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Abstract

Planning, the discipline of AI which focuses on synthe-
sis of action sequences (orplans) to satisfy goals, has an
important role to play to make Web Services Composition a
practical reality. While the scope of web services compo-
sition spans from creation of business process functionali-
ties, to developing executable workflows that capture non-
functional (e.g. QoS) requirements, to deploying them on a
runtime infrastructure, we are interested in using planning
to generate the initial plan templates that satisfy the func-
tional goals. These plans can be made optimal and deploy-
able using deployment and runtime requirements known
later. Planning needs to be efficient in this interactive and
uncertain domain, the domain could be incompletely mod-
eled, the user has hard and soft constraints, and the number
of web services is large. We show how a contingent plan-
ner can be adapted to this end by allowing for user inputs
that are then employed to efficiently finds plans that matter
most to them. Moreover, the planner is useful for interactive
planning applications in general.

1 Introduction

Web services have received much interest in industry
due to their potential in facilitating seamless business-to-
business or enterprise application integration. A web ser-
vice composition and execution system (WSCE or end-
to-end web services composition) can help automate the
process, from creating business process functionalities,
to developing executable workflows that capture non-
functional (e.g. QoS) requirements, to deploying them on
a runtime infrastructure. Initial approaches for web ser-
vices composition viewed it as a planning problem where
the operations of the available web services are actions,
and the goal state is the specification of the composite

service[14, 8]. A plan for the planning problem would real-
ize the composite service assuming all other considerations
for realizing the service were benign. However, the prob-
lem of WSCE cannot be seen as a one-shot plan synthesis
problem defined with explicit goals but rather as a contin-
ual process of manipulating complex workflows, which re-
quires solving synthesis, execution, optimization, and main-
tenance problems as goals get incrementally refined [16].

Recently, we have proposed theSynthyapproach for
end-to-end composition of web services with the aim of
automating service/application creation[1]. It is two-step
methodology that differentiates between web servicetypes
and instancesand decouples web service composition into
logical and physical composition stages that address com-
plementary integration issues. The first stage focuses on the
feasibility of functional composition using generative plan-
ning techniques while the second stage deals with efficient
execution of the resulting composition using optimization
techniques. A prototype is also built that demonstrates this
methodology in a domain-specific scenario.

In this paper, we identify the unique characteristics of
generative planning in end-to-end composition of web ser-
vices and propose a planner with novel techniques for solv-
ing it. These characterstics are: (a)The nature of planning
is contingency planning (CP). The value of all logical terms
may not be known in the initial state but they can be found
at the runtime using sensing actions. (b)Domain may be
incompletely modeled so all branches may not lead to
goal. While a conventional sound planner will not give a
plan in such a domain since it ensures that all branches can
lead to goal, the user would benefit from incomplete plans
which act as suggestions to enhance the domain model. (c)
The user may not be interested in all branches- which are
exponential in the number of unknown terms - but only
in specific branches. For the rest, he may insert a default
branch. The nature of planning is thus interactive and lim-
ited contingency planning. (d)There can be soft constraints
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which the user of the end application would prefer to be
followed. (e)The number of web services instances can be
large (i.e.,in the range of 10000’s) and the planner should
be scalable.

To meet the above challenges, we have devised a novel
user-driven search-control methodology for CP which takes
input from user and then uses them to efficiently focus the
search. These inputs are: conditions of interest, the type
of plan desired and the number of conditions to handle.
Our approach employs user-inputs on the AND-OR graph
of CP’s belief states to prune space in the AND part of
the graph and additionally uses the well known planning-
graph (PG) based heuristics to do the same in the OR part.
The approach efficiently finds contingent plans focusing on
user interest and it is complementary to recent utility based
methods for contingency selection. We have implemented
such a contingent planner in the Planner4J[15] planning
framework and will refer to it by P4J-CP.

For limited CP, there has been some work done in select-
ing a subset of specific contingencies for plan generation. In
[11], a planner is proposed which identifies the contingen-
cies that contribute most to the plan’s success and iteratively
makes re-planning strategies for failure of such contingen-
cies up to some limit. In [9], the utility of the contingen-
cies is modeled and the planner tries to optimize the overall
utility while addressing the subset of contingencies. Our
motivation is that in interactive applications, the user can
play a role in driving the search in contingent planning so
that a timely result is obtained for the conditions the user is
interested in.

