collaborative
requirements management tools. Section 3 then presents some sample use cases of such a tool, on
the basis of which a high-level design is outlined. The following section presents a general
overview of the tool, and then elaborates on the collaboration features. An overview of the plug-
ins comprising EGRET and a description of its meta-model may be found in Section 5. Section 6
outlines considerations for empirical validation of the tool, while the rest of the paper discusses
related work, and presents our conclusions and future directions.

 4

2 Background
For more than a year, we have been extensively interacting with IBM practitioners engaged in
distributed development, to understand their pain points, and propose solutions for the same. Our
proximity to development teams in India who are heavily into offshore development, placed us in
a favorable position to conduct such a study. We found that a very typical set-up in such a
distributed project involves a customer-facing team (comprising managers, business analysts and
senior architects) located somewhere in the US or Europe, and multiple development teams
(comprising local managers or coordinators, system engineers, designers, programmers and
testers) in remote locations like India, China and Brazil. It is the responsibility of the onsite team
to closely interact with the customer and elicit high-level business requirements. The analysts
then need to work with the system engineers in remote locations to create system requirements
that would meet the business needs As the architecture of the system emerges, these may be
refined further into component requirements, which would have to be communicated to
programmers who implement the different modules that make up the system. Good requirements
practices also necessitate that requirements be testable: so testers may also be roped in to write
test cases or acceptance criteria for the various types of requirements. Moreover, it is common for
development work in a project to be outsourced to multiple teams (even organizations) around the
world; these teams have to collaborate and draw up interface agreements, which are requirements
on how their modules will interact.

During our study, we spoke to around 30 practitioners in different roles, projects and locations;
both onsite (US and Netherlands) and remote team members (based in India) were approached.
The discussions with the India team members occurred through face-to-face meetings and phone
calls. For the onsite teams, teleconferences and follow-up e-mails were used. Through these
discussions, we discovered that there was a lot of concern regarding the efficacy of the
requirements process in a distributed project. In particular, practitioners noted that two major
challenges arise. Firstly, it becomes difficult for distributed teams to hold effective discussions
around requirements. Since existing requirements management tools do not provide rich support
for collaboration, teams typically use these tools only as a shared requirements repository, and
hold all discussions outside of the tool in e-mails, chats or phone calls. This involves a significant
amount of context-switch (as users have to continually move back and forth between the
requirements and communication environments) and with requirements often numbering a few
thousands, it is difficult to hold detailed discussions this way on individual requirements; the
result is that development often proceeds on the basis of misinterpreted or incompletely
understood requirements, leading to expensive re-work later on. It is also tedious to track and
preserve discussions on requirements that are spread across several media; thus crucial
knowledge about the rationale behind a particular requirement, or the reason why it was changed,
degrades over time.

A second challenge in a distributed requirements process lies in the management of changes to
requirements. We found that although such changes occur frequently, due to difficulties in cross-
site communication the information is often not propagated to remote teams in a timely or
effective manner; even when propagated it becomes difficult to track subsequent actions that may
need to be taken at those sites. As a result, changes may not be consistently implemented, and
gaps in understanding may creep in over time. A project manager summed up the overall situation
as follows: “The root cause of problems is misinterpreted requirements. These later lead to
changes in requirements, which are much more difficult to manage in a multi-site setting.” Of
course, requirements also change with changing customer needs, further compounding the
problem.

 5

Note that these challenges are not specific to IBM. Other studies (e.g. [16]) have also reported on
the difficulties remote stakeholders face in achieving a common understanding of requirements
and have noted that the reaction to a requirements related issue is propagated much more quickly
locally, through informal communication, than across sites. Thus the evidence is suggestive of a
widely experienced problem: remote stakeholders in today’s global projects are unable to
collaborate effectively over requirements, using existing tools and methodologies.

We feel this motivates the need for a Collaborative Development Environment (CDE) [1]
customized to the needs of geographically distributed stakeholders engaged in requirements
management; as noted in [1], the purpose of a CDE is “to create a frictionless surface for
development by eliminating or automating many of the daily, non-creative activities of the team
and by providing mechanisms that encourage creative, healthy and high-bandwidth modes of
communication among a project’s stakeholders.” Critical or regular activities involving
requirements (e.g. propagation of change to remote stakeholders, tracking follow-up actions etc.)
would benefit from some degree of automation to reduce unrealistic reliance on human
conversation and memory. On the other hand, there also need to be mechanisms that support ad-
hoc collaboration so that stakeholders are able to hold rich discussions around requirements
whenever needed. While collaborative environments are being increasingly explored nowadays in
support of distributed coding and bug tracking, as well as project planning and enactment, we
could not find a comparable solution for distributed requirements management. The work
described in the rest of the paper seeks to fill this gap, by exploring mechanisms that facilitate ad-
hoc as well as process-driven collaboration between remote stakeholders working together on
requirements.

3 Towards a Collaborative Requirements Management Tool
As a first step towards conceptualizing and implementing a collaborative requirements
management tool, we documented the desired system functionality in the form of use cases. In
continuation of our interactions with distributed development practitioners, these use cases were
developed in close collaboration with them, so that we could support the information flows and
needs that actually arise in practice. We provide some representative examples below.

