
RI 07003 March 2007 Computer Science

IBM Research Report

Raising Programming Abstraction from Objects to Services

Arun Kumar, Anindya Neogi
IBM Research Division
IBM India Research Lab

Block I, I.I.T. Campus, Hauz Khas
New Delhi - 110016. India.

Sateesh Pragallapati, D. Janaki Ram
Dept. of Comp. Sc. & Engg.,

Indian Institute of Technology Madras,
Chennai-600036, INDIA

IBM Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE : This report has been submitted for publication outside of IBM and will probably be
copyrighted is accepted for publication. It has been issuedas a Research Report for early dissemination of its contents. In view
of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained
copies of the article (e.g., payment of royalties). Copies may be requested from IBM T.J. Watson Research Center, Publications,
P.O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at
http://domino.watson.ibm.com/library/CyberDig.nsf/home

1

Raising Programming Abstraction from Objects to Services

Arun Kumar, Anindya Neogi
IBM India Research Laboratory

New Delhi-110016, INDIA
{kkarun, nanindya}@in.ibm.com

Sateesh Pragallapati, D. Janaki Ram
Dept. of CS&E, IIT Madras,

Chennai-600036, INDIA
{sateeshp, d.janakiram}@cs.iitm.ernet.in

Abstract

Traditional software development involves writing com-
plex programs by reusing and building upon off-the-
shelf software libraries. The benefit of this paradigm is
compile time availability of both, component interfaces
as well as corresponding implementations. This enables
software developers to write new programs that build
on existing functionality without worrying much about
runtime environment. Current shift towards service
oriented computing presents a different paradigm that
involves actively running components in the form of
services. Here, it becomes necessary to discover the
component(s) first and to determine whether some exist
that satisfy the requirements specified. This requires a
search operation to be performed in runtime service reg-
istries and prevents the software developer from creating
new service oriented program without having to rely
upon component availability in the runtime environment.
Moreover, new web service instances may come up or
existing ones may go down dynamically. This leads to
frequent expiry of searched results making dependent
programs highly brittle. In this paper, we present a novel
approach for services based software development that
proposes a paradigm shift from objects to services as first
class entities.

Keywords Semantic Web Services, Programming lan-
guages, Matching, Object orientation, Ontology

1 Introduction

Software development today involves use of software
libraries that are available as programming language
API and undergo change infrequently. The developer
writes a program using existing functions or classes
from these libraries and compiles it into an executable.
Runtime environment considerations play a role only for

generation of an appropriate executable. The world of
web services presents a different challenge, however.
Unlike traditional software libraries that come in the
shape ofoff-the-shelfcomponents, web services are
actively runningcomponents that need to be composed
together. Also, being autonomous, Web services may
come up or go down dynamically unless there are of-
fline contracts in place. Furthermore, web services are
designed to be accessible programmatically to enable
automation. These characteristics have kept the focus
of Web Services tools and technologies towards runtime
interactions leading to techniques for automated Web
Service discovery, selection and composition, as well as
Web Services orchestration and choreography etc.

However, two different models of development are
emerging. In one, developers need to program software
agents that accept the requirements from the end user.
The services needed to fulfill those requirements are
then automatically discovered, selected, composed and
invoked by these agents. The work being done by
Semantic Web Services community plays an important
role towards enabling this vision. While this model
matures, the other model being employed by application
developers is along the lines of traditional software de-
velopment. Developers code enterprise systems by first
developing new web services or by building wrappers for
legacy systems or by using existing known services as
components in their programs.

It is in the latter model that there exists a significant gap
in terms of current programming language abstractions
that are inadequate for programming Service Oriented
Architectures (SOA). The dynamic nature of web service
availability makes the developers dependent on runtime
environments. Developers are also expected to translate
and encode high level service contracts into programs
written in OO languages [10], and find ways to ful-
fill functional requirements (through composition, for
example) as well as enforce policies containing non-

2

functional requirements. Much of the information they
need belongs to the runtime environment and is dynamic.

In prior work [12], we proposed a model that helps
in alleviating some of these and other problems. How-
ever, development tools and languages need to provide
adequate support in order to derive full benefits of
such rich modeling. In this paper, we take a leap
forward and propose to raise the level of abstraction in
current programming languages from objects to services.
Specifically, the core contributions of this paper are as
follows:

• We present enhanced service matching techniques.

• We introduce language level operations that involve
services as operands.

• We elevate services to first class entities with the
help of above operations.

We hope that this approach would fuel a shift of focus
in research from runtime aspects to design time capa-
bilities of Web Services tools and technologies leading
to a Service Oriented Software Development (SOSD)
methodology.