Approaches that take user input to control the search
space can be seen in two categories. In the first category,
user input specifies the preference for the sequence of ac-
tions under some condition which guides the planner to use
particular sequences of actions if corresponding condition
becomes true[5]. In contrast, in the second category, user
input specifies the conditions which define good and bad
states so that during search, planner can use this information
to focus the search on good states[2]. Our approach falls in
the second category. While there are more expressive ap-
proaches than ours to seek user inputs [6, 12], our focus in
on the orthogonal and unexplored area of how to use input
specifications when domain desciptions may be incomplete
and plans can have both sound and unsound segments that
users may want.

In the next section, we formalize the contingent planning
problem and give details of our solution approach. We then
demonstrate how the output contingent plan varies with user
specification inputs. Then, we present evaluation on the ef-
fectiveness of our approach and follow it with conclusion
and future work.

2 Formalizing the Contingent Planning
Problem

Here, we formalize the CP problem under discussion, the
type of plans that P4J-CP generates and illustrate with an
example.

Definition 1 A contingent planning problemP is a 4-tuple
(BSI , BSG, A, L) whereBSI is the initial belief state,
BSG is the partial description of the goal belief state,A is
the set of actions andL is the set of binary valued atoms.

To model uncertainty, we further classifyL into:

• LO, the set of observable atoms. The truth value of
li ∈ LO may not be known inBSI .

• LS, the set of supporting atoms. The supporting atoms
are introduced to handle uncertainty aboutli ∈ LO.
For each member ofLO, oi, two supporting atoms,
unknown-oi andwillknow-oi are inLS. No other atom
is a supporting atom and hence|LS| = 2 ∗ |LO|. The
value ofli ∈ LS is known inBSI .

• LR, the set of regular atoms. All other atoms (L - (LO

∪ LS)) belong to this set and the value of these atoms
is known inBSI .

For any observable atomoi, the following axioms govern
its values and that of the supporting atom:

• oi = TRUE∨ oi = FALSE→ unknown-oi = FALSE

• willknow-oi = TRUE→ oi = TRUE∨ oi = FALSE

• unknown-oi = TRUE → willknow-oi = FALSE and
unknown-oi = FALSE→ willknow-oi = TRUE.

Definition 2 A Belief StateBS is a set of literals, where
a literal is either an atom or its negation. Hence,BS =
{li | li ∨ ¬li ∈ L}

Definition 3 A World StateWS is belief state with noun-
knownsupporting atoms. Hence, for alloi ∈ LO, no literal
in WS is of the formunknown-oi, i.e.,WS = {li | ∀oi ∈
LO, li 6=unknown-oi ∨ ¬li 6=unknown-oi}

For any observable atomoi, if unknown-oi is TRUE, then
the value ofoi is unknown. Since eachoi is binary valued, a
BS with Nunknown−o′is encodes2N world states. Since
we do not encode each of theWS explicitly, our represen-
tation is compact like planner PKS [12] and much smaller
than other approaches which encode them explicitly e.g.
planner MBP[4].

Each action inA is either a non-sensing action or a sens-
ing action.

3



Definition 4 A non-sensing actionAi is specified by a three
tuple: (APre

i , AAdd
i , ADel

i ), where each element ofAPre
i ,

AAdd
i

andADel
i

∈ LR ∪ LO.

Definition 5 A sensing action corresponding to an obser-
vational atomoi, Sense-oi, is specified by:

Action (Sense-oi)
:Precondition: {unknown − oi} ∪ PPre

i
, where

PPre
i ⊆ LR ∪ LO

:Add Effect:willknow-oi

:Del Effect:unknown-oi

In the definition of sensing action,PPre
i

is the list of
other literals which might occur as precondition besides the
necessary precondition:unknown-oi. The application of
Sense-oi results in the runtime value ofoi to be known.
Since it is binary valued, the plan branches to two states:
one contains theoi as TRUE and other as FALSE. Its ap-
plication does not lead to change in the value of any atom
belonging to the setLR, i.e., the world is unchanged.