3.1 Example Use Cases
1. Resolving Ambiguous Requirements: Stakeholders should be able to resolve

ambiguities in requirements and gain shared understanding through rich contextual
discussions around individual requirements.

a. A Test Analyst (TA) logs-in and reads a newly created system requirement for
which an acceptance criterion needs to be created.

b. The TA finds some ambiguity in the requirement and needs to discuss this with
the System Engineer (SE) who created this requirement.

c. The TA looks up the online status of the SE. If the SE is currently online, then
the TA invites the SE to a chat; otherwise, the TA composes an e-mail explaining
why the requirement may be ambiguous. Either way, the TA is able to embed a
link to the requirement in the chat/e-mail message, so that the context of the
discussion is clear and the SE can easily navigate to the actual requirement.

d. A conversation on the requirement then ensues, through e-mail, chat or a mix of
both, and a discussion thread is automatically created. Subsequently, the SE edits
the requirement to make it more precise, and links this edit to the associated
conversation to record the reason for change.

e. The discussions and requirement change history are logged for future reference.

 6

2. Awareness of Ongoing Communication: Stakeholders may be made aware of ongoing

discussions on requirements, so that they may participate as and when necessary, and a
high-bandwidth mode of communication is established.

a. The Project Manager (PM), who was unaware of the above development, logs-in.
b. A visual icon against the system requirement indicates to the PM that the

requirement has been the subject of recent discussions.
c. The PM opens the discussion log associated with the requirement and reads the

conversation between the SE and TA.
d. The PM has a further comment, which he adds to the discussion thread.

3. Submitting and Processing Change Requests: Stakeholders should be able to submit

change requests on requirements, act on received requests, and be notified of changes to
related requirements.

a. A Business Analyst (BA) reads a system requirement, and sees that some
additional features need to be incorporated in order to meet the customer needs.

b. The BA submits a change request on the requirement, explaining the additions
desired.

c. The request is automatically routed to the SE in charge of the requirement. Also,
to keep track of follow-up actions, a visual decorator is attached to the
requirement to indicate that it has a pending request.

d. The SE edits the requirement to incorporate the change, and links the edit to the
received change request. The visual icon is reset, indicating that the request has
been acted upon.

e. Automatic change notifications are sent to owners of requirements that may be
traced from the edited requirement, since these requirements may also be
impacted.

4. Processing Change Notifications: Stakeholders, who are notified of a change in a

related requirement, should be easily able to obtain the full context of the change before
acting on the notification.

a. A TA, who owns an acceptance criterion, logs-in and sees a message notifying a
change in a related upstream system requirement. A visual decorator on the
acceptance criterion indicates the pending notification.

b. The TA clicks on an embedded link in the message to navigate to the appropriate
version of the system requirement

c. The TA also follows the message thread to look up the original change request,
the other notification messages that have been sent, and the results of those that
have been acted upon.

d. The TA now has a broad understanding of the change, and realizes that the
acceptance criterion will not be impacted by it, so the TA opens the notification
message and selects “No Change Required”.

e. The visual decorator is reset, since the TA has acted on the change notification.

5. Running Search Queries: Stakeholders should be able to quickly locate relevant
information by running different kinds of search routines on the project corpus

a. The SE logs in, and runs a search for all requirements that contain a particular
keyword

b. Search result returns links to all relevant requirements
c. SE clicks on a link to go to the associated requirement

 7

d. SE decides to refine search to only return requirements that were created during a
specified period

e. The appropriate subset of the previous results is now displayed.

6. Analyzing Impact: Managers should be able to estimate the impact of proposed changes
before committing to them

a. PM receives a feature request from the customer, which requires change in some
existing requirements

b. Using a Google-like advanced search facility, the PM finds all previous requests
that are similar, and requirements that were impacted by those. Based on this
knowledge, the PM is able to estimate the “primary impact set”.

c. PM determines “secondary impact set” using traceability graph.
d. The PM now submits change requests on all requirements that need to change.

As above, the requests are all appropriately routed and tracked.

3.2 Design Considerations
From the above use cases, a preliminary design of a collaborative requirements management tool
begins to emerge as a judicious mix of :
• informal collaboration services (use cases 1 and 2) to facilitate ad-hoc conversation around

requirements as and when necessary. Since stakeholders may be in same or different time-
zones, both synchronous and asynchronous communication facilities should be provided.
Moreover, such collaboration should be contextual, so that users can easily navigate from the
communication environment to the requirements under discussion (use case 1) or look-up
conversations “rooted” to individual requirements (use case 2). This would also help address
the practical difficulties (noted in Section 2) of frequent context switch and fragmentation of
knowledge across several media, which occur when such discussions are conducted through
external e-mail/chat.

