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Abstract—Large enterprise systems need continuous monitoring at infrastructure, application and business 
levels to detect and prevent problem situations. Traditionally, automated monitoring solutions are 
programmed once at setup based on a set of well-defined monitoring objectives and handed over to the 
operations team.  Such solutions have underlying data models that are often complex and semantically 
rich but in stable environments, this complexity is generally hidden from the operations team, who only 
need to make minor configuration changes (e.g. setting thresholds) as and when required. However, the 
situation is now rapidly changing with enterprise data centers being subject to continuous transformations 
as new software, hardware and process components get deployed or updated. This puts an immense 
burden on monitoring activity because not only thousands of different parameters need to get monitored 
but the addition and modification of service level objectives (SLOs) may happen continuously.  
 

We describe a monitoring system architecture which simplifies the task of authoring and managing 
SLOs in such dynamic and heterogeneous environments. At the heart of our approach is a lightweight and 
extensible data model that is derived from more complex configuration models, so as to only expose data 
relevant for monitoring to the operations team. Simple string-tags derived from this model are then used 
to label SLOs and associated data streams. The approach localizes programming to the data-sensor layer 
and makes authoring simpler than the specification of objects in an alternate richer but complex object-
oriented representation. We also describe a tag-driven real-time visualization tool that can organize data 
streams using their accompanying tags and ease user navigation through large volumes of monitoring 
data. 

 

I. INTRODUCTION 

 

ENTERPRISE systems consisting of servers, storage, databases, networking 

equipment, applications etc. are hosted at one or more data centers. Monitoring of 

such data centers is done either on-site or from a remote command center. 

Monitoring various parameters of the entire IT system is the key to efficient 

management of a data center environment. The monitoring system collects raw data 

and processes it to generate basic events or aggregated data that is consumed by 

different management applications. Though each IT component is often packaged 

with open monitoring interfaces and tools, e.g., a database server or a network 

element will have published APIs for querying its performance metrics and/or some 

associated console for viewing and operating on the data, a monitoring system is 

required to integrate and process the data collected from heterogeneous sources, in 

the absence of which, administrators need to watch individual consoles, integrate the 

data manually and process it to generate alerts or perform some analysis. 

A monitoring objective is a specification that defines how to collect a data stream, 

process it, and generate a type of event or an aggregated data stream. Monitoring 

objectives are also called Service Level Objectives or SLOs in this paper. A Service 

Level Agreement (SLA) is viewed as a possible composition of multiple SLOs. 

However, all SLOs need not participate in SLA evaluation as SLOs may be created 

purely for internal monitoring. Given a set of well-defined monitoring objectives, a 

monitoring system is typically configured or programmed once at setup before 

handing it over to the operations team. Minor configuration changes, such as 

thresholds, alert recipients etc. may be done by the operations team. However in 

dynamic environments resulting from corporate acquisitions, mergers, strategic 

outsourcing of IT service management etc., monitoring objectives cannot be frozen 

at setup but need to be specified on a continuous basis as new applications or 

hardware are deployed, or updates and transformations are made. It has been our 

experience that in many service-provider environments, operations personnel lack 

sufficient knowledge and skills to use or extend complex data modeling standards, 

such as Common Information Modeling (CIM) [10], and as such, find it difficult to 

properly categorize monitoring objectives using an intricate web of classes and 
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associations. For example, an operations personnel wanting to measure the 

utilization of a new disk partition created during operations, can write the script to 

measure the utilization. But, typically she does not know how to integrate the data in 

the monitoring system or configure some existing alert generation logic, because 

that requires a deeper understanding of the existing data models and standards.  

For this reason, it is necessary to design an alternate data model representation 

that substantially eases the definition and management of SLOs in dynamic data 

center environments. In this paper, we report on the design and implementation of a 

SLO authoring and monitoring system called Tango, which has been built around 

such a data model representation. Tango is actually deployed in two large data 

centers and used by the operations staff as their primary monitoring tool. 

We first describe how we use standard system configuration data and monitoring 

requirements specifications to design the structured part of our data model. The 

structured part has well-understood semantics that allows various types of 

processing to be automatically performed on the monitoring data. In addition, 

unstructured text tags outside the predefined model may also be attached to the 

data statically or at runtime. This allows any additional semantics not easily evident 

in the structured model to be associated with the data. The overall representation of 

data semantic is a simple concatenation of a set of structured and unstructured 

string tags, allowing easy authoring of SLOs.  

Let us take the example where an operations team member wants to measure the 

utilization of a disk. In this case, the structured data types taken from higher-level 

CIM classes may be SystemResource, ComputerSystem etc. Each of these types, 

also called meta-data, provides meaning and context to the measured data, e.g., 

they identify the system component and the machine that the data is being collected 

from. At some point the operations personnel decides to monitor a specific disk 

partition’s utilization and also wants to also record the partition names along with the 

utilization values. If the partition type is not present in the pre-created structured 

data model, then it can be supplied as an unstructured free text. The partition name, 

if known, could be supplied at authoring time or could be generated at run-time 

using the monitoring script or program.  