As an example, let there be three stores: A, B and C.
Store A sells flower F1, store B sells flower F2 and store C
sells both flowers F1 and F2. We have sensing actions for
each pair of store and flower it sells and they sense whether
the flower is in stock at the store or not. Then, there are
packing, billing and dispatch actions to fulfill the order. The
action specifications are shown in Table 1. The planner, like
all AI planners, uses preconditions and effects. A WSDL-
described web service has only inputs and outputs, while an
OWL-S described (semantic) web service has inputs, out-
puts, preconditions and effects. We use the latter format
for exposition but note that WSDL-described specifications
can be translated to preconditions and effects1. In a problem
(referred byExampleProblemlater), suppose the goal is to
dispatch two kinds of flowers: F1 and F2. Hence,BSI = {
unknown-A-F1, unknown-B-F2, unknown-C-F1, unknown-
C-F2} andBSG = { dispatchF1, dispatchF2}.

We now define different kind of plans.

Definition 6 Potential Plan: Any sequence of actions is a
potential plan.

Definition 7 Potential Contingent Plan: These are the
rules describing a potenital contingent plan:

• A Potential Plan is a potential contingent plan.

• If an actiona is a sensing action, andw1,....,wn are
conjunctions of observable atoms andc1,...., cn are
corresponding potential contingent plans, then so is
”a;case (w1 → c1, .....,wn → cn)”.

1The representation of actions is the same as that of MBP. It can be
naturally transformed to other planner representations.

Name: Sense-A-F1 Name: Sense-B-F2
Input: FlowerName F1 ;Output: Input: FlowerName F2 ;Output:
Precon: unknown-A-F1 ;Effect: willknow-A-F1 Precon: unknown-B-F2 ;Effect: willknow-B-F2

Name: Sense-C-F1 Name: Sense-C-F2
Input: FlowerName F1 ;Output: Input: FlowerName F2 ;Output:
Precon: unknown-C-F1 ;Effect: willknow-C-F1 Precon: unknown-C-F2 ;Effect: willknow-C-F2

Name: Pack-C (S1) Name: Pack-A (S2)
Input: C-F1, C-F2 ; Input: A-F1 ;
Output: PackedC F1, PackedC F2 Output: PackedA F1
Precon: C-F1∨ C-F2 ; Precon: A-F1 ;
Effect: C-F1→ PackedC F1, C-F2→ PackedC F2 Effect: A-F1→ PackedA F1

Name: Pack-B (S3) Name: Bill-Card-C (S4)
Input: B-F2 ; Input: PackedC F1, PackedC F2 ;
Output: PackedB F2 Output: billed-CardF1, billed-CardF2
Precon: B-F2 ; Precon: PackedC F1∨ PackedC F2 ;
Effect: B-F2→ PackedB F2 Effect: PackedC F1→ billed-CardF1,

PackedC F2→ billed-CardF2

Name: Bill-Cash-C (S5) Name: Bill-Card-A (S6)
Input: PackedC F1, PackedC F2 Input: PackedA F1
Output: billed-CashF1, billed-CashF2 Output: billed-CardF1
Precon: PackedC F1∨ PackedC F2 Precon: PackedA F1
Effect: PackedC F1→ billed-CashF1, Effect: PackedA F1→ billed-CardF1
PackedC F2→ billed-CashF2

Name: Bill-Cash-A (S7) Name: Bill-Card-B (S8)
Input: PackedA F1 ; Output: billed-CardF1 Input: PackedB F2 ;Output: billed-CardF2
Precon: PackedA F1 Precon: PackedB F2
Effect: PackedA F1→ billed-CardF1 Effect: PackedB F2→ billed-CardF2

Name: Bill-Cash-B (S9) Name: Dispatch Service (S10)
Input: PackedB F2 Input: billed-Cash F1, billed-Cash F2,

billed-Card F1, billed-Card F2
Output: billed-CardF2 Output: dispatchF1, dispatchF2
Precon: PackedB F2 Precon: (̄billed-Cash F1∨ billed-Card F1

∨ billed-Cash F2∨ billed-Card F2)
Effect: PackedB F2→ billed-CardF2 Effect: (billed-Cash F1∨ billed-Card F1)→ dispatchF1,

(billed-Cash F2∨ billed-Card F2)→ dispatchF2

Table 1. Action Specification for the Example prob-
lem.