• formal collaboration services, (use cases 3 and 4) designed to support the critical/regular
processes in the requirements phase and reduce the need for human interaction. For example,
observing the challenges remote stakeholders face in managing requirement changes, we
decided to significantly automate the end-to-end processing of a change – from submission
and routing of change request, to notification of changes and tracking follow-up actions

• awareness features (use cases 1,2,3 and 4) that facilitate the above collaboration
mechanisms; examples are stakeholder online information, awareness of submitted change
requests and pending notifications etc. Various visualization techniques have been explored
in the literature [31, 32] for providing such awareness. We decided to adopt the technique of
using visual decorators on requirements and stakeholder information to convey their status.

• knowledge management techniques (use cases 5 and 6) to navigate and make sense of project
content. A basic necessity is to allow users to search for information. However, as we
explain in Section 4, there are several opportunities for going beyond this and providing
advanced analysis capabilities on project data.

The above services will run atop a persistence infrastructure, whose basic entities include people
(project stakeholders), artifacts (requirements) and relationships (traceability, ownership). Project
specific information e.g. roles, requirement types, project phases, modules etc. may also be
defined here. We elaborate on infrastructure considerations below.

 8

 Fig. 1 – Infrastructure Overview

Infrastructure Issues: To start with, we had to decide on the platform on which the tool will run.
We narrowed down the choices to making the tool either Web-based or Eclipse-based. The main
advantage of the Web, as noted in [1], is that its very nature facilitates “the creation of virtual
spaces that transcend the physical boundaries of its participants”. Put simply, the Web being
ubiquitous, a Web-based tool will be widely accessible and start-up overhead will be minimal. At
the same time, Eclipse [36] also presented several advantages. For example, it offers very rich
support for user interface design and is easily extensible through “plug-ins”. Eclipse is now
widely recognized as a universal tool platform and also as an integration point for tools. There are
a growing number of successful Eclipse projects supporting various aspects of group
collaboration e.g. Jazz [10], Sangam [25], CodeBeamer [19] etc. Moreover Eclipse has gained
wide momentum within IBM and is an integral part of its overall tool strategy. All these factors
tilted the balance in the favor of Eclipse as the client-side platform of choice for our proposed
tool.

Next, we had to decide on the backend infrastructure. We needed a repository for storing
requirements, stakeholder information, discussions and also change requests and notifications.
We chose MySQL [34], a popular open source database, for this purpose. Requirements often
come with associated figures, tables etc. or may be linked to lower-level design elements, so an
appropriate repository for these was also needed. Since Eclipse comes with a built-in interface to
CVS [35], we decided to use CVS as a common version-controlled repository for all such
artifacts that may need to be linked to requirements. For synchronous communication, we use an
experimental collaboration server that has been developed by our colleagues in the Jazz team in
IBM Research. Jazz [10] provides rich instant messaging capabilities and is also Eclipse-based,
making its integration with our tool relatively seamless.

Fig.1 shows how the infrastructure is set up, with an Eclipse front-end providing a set of views of
backend data in MySQL and CVS repositories. To reduce network traffic in this client-server

��������

	
�� �
���������

������������

Synchronous
communication

��������������

Optional

����
���������
�

 9

setup, we decided to support “lazy loading” of artifacts: initially only the meta-data of artifacts is
retrieved from the repositories, and more details are obtained on user demand. Note that both
MySQL and CVS servers may be replicated to enhance performance in a multi-site setting.

Based on the use cases and design considerations described in this section, we have built EGRET,
a collaborative tool for distributed requirements management.

4 EGRET: Bringing Collaboration into Distributed Requirements
Management

4.1 General Overview
Like any Eclipse-based tool, EGRET (Eclipse-based Global REquiremenst Tool) consists of a set
of views, as shown in the example snapshot in Fig. 2.

Fig. 2 – EGRET Overview

The main EGRET views are:
• Requirements Explorer, which shows the hierarchical structure of requirements that have

been created for the project. In this case, the project under consideration is “EBRE_v01”
shown as the root folder; there are several modules (e.g. Awareness, Change notifications,
Change requests etc.) in this project, and each module contains different types of
requirements (e.g. Business requirements, System requirements, Acceptance Criteria) that
have been defined for this project. For example, “BR15 Peripheral awareness” is shown as a
Business requirement for the Awareness module. Requirements may be both created and
edited from within the Explorer; when a requirement is edited, its previous version is
preserved and it is possible to compare different versions of a requirement. Users may also
select a subset of the requirements into a “working set” of particular interest.

��� � �����������
���� �

�������� ��������� �

��� ����
���!�"�������

#����������
� ��� �����"�����

 10

• Communications Record view, where the user can access all the synchronous/asynchronous
discussions he/she has been a part of, receive change requests and also the automated
messages (e.g. change notifications) generated by the system.

• The Traceability view shows the traceability relationships that exist for a requirement
selected in the Requirements Explorer; thus, “BR15 Peripheral Awareness” can be traced to a
set of system requirements with tags SR27, SR34, SR35 etc. The traceability information
may also be viewed as a graph or a matrix.

• The Project stakeholders view lists all the stakeholders in this project, along with their roles
in different modules, and their online status; thus, Bikram is shown as a System Analyst (SA)
in the Awareness module (AW) and he is currently online; on the other hand, Satish, though
online, should not be disturbed, while Vibha is offline.