The goal is to balance the benefits (e.g. uniform interpretation) of well-defined 

taxonomies like CIM with the ease of use that free text descriptions offer. Our 

approach has been motivated by the observation that a dynamic data center 

environment where infrastructure keeps evolving and the operations team has 

limited understanding of complex taxonomies, displays many of the general 

characteristics (e.g. unstable entities, amateur users) of domains where pure 

ontological classifications do not work well [16].  

While the focus of Tango is on simplifying SLO authoring and basic data 

collection/aggregation, higher-level modules may be easily plugged into the system 

to consume the data and perform various analytics. One such higher level module 

that is described in this paper is the visualization component of the Tango system. 

The “dashboard” provides an integrated console to view all measured data and 

events. The data types are used to customize the views and organize the data in a 

hierarchical manner, e.g., the user can group the data by server, within each server 

by metric, and within each metric by partition name and so on. Note that while 

Tango is able to understand and interpret structured tags, it relies on the higher 

layer analysis modules, which are often written by experts, to apply text analysis 

techniques in the context of structured tags to interpret unstructured tag semantics. 

Accordingly, we are implementing text analysis algorithms in the dashboard to 

interpret the unstructured tags. 
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The rest of the paper is organized as follows. Section 2 details the data tagging 

scheme and the tag representation. Related products and research work are 

discussed in Section 3. Section 4 describes the overall system architecture built 

around data tagging along with some experimental results on system scalability. 

Section 5 shows how a tag-driven visualization tool simplifies data navigation in large 

repositories. Section 6 concludes the paper with a summary and discussion of future 

work. 

II. DATA MODEL AND REPRESENTATION 

 

In this section we describe how a data model is created, represented, and used in 

the Tango system.   Our choice of data model and representation were guided by 

practical considerations such as the dynamic nature of data center environments 

where Tango was to be deployed and ease-of-use by the operations systems 

personnel. 

A. Complexity in dynamic environments 

We first explored the possibility of implementing our monitoring solution on top of 

a CIM data model. CIM (Common Information Model), developed by the DMTF 

Working Group [10], provides a common definition for a wide range of managed 

elements (including systems, networks, applications and services) enabling exchange 

of semantically rich management information between systems in a vendor-neutral 

manner. CIM is based on a hierarchical, object-oriented format designed to track and 

depict complex interdependencies and associations between different managed 

elements. Several vendors are now enabling support for CIM in their management 

solutions. 

In stable environments, a CIM repository containing a complete model of the 

infrastructure may be set up at the onset. A monitoring solution, designed to 

interface with this repository, may then be programmed to handle a set of well-

defined monitoring objectives, before being handed over to the operations team. 

Subsequently, minor configuration changes may be done by the operations 

personnel, and as long as the underlying infrastructure remains stable, the 

complexity of authoring new objectives may be hidden from the operations team 

through appropriate interfaces to the CIM infrastructure repository. 

However, in dynamic environments undergoing transformation, infrastructure 

evolves rapidly along with the addition and modification of monitoring objectives. 

Faced with the task of prototyping a systems management solution for such 

environments, we noted that operations personnel in general lacked sufficient 

knowledge and skills to use or extend complex data models like CIM. Consequently, 

as infrastructure evolved, there was a substantial barrier in keeping the CIM data 

model up-to-date and in authoring new SLOs based on this model. However, the 

evolving infrastructure still had to be monitored and problem situations detected and 

acted upon. What was needed then was a monitoring solution that was lightweight, 

intuitive to program and fast to deploy, and that could be readily used by the 

operations team till the environment stabilized and more heavy-duty management 

solutions could be introduced. These requirements motivated the trade-offs we made 

in moving from a rich object-oriented approach like CIM with detailed infrastructure 

classes and associations, to an alternate lightweight semantics using simpler classes 

and implicit associations in the form of string tags. We explain this approach below. 
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B. A simplified data model 

In a specific engagement, the customer supplied the system configuration data and 

monitoring requirements as relational databases, spreadsheets and semi-structured 

text files.  In the first step, we examined this infrastructure data (manually) to 

determine the corresponding CIM classes. We are building a tool that semi-

automates this process by searching for typical class instances in the input data, and 

can lead to significant reduction in the human effort required in determining the CIM 

class instances. Description of the tool, however, is beyond the scope of this paper. 

While CIM classes represent domain-independent semantics, part of the data model 

may be created for a specific domain. For example, in a Telecom engagement, 

concepts common to the Telco domain in terms of specific applications, metrics or 

infrastructure setups are modeled as the domain-specific part of the monitoring data 

model. 