Definition 8 (Sound) Plan: A potential plan is a sound
plan if each action in the plan, when applied in order to
the initial state, will lead to a state which encompasses the
goal state.

Definition 9 (Sound) Contingent Plan: A potential contin-
gent plan is sound if each branch of the contingent plan,
when individually applied toBSI , will lead to a state which
will encompass at least oneWS in the goal state.

Definition 10 UserAcceptableContingent Plan: A contin-
gent plan is user acceptable if the functionUserSpecCom-
patible returns TRUE on the plan and for each branch
where the goal is reachable, the plan fragment is Sound-
Contingent.

We allow for planning to be performed when the domain
is still incompletely modeled. As a result, there may be con-
ditions under which the goal isUserAcceptableContingent
but not sound. We require an acceptable plan to be sound for
the conditions where the goals are achievable.UserSpec-
Compatibleis a function which takes the user specification
as input and returnsTRUE if the branches in the plan sat-
isfy the specifications, else it returns false. If the user asks
for UserAcceptableContingentPlanplan, then for a branch
in which the goal is unreachable, we give a partial plan that
is closest to the goal. But if the user only wants sound plans,
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a plan is not returned until it is sound along all the branches
for which plan (fragments) are generated.

The branches of a contingent plan can be characterized
by two properties in addition to the branch conditions.

Definition 11 Branch Characteristics: A branch of CP is
characterized by -

• Ambiguity: We measure the ambiguity of a branch by
the number of sensing actions in its plan fragment.
Since sensing actions represent resolution of uncer-
tainty, the more ambiguous the branch is before exe-
cution, the more sensing actions it will have.

• Length: It is the total number of actions (sensing +
non-sensing) in a branch.

A ContingentPlan corresponding to the ExampleProb-
lem is given in Figure 1. Note that in this plan, for each
branch in which goal is reachable, the plan fragment is
sound. The sound branches are numbered in black while
the unsound ones are in gray. In the plan, the actions with
their initials ’Sense’ are sensing actions and hence there are
two branches arising as a result of the application of these
actions. There are more than one action at the leaf node of
the branches, they are to be applied sequentially in the order
in which they are written.

2.1 Key User Preferences

The functionUserSpecCompatibletakes user inputs re-
lated to preferred plans and checks whether they are satis-
fied for a given (partial) plan. The current version of the
planner supports these inputs:

• Partial branch condition specification (φ)

• Number of branches (K) in the plan

• Relative action cost (RC)

Partial branch specification (φ): It is a a boolean for-
mula on LO. For instance, ifLO = {P, Q, R}, then
φ = (¬P ∧ Q) ∨ (P ∧ ¬Q) can be a branch preference.
It means that the branches of interest are the ones in which
eitherP is FALSE andQ is TRUE orP is TRUE andQ is
FALSE. The values of rest of the elements ofLO (R in this
case) are don’t care. The specification is considered partial
because it does not say anything about the branches which
are outside the specified conditions (R or¬R in this case).
Following are the rules to check if a belief stateBS satisfies
a single literal specification,li. φ is checked similarly in a
straight forward manner2.

2The default value ofφ is TRUEwhich means that all states satisfyφ.

Rule 1: li ∈ BS → BS satisfiesli.
Rule 2: unknown-li ∈ BS → BS satisfies bothli and¬li.
Rule 3: Otherwise,BS satisfies¬li.

Number of Branches (K): This is the total number of
branches which the user wants the planner to find3.

Relative action cost (RC):The user can set this value to
express his preference for characteristic of the plan: shorter
in length branches or less ambiguous (less number of sens-
ing actions) branches. By setting a higher value to this pa-
rameter the user can increase the cost of sensing action and
thereby discourage the selection of the branch which has
more sensing actions and vice versa4.