2 Motivation and Background

Web Service
Software Development

Environment

Online
Service
Registry

Search

Web Service
Software Development

Environment

Embedded
Offline

Registry

Available Services
Developer

Developer

Deployable
Program

Deployable
Program

Online
Service
Registry

Limited
Search

Available
Services

Runtime Engine

(a)

(b)

Executable Program

Figure 1. Web Services based Software De-
velopment Model (a) Current (b) Proposed

Figure 1 (a) depicts the current Web Services based
software development model in which the developer
makes use of web services that are currently available
for invocation. However, some of these services might
not be available for use when this program is actually
executed making the program brittle. When software
agents are used, the desired web service can be searched
at runtime but it adds a significant delay into the service

Services in Registry
Name: FreshFlowerShop Service
Input: FromAddress, ToAddress, FlowerName, NumOfFlowers
Output: OrderReceipt, Packet, Amount, DeliveryReceipt
Precon: FromAddressavailable
Effect: OrderReceiptsentToFromAddress, Amountavailable,

Packetavailable, DeliveryReceiptsentToFromAddress

Name: FragrantFlowerShop Service
Input: SenderAddress, ReceiverAddress, FlowerName, NumOfFlowers
Output: OrderReceipt, Packet, Amount
Precon: SenderAddressavailable, ReceiverAddressavailable,
Effect: OrderReceiptsentToSenderAddress, Amountavailable, Packetavailable

Figure 2. The FlowerShop Services

invocation path. There is a tradeoff between program
correctness and performance here.

In both cases, the service invocation may not succeed
even though a suitable service might be available to
service the request. Current approaches are too restric-
tive requiring strict matching of service capabilities with
client requirements [7]. Even though approaches such
as [20] use information retrieval techniques, and [18, 6]
allow a softer notion of matching, each of these are
limited in their effectiveness. We illustrate this with an
example.

Consider the service descriptions shown in Figure 2,
described in terms of a simplified representation of their
Input, Output, Preconditions and Effects1. Here, two
services - FreshFlowerShop service and FragrantFlow-
erShop service are offering similar functionality, i.e.
that of a flower shop. While both accept a sender
and receiver address, FreshFlowerShop service makes
receiver address optional. It also provides a delivery
receipt that is sent to the sender. Besides this, their
descriptions use different terms for same concepts (e.g.
FromAddress and SenderAddress).

Current matching tools are not likely to select Fresh-
FlowerShop service as one of the matches if the user puts
in a request for a service with same specification as that
of FragrantFlowerShop service. The syntactic difference
in their input specification can either be resolved through
existing similarity based matching techniques or through
the use of an ontology that defines equivalence relation-
ship between FromAddress and ToAddress, for example.
The difference in their outputs and effects, however,
would result into a mismatch with current matching
techniques even though FreshFlowerShop service can be
used to serve a request for FragrantFlowerShop service
due to the existence of a semantic relationship between
them [12]. Specifically, FreshFlowerShop service is a
subtypeof FragrantFlowerShop service and can actually
be used in its place.

To resolve these issues we propose a two-pronged

1www.daml.org/services/owl-s/

3

solution. First, we propose to follow the development
model shown in figure 1(b). This helps in diluting the
program correctness – performance tradeoff by isolating
software development activities from the dynamics of the
runtime environment. To achieve this, we propose to
utilize the segregation of service description intoService
Typedescription kept in an offline service registry and
Service Instancedescription kept in runtime registry, as
introduced in [2] .

Service Type is a semantic specification of the service
consisting of one or more profileTypes (i.e interface
descriptions), an optional description of the process
model and a description ofinternal state maintained by
the service [12]. This means that programs can commit
only to service interfaces and not to their implementa-
tions which is good design practice [9]. For developer,
this approach enables writing programs independent of
runtime service characteristics. Service Instance, on
the other hand, is an operational specification of the
service consisting of a reference to the Service Type,
one or more profiles (i.e. interfaces), its internal state
and a grounding [12]. At deployment time, the search
for an exact service instance is restricted to a small
subset of services that conform to a Service Type. It
can be guided by non-functional characteristics such
as quality of service guarantees and partner selection
techniques [17, 21] can be applied effectively there.

Second, to ensure success of the development model
proposed above it is essential that support for func-
tional matching of services needs to be made richer
and stronger than what exists today. Towards that end
we proposed a semantic model for building service
oriented systems that captures relationships existing be-
tween different services [12]. Without compromising on
any principles of SOA2, we introduced the abstraction
principle of Classification to define Service Types and
Instances in the context of service oriented computing
(SOC). To maintain the stateless service semantics we
carefully chose not to commit to theclass construct
available in most OO languages. Instead, we adopted
the notion of WS-Resource – a stateful resource and a
web service acting upon it – as proposed in Web Services
Resource Framework (WSRF) [3]. Similarly, we defined
other abstraction principles such as aggregation (service
composition), interface inheritance and polymorphism in
the context of SOC.

In this paper, we define language level operators that
can enable developers to harness such rich semantic
modeling of services. The operators accept services as
their operands where the services are described by their

2http://en.wikipedia.org/wiki/Service-orientedarchitecture

functional specification.