Once the data model is defined, SLOs need to be configured to satisfy the 

monitoring requirements and the semantics of collected data or generated events 

needs to be associated by a human. For example, a system administrator has to 

configure a data sensor to collect some specific kind of monitoring data stream and 

describe what the data means. The CIM classes identified in the previous step may 

be used for this purpose, but with some simplifications. First, many of these classes 

contain an extensive set of attributes that are useful for capturing detailed 

configuration information about the corresponding system entities, but are often 

redundant from the perspective of monitoring these entities. For example, a very 

typical monitoring requirement in a data center is to periodically check the 

availability of a server. In this case, the server name (say, “server1”) and the metric 

name (“availability”) constitute necessary and sufficient descriptors of the monitoring 

result (available/unavailable) generated by a probe trying to ping the server.  There 

are CIM classes corresponding to metric and server ( CIM_BaseMetricDefinition and 

CIM_ComputerSystem), which have name attributes. However, there are also 

several other attributes that are redundant from the perspective of monitoring the 

server e.g. Dedicated, ResetCapability etc. of CIM_ComputerSystem, which we leave 

out.  Second, a managed element may be distinguished not only by its own 

attributes, but also by its associations. For example, to refer to a process proc1, we 

may not only want to use its name, but also the server it is running on. To reduce 

the burden of defining and maintaining these associations, we allow users to simply 

include as many attributes across different classes as they feel is necessary to fully 

describe the monitoring context. These attributes are then concatenated to generate 

a tag that uniquely identifies the SLO. 

As an example, let us assume that the user wants to monitor the disk utilization on 

a server to throw alerts when the utilization exceeds a certain threshold. Say, the 

tag values specified by the user for the collected data are utilization, disk, and 

server1, which are instances of types BaseMetricDefinition, SystemResource, and 

ComputerSsystem, respectively.  

The individual tags associated with a monitoring specification are concatenated to 

provide a concise string representation of the data semantics. For example, the set 

of tags in the above example are concatenated to form the string:  

 

‘<BaseMetricDefinition.name=utilization/<SystemResource.name=disk>/<Comput

erSystem.name=server1>’. 

The first element in the tag representation corresponds to the metric being 

measured, while the rest of the tag defines the context of this measurement. 

Now suppose, another monitoring specification is entered possibly by a different 
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user to measure the throughput of an application. The tag values specified by the 

user are printBill, throughput, server1 corresponding to the types in the data model, 

Application, BaseMetricDefinition and ComputerSystem. By using fast string 

matching algorithms on the two semantic representations, a piece of analysis logic 

can relate the two monitoring data streams in real-time. Note, however, that since 

our approach has been tailored for dynamic environments where maintaining a 

formal model of infrastructure elements and associations is difficult, monitoring data 

streams have to be related purely on the basis of information contained in the tags, 

and the level of inference/analysis that can be achieved is thus commensurate with 

this information content. 

   Apart from simplicity and consequent ease of use, an additional advantage of our 

semantic representation technique is that architecturally, the approach naturally 

facilitates a publish-subscribe type of message bus implementation. The unique tag 

specified by the user for a SLO becomes the “topic” on which metric values for this 

SLO are published to interested agents (subscribers). We will return to this topic in 

Section IV. 

 

C. Incorporating Unstructured Data Types 

As mentioned in the Introduction, the specific tag instances in Tango could be 

picked from a list of pre-created tag choices as part of the defined structured data 

model or if they are not easily evident in the defined model, they could be entered as 

free text by the user. This affords flexibility in defining new monitoring requirements 

that require extensions to the pre-created model. These free-text tags may be 

specified statically at authoring time or can be generated by the data collection logic 

at runtime. In the above example on measuring disk utilization, the data collection 

logic can generate the pairs by collecting per partition disk utilization. Thus the 

utilization values can be tagged with partition names generated on the fly in addition 

to the three tags defined earlier. The representation of the data semantics in this 

case is 

‘<BaseMetricDefinition.name=utilization>/<SystemResource.name=disk>/<Comp

uterSystem.name=server1>/<part.name=hda>’ 

The tag type part and attribute name specified by the user is a free text 

description of the tag value ‘hda’ attached by the data collection logic at runtime. 

The burden rests with an application, which understands the concept of a disk 

partition, to process the tag description, value, and use an internal dictionary along 

with the structured data model tags, to associate ‘part’ with the concept of a disk 

partition.  

In a sense, the incorporation of unstructured tag types and tag values shifts the 

complexity from authoring to analytics modules. The underlying assumption is that 

analytics application writers are domain experts who can use existing unstructured 

text mining algorithms and tools to infer types from the free text descriptions and/or 

the tag values. Also, the operations people, who create unstructured tag descriptions 

and tag values, have the level of sophistication to provide enough keywords in the 

free text to make it feasible for the analytics applications or data consumers to infer 

the required type information. 