3 Solving the Planning Problem

In this section, we describe how the user inputs are used
to find UserAcceptableContingentPlans. We follow A*
search, so at each step, we define cost of any belief state
BS by:

f(BS) = g(BS) + h(BS)

In this formula,g is the cost to achieve the current node
and is calculated as the number of actions which were ap-
plied to BSI to reach the state BS andh is the heuristic
value. At each time in search, the state with minimum
f value is selected. We search in the forward direction
and prefer heuristic computation in the backward direction
since approximate distance fromBSG is to be computed.
We now describe how we calculate theh value and then in
search sub-section, we will show how we use it.

3.1 Calculating Heuristics

The search space of CP is an AND-OR graph of belief
states where the sensing actions induce the AND sub-part
and the non-sensing actions induce the OR sub-part of the
graph. We introduce a cost measure to estimate the heuris-
tic distance in the AND-part which helps in pruning search
space based on user specifications. For the OR-part, we
could use any distance-based heuristic and we use the well
known Planning Graph (PG) heuristics[7]. The latter is not
discussed further.

Cost Assignment to literals:The cost assigned to a lit-
eral is the minimum estimate of the sum of the cost of the
actions which are required to achieve this literal from goal
state when planning regressively. We use the following for-
mulas to calculate the cost:

3The default value for this parameter is 2|LO| which means all possible
branches.

4The default value for this parameter is 1 which means equal preference
for sensing and non-sensing actions.
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S1, S4,
S10

Sense-A-F1

C-F1

Sense-B-F2 Sense-C-F1

Sense-C-F2 Sense-B-F2

S1, S4,
S10

S1, S3, S4,
S8, S10

S2, S3, S6,
S8, S10

S2, S6,
S10

S1, S2, S4,
S6, S10

(1)

(5)

(3)

Sense-C-F2

(2)

Sense-B-F2 S3, S8, S10 Sense-C-F2

S1, S4,
S10

NA

(4)

(6) (8)(7)

~C-F1B-F2 ~B-F2

~B-F2

A-F1 ~A-F1

C-F2 ~C-F2 ~B-F2~C-F2 B-F2C-F2

C-F2B-F2 ~C-F2

Branch No Sum of Costs (RC = 1) Sum of Costs (RC = 100)

5

4

2

1 2*1 + 5 = 7

4*1 + 5 = 9

3*1 + 3 = 6

3*1 + 5 = 8

2*100 + 5 = 205

4*100 + 5 = 405

3*100 + 3 = 303

3*100 + 5 = 305

Figure 1. An Example Plan.

Cost(li) = 0 if li ∈ BSG, otherwise
= min(Cost(Ai) + min(Cost(AAdd

i
))) (1)

Cost(Ai)= RC if Ai ∈ AS

= 1 if Ai ∈ ANS (2)

In formula 1, if a literalli ∈ BSG then its cost is 0 else,
it is equal to sum of cost of supporting action actionAi (li ∈
APre

i ) and minimum cost among thel′is ∈ AAdd
i . Then a

minimum is taken over the complete formula because there
can be more than one supporting actions for a literal and we
are interested in finding the minimum estimate. In formula
2, all sensing actions are assigned cost equal toRC and
non-sensing ones are assigned cost equal to 1. Intuitively,
it can be seen that the formula 1 will give an estimate of
the sum of costs of actions which are required to obtainli
in backward planning. This process of finding cost ofl

′

is
has to be done for eachli and has to be repeated till there
is no change in the cost of anyli. Once we have done the
cost assignments, we can calculate h(BS) for any state as
the sum of the cost of all literals true in BS:

h(BS) =
∑

Cost(li) | li ∈ BS

Our approach is complementary to the existing utility
based approaches in which a utility function is provided and
the aim is to find the plan with maximum utility. We show
how both of these can be combined. Let us take an exam-
ple utility function,ĥ(BS). Note that f(BS) is the estimated
cost of a state BS and since, cost and utility are opposite in
nature because less the cost, more preferred the state is and
more the utility, more preferred the state is. Hence, the new
cost of state can be defined as:

f(BS) = g(BS) + h(BS) + `∗ 1/ĥ(BS), where

` is the weight which can be adjusted according to the prob-
lem setting.