3 Services as First Class Entities

The concept of Service Type offers an equivalent of
data type in programming languages. The range of
a Service Type is defined by the set of all Service
Instances conforming to that type. This allows us to
treat services as first class language level entities since
Service Types encapsulate the functional capability of
the service needed at compile time. The semantics of
associating a range of Service Instances with a Service
Type is well captured by thematchingprimitive found in
services literature [18, 6, 1].

The service matching process can be split into compile
time matching and runtime matching to enable the model
proposed in figure 1(b). Further, we enable functional
matching of service at compile time. Since functional
description of service deals with categorical concepts
derived from an ontology [2, 12], it can be integrated into
a service development environment independent of non-
functional characteristics of the service instances such
as data types of message parameters, QoS guarantees
offered etc.

An IDE equipped with a registry of Service Types and
compile time functional matching capability could be
used for developing service oriented programs that treat
services as another construct available at the language
level. This would be similar to programming with Java
where classes are used in programs and actual objects are
created at runtime. In services case, the actual service
instances could either be already existing ones or could
be created through the use of service factories [8].

Selection of appropriate service instances, through
matching of non-functional parameters, can take place
at runtime and has been addressed elsewhere [17, 21]. In
this paper, we focus on functional matching of services.

In next few subsections we build upon existing work
and present an enriched view of matching to define
meaningful service level operations.

3.1 Service Matching Refined

Functional matching of services involves functional
parameters of the service description and enables service
discovery, whereas non-functional matching of services
enables service selection based upon parameters such as
quality of service, security guarantees etc.

For functional matching, a softer notion of similarity
is typically adopted than a purely ’exact’ match [18].

4

A similarity measure is defined that captures the se-
mantic distance between the attributes associated with
the requested service and advertised services. Authors
in [18] define four degrees of match between two inputs
or two outputs. These are determined based upon the
relation between ontological concepts associated with
those inputs and outputs.

An exact match is returned if both the concepts are
equivalent, aplugin match is returned if the advertised
output is a superclass of requested output, asubsumes
match if advertised input is a subclass of requested input,
else it is adisjoint match. The matching algorithm
presented in [6] adds aContainerand its complimentary
Part-of match. Match from a service to another service
is a Container match when first service’s parameter
contains the second service’s parameter.

However, they [18, 15] use a set theoretic basis for
defining these match levels. It does not conform to the
object oriented principles that underlie the concepts of
subsumption3 [14]. For instance, apart from equivalence
an exact match is also returned in [18] for outputs when
requested output is a subclass of advertised output. The
assumption made is that by advertising for an output O
the provider commits to provide outputs consistent with
every immediate subtype of O. This is not in agreement
with the established concept of subtyping [22] which
says that a subtype extends the definition of its supertype.
In other words, a subtype can be used in place of a
supertype but not the other way round [4].

We adopt object oriented principles to redefine and
refine these different levels of parameter matching, as
shown in figure 3. The relation for Output parameters
is defined from Advertisement to Request and for Inputs
it is defined from Request to Advertisement. Therefore,
for outputs (refer figure 3(b)), anexactmatch is returned
if the advertised concept is equivalent to the requested
concept, aplugin match is returned if the advertised
concept is a subclass of requested concept, acontains
match is returned if the advertised concept consists or
is composed of the requested concept, asubsumption
match is returned if the advertised concept is a superclass
of the requested concept, apart-of match is returned if
if the advertised concept is contained by the requested
concept, otherwisedisjointmatch is returned.

Plugin match is the preferred one afterexact as a
service that accepts a more general input can be used for
a service that expects a more specific input. It is followed
by containssince a service that expects a component
object can be used for a service that accepts a composite
object as input.Subsumptionfollowed bypart-of come

3http://en.wikipedia.org/wiki/Subsumption

Unrelated

ContainedBy

SuperClass

Contains

Sublass

Equal

Relation(Advt,Req)
(Outputs)

DisjointUnrelated

Part-ofContainedBy

SubsumptionSuperClass

ContainsContains

PluginSubclass

ExactEqual

Semantic
Match Level

Relation(Req,Advt)
(Inputs)

Unrelated

ContainedBy

SuperClass

Contains

Sublass

Equal

Relation(Advt,Req)
(Outputs)

DisjointUnrelated

Part-ofContainedBy

SubsumptionSuperClass

ContainsContains

PluginSubclass

ExactEqual

Semantic
Match Level

Relation(Req,Advt)
(Inputs)

In
cr

ea
si

ng
 S

tr
en

gt
h

(a) (b)

5
4
3
2
1
0

Figure 3. Semantic Match between param-
eters (a) Inputs (b) Outputs

next because in both cases the requirements of the
requester are partially met.Disjoint comes last. The
horizontal dotted line in figure 3 indicates the threshold
level above which the degree of match is expected to
have practical applicability.