• The Project phases view shows the various phases that have been defined for the project,
and the deliverables e.g. Business Requirements (BR) and Use cases (UC) are the documents
that need to be prepared for the Business Requirements Analysis (BRA) phase.

Other relevant views –
• Eclipse Navigator view (resource view) – this view shows the different project artifacts that

exist in a shared CVS repository. All non text requirements and other documents for design,
architecture, code etc can be shared through CVS. It is possible to link a requirement in the
Requirements Explorer to related artifacts in CVS as shown in Fig 3.

Fig 3 – Linking CVS shared documents to requirements

Setting up an EGRET project: During project initiation, an administrator will create an EGRET
project, and define related information like types of requirements in this project, traceability rules
for these types (e.g. a business requirement may trace to multiple system requirements) project
phases and modules, stakeholder roles, repository locations etc. These may be defined using the
tool itself, or imported through a template. User accounts will then be created and users will be
assigned different roles. Subsequently, registered users will log in, an initial set of requirements
will be created, and collaboration on requirements will begin.

$ ���%��������� �–��"�����
������� ����

&����"��"�����'�������
�������� ����

 11

We will now describe how EGRET supports informal as well as formal collaboration around
requirements, and promotes awareness about ongoing/pending project activity among distributed
stakeholders.

4.2 Informal Collaboration Using EGRET

Synchronous and asynchronous communication: EGRET supports both synchronous and
asynchronous conversation around requirements. A stakeholder may compose an e-mail message
in the Communications view, and attach links to some requirements in the Requirements Explorer
through a simple drag-and-drop mechanism. Alternatively, the user may first select some
requirements in the Explorer and choose to send a message related to these requirements, in
which case links to the requirements are automatically embedded in the e-mail/chat message to
capture the context. When a stakeholder receives such a message and clicks on the link, the
appropriate requirement in the Explorer is highlighted. For example, in Fig.4, the “EBRE Read
Discussion” window shows that Andrew has sent an e-mail message to Bikram, with a link to
requirement “BR15 Peripheral Awareness” attached. Using this link, Bikram may easily navigate
to the actual requirement, shown highlighted in the Requirements Explorer. All e-mails are
persisted with in the communication repository.

The synchronous communication facility in EGRET has been adapted from the Jazz tool [10].
This facility has been seamlessly integrated with the asynchronous communication mechanism in
EGRET; thus it becomes possible to chat on a received e-mail message, and separate discussion
threads do not need to be maintained for related e-mails and chat. Continuing with the example in
Fig.4, Bikram, on reading Andrew’s e-mail, sees that Andrew is shown to be online in the Project
Stakeholders view; so, instead of sending an e-mail “Reply” to Andrew, he clicks on the “Chat”
button in the “EBRE Read Discussion” box. This opens up a chat window with two links
automatically embedded: one pointing to the e-mail message that originated this chat and the
other to the requirement attached to the e-mail message, since this requirement is presumably
going to be the focus of the discussion. Andrew and Bikram may now engage in a chat, and when
they are done, the chat transcript is saved and sent as an e-mail to the participants.

 12

Fig 4: Contextual Communication in EGRET

The informal collaboration features in EGRET offers several benefits. By embedding artifact
information within synchronous/asynchronous communication, EGRET supports “in-context”
conversation around requirements. This allows easy navigation between the requirements and
communication views: requirements embedded in e-mail/chat messages are just a mouse-click
away, while one only has to select a requirement in the Requirements Explorer to access all
related discussions (synchronous/asynchronous), which are presented in the form of a message
thread e.g. Fig. 5 shows the message thread for the requirement “BR15 Peripheral Awareness”.
This helps address the difficulties associated with conducting such discussions through external
media, as explained in Section 2.

�"���������������� ����%��

�����(���)�)�������������������� ����%��* �
�������� ���������"� ������� ����������
���!�)�� ���!��%�����"�������!��������
������������������������'���������''������
���� ��

 13

Fig. 5: Communication Log

4.3 Promoting Awareness

One of the challenges in distributed projects is a general lack of awareness about what is going on
in other sites. A system engineer in a remote site may be unaware of an ongoing conversation
between the business analyst and the project manager, which may have some bearing on the
system requirements he/she owns; the project manager may be wondering if the system engineer
has taken care of a change request that was submitted. A tester may not be notified in time of a
change in a system requirement that traces to an acceptance criterion owned by the tester. It is
widely believed that maintaining such awareness, or an “understanding of the activities of others,
which provides a context for your own activity” [31], can improve productivity, especially for
distributed teams [32].

In EGRET, such awareness information is provided in the UI, through a set of visual decorators
that capture the status of requirements in the Explorer. An explanation of these decorators is
provided in the “EBRE Artifact Status” box (Fig. 6). There are decorators that signify that a
requirement has not been assigned an owner, a project phase or a module. EGRET lets users
define what traceability relationships should exist between different requirement types and in case
any of these rules have not been satisfied, the requirement is marked out, so that the error may be
noted and fixed. In addition, decorators highlight requirements that have a pending change
request or notification, as also requirements that have been the focus of recent discussions.