3.2 Search

Once we are done with preprocessing, we start the search
procedure.

Data Structures: We maintain one global queue and
two lists (Figure 2):

1. GlobalQueue: contains states arising from the applica-
tion of a sensing action which satisfyφ.

2. IncompleteBranchesList: contains states from which
there is no path to goal.

3. GoalBranchesList: contains states which encompass
BSG, which are used to retrieve plan to reach these
states.

Search Algorithm: The main search routine (Figure 2)
takesBSI , BSG, AS , ANS andLO as input. In Steps 2-3,
the termination check is done to see if the #ofGoalsFound
are more than the user suppliedK or theGlobalQueue is
empty. If not, in Step 4, we extract a node from the Glob-
alQueue. If the extracted stateentails (contains) the goal
state, the counter #ofGoalsFound is increased. In Steps
9-17, the non-sensing actions are first attempted and if no
more applicable, the sensing actions are tried in routineap-
plySensingActionsdepending onφ.

For searching in the OR part of CP’s belief states, we
enumerate allAi ∈ ANS and choose the one which leads
to the state with minimum f(BS) value. Here,h value is
calculated with PG heuristics.If there are more than one ac-
tion with minimumf value, then we use soft constraints to
break the tie. An instance of it is mentioned in next section.
We also have a cycle check mechanism to ensure that redun-
dant search paths are detected early. We first try to achieve
sub-goals with non-sensing actions and if noAi ∈ ANS is
applicable,applySensingActionsis called. Here we search
in the AND part of the CP’s AND-OR graph. Among
Ai ∈ AS , we select the action(s) A’ whose atleast one of
resultant statesBS′

1
and BS′

2
satisfy φ If more than one

such action exists, we select the action which has minimum
f(BS′

1
) + f(BS′

2
). Here for calculating f(BS), we use the

cost assigned to literals to calculate theh value. If we can-
not find a unique action by this, then we again use soft con-
strains to break the tie.
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F unction : startSearch

Inputs : BSI , BSG , AS , ANS , LO
Output : UserAcceptableContingentPlan
GlobalV ariables : NoOfSlns, GlobalQueue,

GoalBranchesList, IncompleteBranchesList.
LocalV ariables : ActionList, ST emp, SNew
01. Begin
02. GlobalQueue.enque(BSI )
03. Begin while (NoOfSlns≤ K ∧

¬ GlobalQueue.isEmpty()
04. ST emp = GlobalQueue.deque()
05. If goalsSatisfied(STemp , BSG )
06. NoOfSlns++
07. GoalBranchesList.add(STemp ), continue;
08. End if
09. ActionList ={Ai | Ai ∈ ANS∩
10. preconditionSatisfied(Ai, STemp)}

11. IfActionList.isEmpty()
12. applySensingActions (STemp , AS )
13. continue
14. For allAi ∈ ActionList
15. SNew = applyEffect(STemp, Ai )
16. GlobalQueue.enque(SNew)
17. End while
18. End

(a) Main Search Routine

F unction : applySensingActions

Inputs : BSin , ANS
Output : UserAcceptableContingentPlan
LocalV ariables : ActionList, BS1, BS2
01. Begin
02. ActionList ={Ai | Ai ∈ AS∩

preconditionSatisfied(Ai, BSin)}
03. IfActionList.isEmpty()
04. IncompleteBranchesList.enque(BSin )
05. return
06. For allAi ∈ ActionList
07. BS1, BS2 = applyEffect(BSin, Ai)
08. IfBS1 satisfiesφ
09. GlobalQueue.Enque(BS1, Ai)
10. IfBS2 satisfiesφ
11. GlobalQueue.Enque(BS2, Ai)
12. End

(b) Applying Sensing Action

Figure 2. Search Algorithm

Support for incomplete branches: For every branch
which is incomplete and satisfiesφ, of all the reachable
states in it, we save the one which has minimumf value
5. In the end, when the search is complete and the number
of branches which satisfyφ and lead to goal is less thanK,
sayN . Then we extractK - N states from the queue, and
produce the plan required to reach them as an incomplete
branch.