The match levels above, specify the relationship that
may exist between two individual parameters. For com-
paring the entire set of inputs (or outputs) of requested
service with those of advertised service we first need
to determine parameters correspond to each other. This
is non trivial. Authors in [15] proposed the use of
a maximum weighted–maximum cardinality matching
algorithm [16] to determine the best match between
request and advertisement parameters. As shown in
Fig. 4, a semantic match matrix is computed that captures
semantic distance between all pairs of attributes. Then
using the above matching algorithm the best match
across all parameters is selected. The resulting match
is considered successful if semantic match value of each
parameter considered in the match is equal to or above
the specified match threshold.

Advertised Input
FromAddress, ProductCode, State

Required Input
Address, ItemCode, DeliveryState

Possible parameter matches
{ (Address, Fromaddress), (Address, State)

(Itemcode, ProductCode), (DeliveryState,State),
(DeliveryState, FromAddress) }

Maximal Matchings
{ (Address, FromAddress),
(ItemCode, ProductCode), (DeliveryState, State)}

And { (Address, State), (ItemCode,
ProductCode), (DeliveryState, FromAddress) }

Maximal Weighted – Maximal Matching
{ (Address, FromAddress), (ItemCode,

ProductCode), (DeliveryState, State) }

Address

ItemCode

Delivery
State

From
Address

ProductCode

State

5

Request Advertisement

2

4

3

1

401Delivery State

050Item Code

302Address

StateProduct
Code

From

Address

401Delivery State

050Item Code

302Address

StateProduct
Code

From

Address

Semantic Match Matrix

Address

FromAddress

City
Street
State

DeliveryState

ItemCode ProductCode
Sample
Ontology

S S

C

C

C E

Legend
S: SubclassOf
E: Exact
C: Contains

Figure 4. Maximal Weighted Maximal Car-
dinality matching

5

3.2 A Holistic View of Matching

Most of the existing approaches take a simplistic view
of service matching. First, the semantic distance is com-
puted for service attributes that are expressed merely as
ontological concepts [18, 6] whereas actual descriptions
could contain complex expressions as preconditions and
effects of different operations. Second, the only ser-
vice level operation available isequivalencethat returns
whether an exact or a lesser degree match exists between
the services compared [17, 21]. Third, entire matching
is performed at runtime introducing delays in the service
discovery and composition processes.

Service Type
Service Matching

profileType

state-
Description

model-
Description

Interface Matching

1+

Expression Matching

0..1
1

I

EP

O

operation-
Description

Parameter Matching

1+

Service Type

profileType

state-
Description

model-
Description1+

0..11

I

E P

O

operation-
Description

1+

Operation Matching

State Matching

Desired Service Advertised Service

Figure 5. Layered Matching

An end-to-end view of functional service matching is
presented in Fig. 5. To match a desired service with
an advertised service, the internal components of the
two service descriptions need to be matched first. This
happens at different levels of abstraction.

Parameter Matching: Here, matching is done to
compare individual attributes (such as input elements or
output elements) involved in service descriptions. As
mentioned above, the attributes are typically ontological
concepts and a similarity measure is defined that repre-
sents the semantic distance between two attributes.

Expression Matching: When ontological concepts
alone are used to represent all kinds of preconditions
and effects, it can lead to ontology explosion and also
result in a brittle ontology [13]. Expression matching
defines similarity measure representing semantic dis-
tance between two (boolean) expressions defined over
ontological concepts.

Operation Matching: The operation level matching
process uses the parameter level matching results and ex-
pression level matching results to determine whether all
<I,O,P,E> of the two operations being compared have a
semantic match value above the specified threshold.

Interface, State and Model Matching: A service
interface is a logical collection of related operations that
the service offers. Therefore, interface level matching

is simply a collection of operation matching results.
State level matching determines the similarity of two
services in terms of the internal state that they maintain.
It is similar to parameter level matching since state is
captured using simple ontological concepts. Matching
based upon the internal process model of the services is
called Model matching. It can be useful for temporal
matching of services to ensure that services carry out
certain steps in a particular order [1].

Service Matching: Similarity of two services is
computed by aggregating the semantic distances between
their corresponding operations and state descriptions.

Next, we present a refined equivalence operation de-
fined over services as operands, based upon this end to
end view.

3.3 A refined equivalenceoperator

While most existing approaches rely on parameter
matching alone for matching service descriptions, we
refine it with an algorithm for expression matching. Op-
eration level matching could then use parameter match-
ing for inputs, outputs and expression matching for
preconditions, effects.

We represent preconditions and effects as boolean ex-
pressions involving unary or binary predicates involving
concepts from service inputs and outputs as operands
(refer Fig. 1). For the sake of simplicity, we present our
discussion with conjunctions of binary predicates and
ignore disjunctions and unary predicates for now.