 14

Fig 6 – Peripheral Awareness

The above information is visible to all project stakeholders; however, the exact view depends to
some extent on who the individual is. Thus a pending change request/notification on a
requirement will appear red in color in the Requirements Explorer view of the stakeholder who
has been assigned to process it, while a yellow indicator will imply that although there is a
pending request/notification on the requirement, someone else is responsible for it. Again,
requirements that have been the topic of recent discussions are differentiated depending on
whether the stakeholder has participated in all the recent discussions on the requirement
(indicated by a green icon) or whether there have been discussions that the stakeholder has not
been a part of (shown as an yellow icon). Thus team members can readily identify tasks that have
been assigned to them, and start working on those, or look up unread discussions on requirements
they are interested in. Such decorators are hence said to provide “peripheral awareness” to remote
stakeholders, as if they were all part of one collocated team with members having shared
knowledge of pending tasks and ongoing discussions.

4.4 Managing Changes through Formal Collaboration

In EGRET, the end-to-end processing of a change -- from the routing of change requests to the
notification of changes and tracking of follow-up actions -- has been significantly automated. The
tool also provides support for recording the context of a change for future reference.

 15

Fig. 7 – Submitting Change Request

Submitting Change Requests: Any user can select a requirement and submit a change request
on it. This opens up a form as shown in Fig. 7, which is essentially like an EGRET e-mail
message, but with the Recipients field automatically filled up with the name of the primary owner
of the requirement (in this case, Bikram), and the Subject field indicating that this is a change
request message on the selected requirement (in this case, “SR36 Pending Change Requests”), a
link to which is also attached. The submitter of the request may use the “Message Body” section
to explain the desired change. On clicking “Send”, the request is delivered to the primary owner
of the requirement, and the requirement is visually marked out to indicate a pending change
request.

(In EGRET, each requirement has one primary owner, but multiple secondary owners. Only the
primary owner can edit a requirement, and act on change requests/notifications on that
requirement. Secondary owners are other stakeholders who have a reference interest in the
requirement. Henceforth, if we simply say owner, we will mean the primary owner of the
requirement).

Processing Change Requests: An owner of a requirement can either decide to reject a change
request, or edit the requirement to incorporate the desired change. In the latter case, EGRET
allows the owner to “link” the edit to a received change request/notification, so that the context of
the change is recorded (Fig. 8). Subsequently, EGRET sends automatic notification messages to
owners of related requirements, which might be impacted by this change. These related
requirements are identified using the traceability graph. For example, in Fig.6, once the system
requirement SR36 is edited, an automatic change notification message is sent to the owner of
acceptance criterion AC52, since AC52 may be traced from SR36. FYI messages are also sent to
the secondary owners of AC52, informing them of the change.

+& ����� �������'�����,-�

 16

Once a change request has been processed (i.e. it has been rejected, or linked to a requirement
edit), it is no longer “pending”; accordingly, the visual decorator is cleared.

Fig. 8 – Processing Changes I

Acting on Change Notifications: A pending change notification, like a pending change request,
is indicated by a red visual decorator, as shown in Fig. 9. The owner of the requirement also gets
the notification details in an automated e-mail message generated by EGRET on behalf of the
owner of the upstream requirement that changed. This message contains links to both the
upstream requirement, as well as the downstream artifact that may need to change. A user may
also choose to view the message thread associated with this notification, in which case the
complete history of the change is presented (e.g. the original change request that triggered the
change in some upstream artifact, and the sequence of changes that were performed subsequently,
leading to this message). Based on this information, the owner may process the change
notification in the same way as a pending change request: either reject it, or edit the requirement
and link the edit to the received notification, in which case further notification messages may be
sent out, depending on the traceability graph.

EGRET persists with all change information related to a requirement. Thus, for any requirement,
users can view the list of change requests and notifications received till date, and their status.
Users may also view the history of edits made to the requirement, which includes information
about who edited the requirement, when the edit was made, reason for change, and version
number. Moreover, by automating key parts of the change management process, EGRET spares
users from the burden of having to send manual notification of changes, and allows project
managers to keep abreast of pending actions without having to query project members for status
and wait for their response. In other words, the approach reduces the need for ad-hoc
communication in the management of requirement changes, and thereby promotes formal
collaboration between stakeholders.

.)�� ��� �������%����

/)��������,-�����0 ��#�

,)���!������������

1)�&���� �����
����'�������������'���2�

��&�3/�

 17

Fig 9 – Processing Change II

4.5 Knowledge Management
The broad goal of knowledge management is to help users navigate the data that builds up in the
various EGRET repositories and manage and make sense of the same. Currently, EGRET
supports simple search routines that let users query for artifacts (e.g. requirements, e-mail etc.)
that contain a specified keyword. An example is shown in Fig.10. The search results are displayed
in an “EBRE Search” view; the user can select any artifact returned by the search and view it.