Support for Parallel Plans: While heuristics search
planners normally produce sequential plans, P4J-CP can
produce plans with parallel actions if the user is interested.
We use the techniques of AltAlt-p[13] that presented the
idea of online parallelization of sequential plans. We have
extended their idea to contingent planning but the paral-
lelism is limited to non-sensing actions.

Support for Scalability: In the web services domain,
there are usually very large number of services/actions (in
the order of thousands) in the registry that may be irrele-
vant to a specific composition request. Here, doing an up
front relevancy checkon the actions (i.e., services specifi-
cation) based on the goal could help in removing the irrel-
evant actions and hence, cutting down the search space. A
method to do it is RIFO[10] which starts from goals and
tries to determine relevant actions that can directly support
the achievement of goals or indirectly support such relevant
actions. We implemented a version of RIFO that addition-
ally takesφ into account while computing action relevance.
Only relevant actions are used during planning.

Planner Completeness and Soundness:P4J-CP em-
ploys A* search and is complete when the user specification
φ is not provided. If the specifications are given, they are
used to prune the search space corresponding to branches

5IncompleteBranchQueueis used to store these states.

φ K RC Sound Branches Output Branches
Nil 1 1 1, 2, 4, 5 4
Nil 1 100 1, 2, 4, 5 1
Nil 2 1 1, 2, 4, 5 1, 4
Nil 2 100 1, 2, 4, 5 1, 4

(C-F1∧ C-F2)∨(¬C-F1∧¬C-F2) 1 1 1, 2, 4 4
(C-F1∧ C-F2)∨(¬C-F1∧¬C-F2) 1 100 1, 2, 4 1
(C-F1∧ C-F2)∨(¬C-F1∧¬C-F2) 2 1 1, 2, 4 1, 4
(C-F1∧ C-F2)∨(¬C-F1∧¬C-F2) 2 100 1, 2, 4 1, 4

Table 2. Sample Plan Output

which do not satisfyφ. As a result, the completeness of
search is not guaranteed in this case. P4J-CP can be config-
ured to produce only sound plans or unsound plans. In the
case of latter, which is useful while planning in an evolving
domain, both sound and unsound branches are generated
separately and marked for user’s convenience.

4 Applying Contingent Planning to WSCE

We now demonstrate that how the branches produced by
P4J-CP vary with the user input. With reference to theEx-
ampleProblemand its contingent plan (Figure 1), Table 2
shows the branches produced by our planner corresponding
to the few instances of user specification.

This contingent plan has 8 different branches (marked 1
to 8) and among them 4 are sound (1, 2, 4 and 5). For each
row, the branch with minimum sum of costs of actions in
it(Table 2 and small table in Fig.1) is selected. For first four
rows,φ is Nil, hence all sound branches satisfyφ, whereas
for next rows whereφ is (C-F1∧ C-F2)∨(¬C-F1∧¬C-F2),
every sound branch except 5 satisfyφ.

The plan produced has unsound branches: 3, 6, 7, 8. This
gives necessary information to the domain modeller regard-
ing the reasons for the plan being unsound. He can either
enhance the domain model so that it is taken care of or leave
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it for the user of the system to insert some default branch for
such scenarios.

Instance of Soft Constraint: In the domain, we have
two actions for payment, one by cash and other by credit
card. Now, for same flower shop, both of these actions have
same preconditions. So, when payment is to be made both
are applicable. To choose one over other, we use soft con-
strains. User can add some predicate P inBSI and write
P@Bill-Cash-C (as command line argument), this means
the user would prefer to pay in cash over card. We have
incorporated such kind of soft constraints and use them to
resolve the tie when more than one action leads to minimum
heuristic value state.

5 Experimental Results and Discussion

We want to establish if our approach of limited contin-
gency planning by using user specification to control search
is efficient. An alternative to our approach would be a naive
strategy of finding the complete plan under all conditions,
and then filtering the specific branches of user interest. We
will show that our approach works significantly better than
the naive approach. Second, we want to benchmark our base
contingent planning system without any user preference.
For this, we compare it to Sensory Graph Plan (SGP)[17]
and MBP[4]. While P4J-CP is intended for interactive plan-
ning applications, like the web services domain, there are
very few standard problems. Hence, we use traditional con-
tingent planning domains. All domains/problems are taken
from SGP distribution. All results were taken on a IBM
ThinkPad which has 1.6GHz Pentium 4 CPU and 512 MB
of RAM running Red Hat Linux V9 on it.