Consider the following symbolic predicated belonging
to an advertised and requested service description.

Advt.: OpdA1 operatorA OpdA2 ...(1)
Req : OpdR1 operatorR OpdR2 ...(2)

Similar to Figure 3 for inputs, outputs, Figure 6 shows
a table using which the semantic match level of two
predicates in effects can be computed based upon the on-
tological relationship between the concepts represented
by the operands. The left side column of the table
lists the relation between first operand OpdA1 of the
advertisement (1) and its corresponding operand OpdR1
in the request (2) shown above. The top header row of
the table lists the relation between second operand of the
advertised and the requested predicate. The values inside
the table indicate the resulting semantic match relation
between the effect predicates as defined from advertised
service to requested service. For preconditions, the
semantic match relationship is defined from requested
service to advertised service. The table remains the same
except with positions of OpdA1 and OpdA2 exchanged
with positions of OpdR1 and OpdR2 respectively.

6

The semantic match levels for effects have similar
interpretation as presented for outputs earlier. How-
ever, exact, plug-in, contains, subsumption, and part-
of matches are returned either in the case of unary
predicates or whenboth the operands of the predicates
being compared have an equality, subclass, contains,
superclass, or containedBy relation in the ontology re-
spectively4. If the two operands of a predicate share a
different relationship with the corresponding operands
in the predicate being compared, the resulting match is
one ofplug-in–contains, plug-in–subsumption, plug-in–
part-of, contains-subsumptionor subsumption–part-of.
Figure 7 shows, these semantic match levels sorted in
terms of their match strength. These additional semantic
match levels help in enabling predicate matches that
otherwise result into a mismatch. For instance, consider
the following predicates used as effects:

Advt.: OrderReceipt sentTo SenderContact
Req : Receipt sentTo SenderAddress

The ontological relationships are as follows. Order-
Receipt is asubclassof Receipt and SenderContact
contains SenderAddress (in addition to SenderEmail,
SenderMobile etc.). In this case, the advertisement
indicates that an OrderReceipt would be sent to Sender-
Contact (which included SenderAddress, SenderEmail
and SenderMobile, etc.) as one of the effects. This
service can very well be used for a request that requires
a Receipt to be sent to SenderAddress. As per Figure 6,
the match level here isplug-in–containswhich is placed
belowplug-inand higher thancontainsin terms of match
strength. For a client, that is fine with extra side-effects
(such as receipt sent to SenderEmail and SenderMobile
in addition to SenderAddress) this is valid a match.

DisjointDisjointDisjointDisjointDisjointUnrelated(OpdR1)

Part-ofPart-of-SubsumptionPart-of-ContainsPart-of –Plug-inPart-ofContainedBy(OpdR1)

Subsumption-Part ofSubsumptionSubsumption-
Contains

Subsumption-Plug-
in

SubsumptionSuperClass(OpdR1)

Contains-Part-ofContains-
Subsumption

ContainsContains-Plug-inContainsContains(OpdR1)

Plug-in-Part ofPlug-in-SubsumptionPlug-in-ContainsPlug-inPlug-inSubclass(OpdR1)

Part-ofSubsumptionContainsPlug-inExactEqual(OpdR1)

O
p
d
A
1

ContainedBy(OpdR2)SuperClass(OpdR2)Contains(OpdR2)Subclass(OpdR2)Equal(OpdR2)

OpdA2
Relation (Adv, Req)

DisjointDisjointDisjointDisjointDisjointUnrelated(OpdR1)

Part-ofPart-of-SubsumptionPart-of-ContainsPart-of –Plug-inPart-ofContainedBy(OpdR1)

Subsumption-Part ofSubsumptionSubsumption-
Contains

Subsumption-Plug-
in

SubsumptionSuperClass(OpdR1)

Contains-Part-ofContains-
Subsumption

ContainsContains-Plug-inContainsContains(OpdR1)

Plug-in-Part ofPlug-in-SubsumptionPlug-in-ContainsPlug-inPlug-inSubclass(OpdR1)

Part-ofSubsumptionContainsPlug-inExactEqual(OpdR1)

O
p
d
A
1

ContainedBy(OpdR2)SuperClass(OpdR2)Contains(OpdR2)Subclass(OpdR2)Equal(OpdR2)

OpdA2
Relation (Adv, Req)

Figure 6. Semantic Matching for predicates
in Effects

Using expression matching for individual predicates,
the match level of an entire effect (precondition) is
computed as minimum of semantic match level of all

4Here, we assume that the operators in predicates being compared,
i.e. operatorA and operatorR in this case, have an exact match.
Situations where operators may not match exactly have not been
addressed in this paper.