$ ���'���������4 �����
�

$ ���'���������5�������

� ��� �������%��$ �

 18

Fig 10 – Search on Requirements

However, there are several opportunities for going beyond this. For example, we plan to plug-in
routines that will allow various “meta-data” analytics to be performed on project content. We
elaborate on this in Section 5. It is also possible to adapt traditional knowledge management
techniques like mining, text similarity, natural language processing etc. to provide advanced
services like “Google”-like search, analyzing requirements for ambiguity, discovering hidden
traceability links [33] etc. Moreover, all data generated through EGRET usage is currently
persisted with, but as the volume of the data increases, this may become unmanageable. Hence
we need to put in archiving/retiring mechanisms to let users control the data they need to store
and “retire” those that are no longer relevant.

5 Implementation Overview

Eclipse Plug-ins: The functionality in EGRET has been implemented as a set of plug-ins in
Eclipse. There are plug-ins for
• Artifact creation and editing
• Project information creation, deletion etc
• Ownership, access control
• Asynchronous communication
• Synchronous communication (from Jazz)
• Change logging and tracking
• Traceability rules, views generation
• Search
• Status checking – peripheral and presence awareness

To support synchronization with RequisitePro, some plug-ins developed by the RSM team in
IBM Rational are used.

�����"������������ �����

�����"���������

 19

EGRET Meta-model: Data stored in EGRET can be classified in following categories (Fig 11)
1) Admin Data – this is mainly the project meta-data. Object types here are:
• Project phases – specifies different phases in project. Each phase has an id and name. For

example – Business requirement analysis, integration testing
• Modules – different modules in project. Each module has an id and name. For example –

backend module, UI module.
• Role – the different people roles in project. For example – System architect, integration tester
• Artifact type – the kind of artifacts that have to be produced in project. For example –

business requirements, system requirements. Each type of artifact is produced in exactly one
project phase. Each type of artifact can have properties defined (specified as name value
pairs).

• Traceability guides – the type of mandatory traceability relationships that should or should
not exist between different types of artifacts. For example – a traceability guide would be that
every business requirement should derive to one or more system requirements.

2) Stakeholder Data – information on project stakeholders.
• Team member – information per stakeholder
• Responsibility – what role each stakeholder has in what module.

3) Artifact Data – this contains data about the actual work products i.e. artifacts in the project.

For now it is mainly requirements in EGRET. Object types here are:
• Artifact – the main attributes here are id, name and text. If special types of data need to be put

in the artifacts such as gifs, tables etc the information can be attached as file attachments.
Other attributes an artifact object has is – artifact type, module it belongs to, it’s primary
owner (only one team member can be primary owner), optional secondary owners (multiple
team members can be secondary owners – these have a reference only interest)

4) Traceability Data – this contains information on how different artifacts are related to each

other.
• Trace Record – this is a traceability data record and attributes are source artifact, target

artifact and the traceability type. EGRET currently supports 4 types of traceability – directed,
undirected, derived and parent-child relationship.

5) Communication Data – this object contains all communication that happened in the EGRET

project. The main type of communication objects here are –
• Discussion objects – these further can be chat or mail. Chat objects are saved transcripts of

synchronous communication that happened, while mail objects contain asynchronous
communication data. Discussion objects refer to artifacts in whose context the
communication happened.

• Change request – team members can submit change requests on artifacts which are
automatically routed to primary owner. This object contains data of change requests that are
submitted and also contains reference of the artifact on which change is desired

• Change notification – when any artifact changes, primary owners of all related artifacts are
sent notifications about the change. This object contains data for the notification i.e. what
artifact was changed, what needs to change and a reference to actual change object.

• Information message – when any artifact changes, team members who have shown a
reference only interest in it i.e. secondary owners are sent information messages. This object
contains reference to object that was changes and also the actual change object.

 20

• Action – in response to every change notification and change request the responsible team
member needs to take an action. Action can be classified into – a) no action required, or b)
can be an actual change which the user did in response.

• Change – this object contains information on what artifact was changed, when it was changed
and also saves the older version of the artifact.

 21

Fig 11 – EGRET Data Model

 22

6 Piloting EGRET

We have developed EGRET based on the hypothesis that incorporating collaboration features into
a requirements management tool would help distributed teams communicate and manage
requirements across sites. To validate this hypothesis, we would like to pilot EGRET in a
distributed project which requires cross-site collaboration over requirements. This will also
provide us with an opportunity to gain an empirical understanding of multi-site requirements
management e.g. patterns of communication across different stakeholders, reasons for
communication, frequency/reason of requirement changes etc. Accordingly, we foresee two kinds
of analysis that may be performed.

6.1 Usage Analysis
We would like to study how stakeholders use EGRET in practice. This would help us determine
the usefulness of the different EGRET features e.g. peripheral awareness, in-context conversation
etc. Accordingly, we have instrumented EGRET extensively to track sequences of user actions
e.g. all EGRET menu options that are invoked, the pop-up of EGRET dialog boxes, the selection
of an embedded link in an e-mail/chat window, and so on. When these user actions are tracked
during a pilot, we would like to see for example, how often a requirement with a visual decorator
is selected (which would give an indication of the usefulness of peripheral awareness); or, how
often links are used to navigate between the requirements and communication views (i.e. how
useful “in-context” conversations is) etc. Our instrumentation makes use of some plug-ins
developed by the Jazz team and a few also come with Eclipse.