We implemented both the approaches and tested them on
various domains. We got identical results across all the do-
mains. Here, we present the results for one of the domain:
Bomb in the toilet with one hundred packages (Figure 3).
In this domain, the uncertainty is about whether a package
has a bomb or not. Corresponding to each package, there is
a sensing action, hence there are hundred sensing actions.
For naive strategy, both memory and time consumption re-
main unaffected with number of branches to be generated
since it first computes the contingent plan for every possible
condition and then does the filtering. Notice that when the
number of branches to be generated is low, then our method-
ology performs significantly better than the naive approach
but the difference reduces as the number of branches re-
quired increase. This is understandable because when all
the branches are required, P4J-CP does not perform any
search control and both strategies will work at par.

The comparison with MBP and SGP was done on two
domains: bomb in toilet and cassandra (see Table 36). For

6NS indicates not solvable in 500000 msecs. (-) indicates problems not
solved by SGP due to memory restrictions of our trial AllegroLisp version.

Domain & MBP SGP P4J-CP
Problem Time (msecs) Time(msecs) Time (msecs)

bt-1sa 5180 60 68
bt-2sa 28470 60 114
bt-3sa 153250 60 132
bt-4sa NS 70 152

Casandra A1 20 10 52
Casandra A2 20 0 69
Casandra A3 20 - 74
Casandra A4 40 - 101
Casandra A5 10 10 54

Table 3. Comparison of P4J-CP with SGP.

No of Irre- Time(msecs)(With Time (msecs)(Without
lavant Act. Relevancy Check) Relevancy Check)

100 60 90
500 100 320
1000 140 551
5000 461 7360
10000 601 27800
50000 2383 669883
100000 4246 3521754

Table 4. Significance of Relevancy Check

MBP and P4J-CP, we take sum of preprocessing and search
time and for SGP, we take the sum of user non-gc time and
system non-gc time. The table shows that the base plan-
ning system of P4J-CP (when no user preference is used),
is competitive with the current contingent planners.

We also wanted to check if the planner is scalable with
adapted RIFO while composing with large number of ac-
tions. Table 4 shows this to be indeed the case for P4J-
CP. Here, time taken to solve a problem from an extended
Bomb-in-the-toilet domain is shown in two scenarios: one,
in which the relevancy check was used and the other in
which it was not.

Performance of P4J-CP in Web Services Problems:
There is no standard benchmark for web services composi-
tion which evaluates scalability and usefulness of the com-
positions returned to the user7. We are applying P4J-CP in
the context ofSynthycomposition system. Here, planning
is performed at the level of web service types and not at the
lower level of web service instances. Thus, there is basic
scalability in theSynthyarchitecture.

Within Synthy , the planner has been used to com-
pose plans in a variety of service scenarios like Helpline
Automation[1]. In regular usage, the planner is called to
generate plans with up to 3-4 branches and around 20-30
steps which the planner can do in a few seconds. We ob-
serve that the planning approach is quite efficient because:

1. User specification is used to effectively cut down on
search space.

2. The relevance check is effective in reducing the service
types (actions) that are considered for planning.

7There is an attempt at having a syntactic baseline for composition. See
http://www.comp.hkbu.edu.hk/ eee05/contest/
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Figure 3. Our approach against naive approach.

6 Conclusion and Future Work

We have presented a user-driven search control method-
ology for contingent planning which takes input from user
and then uses these inputs to efficiently focus the search.
This approach would be specially useful in interactive ap-
plications of contingent planning where the response time
of the planner is important and the user has preferential in-
terests in different parts of the plan. One such application
we are pursuing is in a web services composition tool to
build applications. In future, we would like to do more user
experiments on the system and integrate the branch specifi-
cation language with preference languages like CP-Net[3].
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