Plug-in – Subsumption

Disjoint

Part-of

Subsumption – Part-of
Subsumption

Contains-Subsumption
Plug-in – Part-Of

Contains
Plug-in – Contains

Plug-in

Exact

Plug-in – Subsumption

Disjoint

Part-of

Subsumption – Part-of
Subsumption

Contains-Subsumption
Plug-in – Part-Of

Contains
Plug-in – Contains

Plug-in

Exact

In
cr

ea
si

ng
 S

tr
en

gt
h

0

1

2

3

4

6

5

7

8

9

10

Figure 7. Semantic Match Level for Precon-
ditions and Effects

predicates in the effect (precondition). Figure 8 presents
the algorithm that we use for determining whether an
entire advertised effect (precondition) matches with the
requested one.

The first step finds the level of semantic match between
each pair of predicates in the effect (precondition)
of the advertised and requested service operation
being compared. To do this, semantic match
between each pair of operands of the predicate
is considered. For the advertised and requested
predicates given above, the semantic match level is
computed as follows: Max(Min(match(OrderReceipt,
Receipt), match(SenderContact, SenderAd-
dress)), Min(match(OrderReceipt, SenderAddress),
match(SenderContact, Receipt))). match() function is
computed using the table in figure 6.

Using the numerical values associated with the se-
mantic match levels obtained, we get a semantic match
matrix M similar to the one for inputs as shown in
figure 4. In the second step, maximal weighted maximal
matching algorithm is applied to determine the best
matching pairs of predicates in the effect (precondition)
being compared.

Third step verifies from the ontology that the advertised
predicates in the best match indeed satisfy the corre-
sponding requested predicate. If not, the pair’s semantic
match level is reduced to a very low value and the
weighted matching algorithm is run again. As mentioned
above, the match level of the entire effect (precondition)
is computed as minimum of semantic match level of all
predicates in the effect (precondition).

The operation level equivalence matching is computed
as minimum of match levels of all inputs, output, pre-
condition and effects of that operation. The service level
equivalence matching is similarly obtained as minimum
of semantic match levels of all operations and state of
that service. Next, we introduce a few other operators

7

Step 1: For all predicates i in advertised effect
For all predicates j in requested effect
Compute M(i,j) // semantic match level between predicate i and j

Step 2: Compute WM - the maximal weighted maximal match.
Step 3: For i = 1..n predicates of advertised effect (precondition)

Assert ith predicate into the ontology
Query for corresponding requested predicate
If query fails then

Assign a very low semantic match level to this pair. Goto Step2
Else Continue

Step 4: Find V = Min(Semantic Match Level of all predicates in WM)
If (V > Threshold) then return<match, match value>
Else Return no match

Figure 8. Algorithm for matching of effects
(preconditions)

thus progressing towards a library of service level opera-
tions.

3.4 A Library of Operations

Relationships other than equivalence are also important
since many times a non-equivalent service can suffice (or
may be necessary) for the task at hand. We introduce
four other service level operators, namelysubtypeOf,
supertypeOf, containsandcomponentOf. All of these are
binary operations.

SubtypeOf and superTypeOf operations determine
whether two given services have a subsumption
relationship. Essentially the operations try to establish
whether one service is a subtype [14] of another. For that
purpose, we utilized a modified form of the inheritance
model defined for services, as presented in [12]. In
brief, a service is a subtype of another if (1) it maintains
zero or more additional state elements than the ones
maintained by the other service, (2) it has zero or more
additional operations in its interface compared to the
other service, (3) maintains same inputs and adds zero
or more outputs to the operations that are similar in
both services, (4) has same or weaker preconditions
and same or stronger effects for the operations that are
similar in both services. Compared to [12], this follows a
contravariant [4] approach and is necessary for enabling
subtyping.

These two operators are important since using these a
service based software developer could write programs
that utilize related services if the exactly matching ser-
vices are either not available or are not performing as per
the desired non-functional parameter values. This opens
up a number of possibilities for writing adaptable, fault-
tolerant and robust service oriented programs. Further,
administrators could write policies to switch to related
services in case of failures or other situations. In
addition, use of these operators coupled with late binding
of a service invocation could enable services that provide
differentiated quality of service to different customers.

Contains and componentOf operators determine
whether a service is one of the components from which
the other service has been composed. Essentially,
the operators try to establish the Service composition
relationship if any exists between the two services [12].
If the composition of the composite service is available
then the operations have a trivial implementation else
automated composition techniques such as those based
upon AI planning [2] need to be applied.

These operators assume importance in the context of
assetization of reusable services. With several assetized
services in use, these could be used in programs that
establish the composition hierarchy and make use of it
for provisioning, load sharing and time sharing purposes.

3.5 Scalable Service Level Matching

The benefits of proposed matching techniques, in terms
of performance gains would be realized as more and
more Service Types get defined. The matching algo-
rithms introduced would ideally be carried out offline
since each service instance can be tagged with a Service
Type name. Any new unlabeled service being advertised
to a registry would go through the process of getting
compared with existing ones. The new service would
either be another instance of an existing Service Type,
or be derivable from an existing Service Type or be
a superclass of an existing Service Type. Otherwise,
it results into creation of a new Service Type. This
approach results into a simplified ontology of Service
Types that consists of only Service Type names and
relationships between them rather than entire functional
specifications.