In addition to studying user behavior, we are also interested in the overall improvement that
EGRET may bring to the development process. For example, are requirements better
communicated using EGRET? An indication of this may come from how soon requirements are
baselined, and also whether testing errors attributed to misunderstood requirements decrease.
Also, are requirement changes better managed using EGRET? This may be reflected in how
quickly requirement changes are processed. Of course, such a study would depend on the
availability of past data from the same or a comparable project, in which EGRET was not used.

6.2 Meta-Data Analysis
In course of a pilot project, a significant volume of data (requirements, discussions, change
request and notification etc.) will be collected in EGRET repositories. This would allow us to
perform different kinds of analysis on the data, and give useful feedback to project stakeholders.
For example, high volume of discussion on a requirement may indicate its criticality; there may
be users who are slow in responding to queries (and thus, acting as a “bottleneck”), while there
may be others who have to respond to too many queries (communication “overload”); then again,
managers may be interested to know about the average-time taken for a requirement change to be
“closed”, or the frequency of change in requirements, and the main reasons for change (e.g.
change in customer needs, misunderstood requirements etc.).

7 Related Work

Distributed software development has been active area of research for the past few years. There
have been several studies of the outsourcing and offshoring trends in the software/IT industry and
the opportunities they provide [2], [12]. Research has also increasingly reported on the difficulties

 23

that arise in distributed development of software [13], [14], [15]. A comprehensive study of the
challenges in multi-site development, best practices that have been developed, and directions for
further research has been documented in [6]. In particular, it elaborates on the challenge of
distributed requirements management, and motivates the development of a collaborative
environment for remote practitioners working together on requirements. Similar observations
have been made elsewhere e.g. [16] reports on the difficulties remote stakeholders face in
achieving a common understanding of requirements and notes that the reaction to a requirement-
related issue is propagated much quicker locally, through informal communication, than across
sites. It concludes by proposing the development of an integrated RE tool environment that
addresses the challenges of communication and knowledge management.

These observations are synergistic with recent research in the area of computer-supported
collaboration. In [1], the authors present a vision for a Collaborative Development Environment
(CDE) tailored to the needs of software practitioners, where a CDE is defined as “a virtual space
wherein all the stakeholders of a project – even if distributed by time or distance – may negotiate,
brainstorm, discuss, share knowledge, and generally labor together to carry out some task, most
often to create an executable deliverable and its supporting artifacts.” A number of research
projects as well as open source efforts and commercial products are now bringing elements of
collaboration into various software development activities. We refer to some of the notable ones
below.

Commercially, collab.net [17] is a leading producer of such CDEs; its public face is SourceForge
[18], a open-source CDE, which offers facilities for artifact storage, configuration management,
bug tracking, task management and discussions. CodeBeamer [19], developed by Intland software,
is another collaborative development platform with many similar features. Well-known
configuration management systems like ClearCase [20] and CVS [21] now support code
awareness by sending e-mail when specified files are changed. Stellation [22] [23] is another
open source effort (led by IBM Research) that introduces “activity”-oriented fine-grained source
control, to simplify collaboration and provide awareness of changes to team members. Another
interesting research CDE is MILOS [24], also an open source effort that focuses primarily on
software process workflow automation. Sangam [25] features a shared editor and chat for pair
programming. Jazz [10] [11] is targeted towards a team of developers working in close proximity;
it supports rich synchronous communication, and promotes mutual awareness of each other’s
coding activities in such a setting. There are also tools which help users identify artifacts and
people pertinent to a given task. For example, Hipikat [29] recommends relevant software
development artifacts (by searching code repositories, newsgroups, bug-reports etc.), based on the
context in which a developer requests help. Expertise Browser [26] analyzes data in change
management systems to locate people with desired expertise. Like EGRET, many of these tools
e.g. [19, 22, 10, 25, 29], are Eclipse-based.

EGRET thus belongs to a growing family of collaborative tools for software development, many
of which are being increasingly adapted by distributed teams; the novelty in EGRET, however, is
its focus on collaborative requirements management. While ideas like awareness of activities, in-
context conversation, tracking changes, workflows etc. have been explored in some of these other
tools as well (which primarily focus on shared coding), EGRET’s main contribution is the
integration and customization of these features to facilitate collaboration among analysts, system
engineers, testers and other stakeholders in the requirements space, particularly when they are
geographically distributed.

 24

8 Conclusions and Future Work

In this report, we first motivated the need for a collaborative requirements management tool for
use by today’s globally distributed teams. We then explored several example use cases of such a
tool, on the basis of which a high-level functional specification was proposed. Next, we presented
our prototype tool EGRET, a concrete implementation of this envisioned framework. Several
actual tool snapshots were used to illustrate the support EGRET provides for both ad-hoc as well
as formal collaboration in requirements management, and for promoting awareness among
distributed stakeholders. The technical infrastructure underlying the tool was also outlined. We
then discussed our plans for piloting EGRET to gain empirical understanding of multi-site
requirements management and also to evaluate the practical utility of the tool. Finally we
summarized related efforts in the area of distributed and collaborative software development, to
put our work in the proper context.