The clients looking for desired services can search the
registry using appropriate Service Type names. This
not only simplifies the information expected from the
requester but also enables scalable searching. This is
because searching is reduced to simple string comparison
of Service Type labels rather than comparison of the
entire functional specifications. Only when the requester
has an unlabeled service specification that the entire
matching would need to be performed to determine if the
functional specification has a relationship with one of the
existing service descriptions.

4 Prototype Implementation

Figure 9 describes our prototype implementation of
the Service level matching engine that would be a core
component of the offline registry embedded in a service
developer IDE, as shown in figure 1(b). The Service

8

Matching Engine accepts a functional description of the
requested service and uses matching techniques intro-
duced in this paper to return the best matching advertised
Service Type as well as the strength of the match from
figure 7.

Domain
Ontology

Service
Types

Registry
Domain
Knowledge

Advertised
services

Best matched
Service,
Match StrengthRequested

Service
Specification

Service Matching Engine

Expression Matcher

Parameter Matcher

Operation Matching

Expression Matcher

Parameter Matcher

Operation Matching
State
Matching

Ontology Mgmt.
System

Figure 9. Service Level Matching Engine

The engine makes use of an ontology management
system consisting of a domain ontology as well as
services registry. We used IBM’s Snobase system5 for
that purpose and modified it to support OWL-S v1.1. For
our matching engine we implemented refined parameter
matching and expression matching algorithms presented
in the paper. On top of these we implemented the refined
equivalence operation as well as subtypeOf, supertypeOf
operations. Contains and componentOf operations rely
on the previous work done for automatic composition
using AI planning techniques [2].

For matching entire inputs (outputs) of two services
as well as for matching preconditions and effects, we
implemented the maximal weighted-maximal cardinal-
ity matching, using Munkres polynomial time (O(n

3))
assignment algorithm [16]. In the case of inputs and
outputs, individual parameter matching coupled with the
Munkres algorithm suffices for determining the match.
For preconditions and effects, Munkres algorithm en-
ables determining which predicates of a precondition (or
effect) of request correspond to the precondition (effect)
being compared from the advertisement. A further step,
was performed by asserting the advertised predicates into
the ontology and then determining whether the requested
predicate is satisfied by the advertised one.

As mentioned before, entire this activity is offline one
carried out at the time of admitting a new unlabeled
service to the registry. The current prototype assumes
that the number of predicates in precondition or effect
of advertisement service is same as the number of predi-
cates in precondition or effect of the requested service.

5 Related Work

Several researchers have contributed to matching tech-
nologies for services. [11] presents a survey and com-

5http://www.alphaworks.ibm.com/tech/snobase

parison of different matching approaches. However,
the thrust of matching approaches has been towards
automated matching rather than enabling it for a web
services developer. [19] focus away from automatic
composition in order to provide developers with a valu-
able utility to browse repositories based on already
existing information. However, they move towards
search as their goal rather than precise matching.

Similarly, clustering techniques have been used in
the Woogle system [5] that enables similarity based
searching for web services. However, they support
WSDL based service specification and work with inputs,
outputs. Enriched semantic specification including pre-
conditions and effects are not considered. Moreover, the
focus is again on search rather than precise matching.

Apart from heavy focus on automated matching,
functional matching operations proposed have remained
at the abstraction level of ontological concepts alone.
Matching operations at the level of services have
been restricted to attempts at defining equivalence
operation [6, 18, 15]. Even there, the notion of an
operation with services as operands does not find
emphasis. For instance, the last step of service matching
involves ranking of matched advertisements and requires
computing an aggregate measure for similarity of the
requested and advertised services. For that, [18]
specifies sorting rules for individual input and output
attributes alone and [6] does not consider ranking of
matched services.

WS-Agreement based matching of providers and con-
sumers is presented in [17]. The authors propose exten-
sions to WS-Agreement schema that impose a structure
while maintaining its original flexibility, as well as
add semantics to enable reasoning. However, since
WS-Agreement is meant for stating the assurances and
requirements of Web services, the matching presented
is primarily non-functional matching. In addition, they
utilize Semantic Web technologies for enabling rich and
accurate matches.

[20] have used information retrieval techniques to
rank similar terms for dealing with ontology mismatch
and related issues faced while matching for services.
However, the focus is towards parameter matching rather
than enabling a service level matching operation.

6 Conclusions and Future Work

In this paper, we proposed techniques for enabling
services to be treated as first class language level entities.
There are several benefits that can be derived from this
approach. First of all it isolates service oriented devel-

9

opers from the dynamics of the runtime environments.
Second, it enables fast and scalable discovery of services
during invocation. Third, it enables developers to write
programs and policies in terms of abstract service types
rather than actual instances resulting in much more
robust programs and widely applicable policies. Finally,
it fuels the need and takes a first step towards a service
oriented software development methodology.

We presented and prototyped different matching opera-
tions. In future, we intend to demonstrate the benefits of
these in the context of a real life scenario and perform
a study of productivity, performance and other gains
enabled or losses induced by the proposed approach.

Acknowledgment

The authors would like to thank Dr. Biplav Srivastava
for his comments and Rakesh Bangani, IIT Madras for
adding support for OWLS v1.1 in Snobase.

References

[1] S. Agarwal and A. Ankolekar. Automatic matchmaking of
web services. InWWW, 2006.

[2] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu,
S. Mittal, and B. Srivastava. A Service Creation
Environment based on End to End Composition of Web
Services. InProceedings of the 14th International World
Wide Conference, May 2005.

[3] T. Banks. Web Service Resource
Framework (WSRF) - Primer v1.2.
http://www.ibm.com/developerworks/library/ws-
resource/ws-modelingresources.pdf, May 2006.

[4] G. Castagna. Covariance and contravariance: conflict
without a cause. ACM Trans. Program. Lang. Syst.,
17(3):431–447, 1995.

[5] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang.
Similarity search for web services. InProceedings of the
30th VLDB Conference, Canada, 2004.

[6] P. Doshi, R. Goodwin, R. Akkiraju, and S. Roeder.
Parameterized Semantic Matchmaking for Workflow
Composition. Technical Report RC23133. Available
at http://dali.ai.uic.edu/pdoshi/ research/RC23133.html,
March 2004.

[7] C. Facciorusso, S. Field, R. Hauser, Y. Hoffner, R. Humbel,
R. Pawlitzek, W. Rjaibi, and C. Siminitz. A Web Services
Matchmaking Engine for Web Services. InProceedings
of 4th Intl. Conf. on e-Commerce and Web Technologies,
September 2003.

[8] I. Foster, C. Kesselman, J. Nick, and S. Tuecke.
The Physiology of the Grid: An Open Grid Ser-
vices Architecture for Distributed Systems Integra-

tion. http://www.globus.org/research/papers/ogsa.pdf, Jan-
uary 2002.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[10] P. Giambiagi, O. Owe, A. P. Ravn, and G. Schnei-
der. Language-Based Support for Service Oriented
Architectures: Future Directions. InProceedings of
the 1st International Conference on Software and Data
Technologies (ICSOFT 2006), Portugal, Sept 2006.

[11] N. Kokash, W.-J. van den Heuvel, and V. D’Andrea.
Leveraging web services discovery with customizable
hybrid matching. InIEEE International Conference on
Service Oriented Computing (ICSOC), 2006.

[12] A. Kumar, A. Neogi, and D. J. Ram. An OO Based
Semantic Model for Service Oriented Computing. In
Proceedings of IEEE International Conference on Services
Computing (SCC), Chicago, USA, Sept. 2006.

[13] A. Kumar, B. Srivastava, and S. Mittal. Information
Modeling for End to End Composition of Semantic Web
Services. InProceedings of ISWC, Ireland, Nov 2005.

[14] B. Liskov and J. Wing. Family values: A behavioral
notion of subtyping. Technical report, Cambridge, MA,
USA, 1993.

[15] X. Luan. Adaptive Middle Agent for Service Matching in
the Semantic Web: A Quantitative Approach. PhD thesis,
Dept. of CS and EE, Univ. of Maryland Baltimore County,
2004.

[16] J. Munkres. Algorithms for the Assignment and
Transportation Problems. Journal of the Society of
Industrial and Applied Mathematics, 5(1), 1957.

[17] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour.
Semantic WS-agreement partner selection. InProceedings
of the 15th International Conference on World Wide Web
(WWW), Scotland, May 2006.

[18] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.
Semantic matching of web services capabilities. In
Proceedings of the First International Semantic Web
Conference, LNCS 2342, pages 333–347, 2002.

[19] C. Platzer and S. Dustdar. A Vector Space Search Engine
for Web Services. InProceedings of the Third European
Conference on Web Services (ECOWS), 2005.

[20] T. Syeda-Mahmood, G. Shah, R. Akkiraju, A. Ivan, and
R. Goodwin. Searching Service Repositories by Combining
Semantic and Ontological Matching. InIEEE International
Conference on Web Services (ICWS), 2005.

[21] K. Verma, R. Akkiraju, and R. Goodwin. Semantic
Matching of Web Service Policies. InProceedings of
Second International Workshop on Semantic and Dynamic
Web Processes (SDWP), 2005.

[22] A. M. Zaremski and J. M. Wing. Specification Matching
of Software Components.ACM Transactions on Software
Engineering and Methodology, 1997.

10