There are several directions along which EGRET may be enhanced. For example, the notification
scheme may be made more flexible through a publish-subscribe framework, based on
customizable triggers [27]. Support for virtual requirements review sessions will be very useful.
Knowledge management is another critical issue; in particular, archiving/retiring policies related
to the management of informal communication (all of which is currently persisted), need to be put
in place. Advanced analysis capabilities (e.g. based on natural language processing, information
retrieval etc.) may be incorporated to provide better search facilities, detect ambiguities in
requirements, perform impact analysis, or discover hidden traceability links. It would also be
interesting to explore how the emerging notion of “activities” [28] may be supported in EGRET,
and what additional benefits it may provide.

9 References

1) G.Booch and A.Brown. Collaborative Development Environments. Advances in Computers
Vol. 59, Academic Press, August 2003.

2) E.Carmel, R.Agarwal: Offshore Sourcing of Information Technology Work by America’s
Largest Firms. Technical Report, Kogod School, American University, Washington D.C.,
November 2000.

3) Business Week Online, March 1, 2004
 http://www.businessweek.com/magazine/content/04_09/b3872001_mz001.htm
4) J.D.Herbsleb, D.Moitra: Global software development : IEEE software March-April 2001
5) J.D.Herbsleb, A.Mockus, T.A.Finholt and R.E.Grinter . Distance, Dependencies and Delay in

a Global Collaboration. CSCW 2000.
6) IBM India Research Laboratory: Software Engineering Issues in Global Outsourcing:

Challenges, Best Practices and a Research Agenda (white paper)
7) IDC survey (http://www.idc.com) – an end user view of the collaborative software

development market
8) B.Sengupta, V.Sinha, S.Chandra et al. Test-Driven Global Software Development. ICSE

Workshop on Global Software Development, 2004
9) M.Fowler. Using an Agile Software Process with Offshore Development.

http://www.martinfowler.com/articles/agileOffshore.html
10) L.Cheng, C.DeSouza, S.Hupfer, J.Patterson, S.Ross. Building Collaboration into IDEs. ACM

Queue vol.1 no.9, 2004
11) L.Cheng, S.Hupfer, S.Ross, J.Patterson. Jazzing up Eclipse with Collaborative Tools.

OOPSLA Workshop on Eclipse Technology eXchange, 2003

 25

12) A.Arora, A.Gambardella. The Globalization of the Software Industry: Perspectives and
Opportunities for Developed and Developing Countries. (June 2004). NBER Working Paper
No. W10538. http://ssrn.com/abstract=556525

13) S.Krishna, S.Sahay and G.Walsham. Managing Cross-Cultural Issues in Global Software
Outsourcing. Communications of the ACM. Volume 47, Number 4, April 2004.

14) R.Heeks, S. Krishna, B. Nicholson and S.Sahay. Synching or Sinking: Global Software
Outsourcing Relationships. IEEE Software, March-April, 2000.

15) J.D.Herbsleb, A.Mockus, T.A.Finholt, R.E.Grinter. An Empirical Study of Global Software
Development: Distance and Speed. ICSE 2001, pages 81-90.

16) Daniela E. Damian, Didar Zowghi: RE challenges in multi-site software development
organisations. Requirements Engineering Journal 8(3): 149-160 (2003)

17) www.collab.net,
18) http://sourceforge.net/
19) http://www.intland.com
20) http://www-306.ibm.com/software/awdtools/clearcase/
21) www.gnu.org/software/cvs/
22) http://www.eclipse.org/stellation
23) M.Carroll, S.Sprenkle. Coven: Brewing Better Collaboration through Software Configuration

Management. ACM SIGSOFT Foundations of Software Engineering, 2000
24) H.Holtz, A.Konnecker, F.Maurer. Task-Specific Knowledge Management in a Process

Centered SEE”. Workshop o Learning Software Organizations, LSO-2001, Springer 2001.
25) http://sangam.sourceforge.net
26) A.Mockus, J.Herbsleb. Expertise Browser: A Quantitative Approach to Identifying Expertise.

ICSE 2002, ages 503-512
27) J.Huang, C.Chang. Event-Based Traceability for Managing Evolutionary Change. IEEE

Transactions on Software Engineering vol.29, no.9, 2003
28) Unified Activity Management.
http://domino.research.ibm.com/cambridge/research.nsf/0/a5825415e2b50cf085256f87006a046a?
OpenDocument
29) D.Cubranic, G.Murphy. Hipikat: Recommending Pertinent Software Development Artifacts,

ICSE 2003, pages 403-418
30) A.Hutchings and S.Knox. Creating Products Customers Demand. Communications of the

ACM, 38(5), 1995.
31) P.Dourish, V.Bellotti. Awareness and Coordination in Shared Workspaces. CSCW 1992.
32) P.Dourish, S.Bly. Portholes: Supporting Awareness in a Distributed Work Group. CHI 1992
33) J.Hayes, A.Dekhtyar and J.Osborne: Improving Requirements Tracing via Information

Retrieval. International Conference on Requirements Engineering, 2003 (RE’03)
34) http://www.mysql.com/
35) https://www.cvshome.org/
36) www.eclipse.org