III. RELATED WORK 

 

There are numerous commercially available management solutions for monitoring 

enterprise systems at infrastructure, application, and business levels. In the domain 
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of network management alone, there is a plethora of tools [1], offering a wide range 

of monitoring capabilities for network security, performance, connectivity and 

topology. Application monitoring tools [2] [3] [4] that track availability and 

application performance through simulated end-user transactions, have gained 

popularity. Business intelligence tools [5] [6] supporting data integration, analysis 

and reporting, are helping managers monitor the overall health of the business. 

There are also product families offering integrated monitoring capabilities across 

different levels like HP Open View, IBM Tivoli, and CA Unicenter [7][8][9]. To support 

interoperability between all such management solutions from different vendors (with 

their own built-in data models) and facilitate unified administration, the DMTF 

Working Group has developed the Common Information Model (CIM) [10] that is 

poised to emerge as an industry-wide accepted standard. 

As pointed out in the preceding sections however, when the infrastructure is 

rapidly evolving, the skill profile of operations team members makes it difficult for 

them to program monitoring solutions based on formal data models with rich classes 

and associations. Instead, to simplify authoring of objectives, we found it useful to 

allow user-defined types - along with some widely understood pre-defined types - 

leaving interpretation of new types to analytics modules that use unstructured 

information management techniques. Our approach of combining pre-defined and 

user-defined types in this way has interesting parallels on the web. On the one hand, 

web ontologies [11] are being actively developed to support uniform interpretation 

and integration of heterogeneous content. On the other, an alternative called 

“collaborative tagging” – allowing users to freely attach tags or keywords to shared 

content - is gaining popularity in settings where rigid taxonomies are found to be too 

restrictive. For example, this form of tagging (or “folk taxonomy” [12]) is now an 

integral part of many social media applications (e.g. flickr.com, del.icio.us, 

technorati.com etc.) that allow users to tag a variety of content including 

photographs, bookmarks and articles.  

 There is also a growing body of literature on the successful use of unstructured 

information analysis techniques in systems management. For example [17] uses text 

clustering on problem ticket text to determine a set of problem categories. The work 

in [18] applies text mining techniques to categorize messages in disparate log files 

into common event types like “start”, “stop”, “connection”, “create” etc, based on 

the likelihood inferred from the training set of labeled documents. We anticipate that 

such approaches will be readily applicable to the processing of unstructured tags in 

our monitoring system and the discovery of semantics inherent in user-specified 

data.  

  

IV. SYSTEM ARCHITECTURE 

A. Overview 

Tango is a distributed agent-based system written in Java. Fig 1 shows an overview 

of the Tango architecture. The box at the bottom represents the various sources 

from which data streams may be collected through standardized or proprietary 

touchpoints. An example data source may be a WebSphere Application Server, which 

supports the published Performance Monitoring API (PMI) as a touchpoint to collect 

performance data; again, an order management application may keep its 

performance data in an internal database exposed through a proprietary interface or 

touchpoint. This data is collected and analysed by Tango, whose three main 

components are shown on top of the data sources box in Fig. 1. These components 

are (i) Sensors running on agents that collect data from the data sources (ii) A 



 8 

central Tango server that contains all processing logic for data aggregation and event 

generation and (iii) An objective authoring tool which lets users configure the 

sensors and the server’s processing logic in a non-intrusive manner, as per the 

monitoring requirements.  These components communicate through a JMS compliant 

publish-subscribe cluster as shown in the figure.  We will now describe each of these 

components in detail. 

   

 
Figure 1: System Architecture Overview 

 

B. Data Collection through Sensors 

 

Sensors are configured in agents to collect data from known touchpoints, which may 

support local or remote interfaces. If a touchpoint on a machine can be accessed 

only locally then an agent needs to be installed on the machine to run the 

corresponding data collection sensor on the machine. Agents can be also upgraded 

with new sensor classes on the fly. Since an agent is written in Java, sensor classes 

run within a sandbox with minimum possibility of impact on the host machine. 

Data sensors running on an agent may be layered, where the bottom-most sensor 

layer connects to the touchpoint and the higher sensor layers incrementally process 

the information in a form that can be published to the Tango server. The current 

Tango implementation supports sensors in two layers. The bottom layer is called a 

provider and the upper layer is called a collector. The collectors are often application 

specific but the number of provider classes is typically equal to the number of unique 

touchpoint types. Layering in sensors enables code reuse. Additionally, different 

layers of a sensor can be spread across agents to distribute the processing load; 

such layers can communicate using the publish-subscribe cluster.  

An example agent architecture is shown in Fig. 2. Let us suppose that there is a 

CRM and a Billing application on a server. The touchpoint for the CRM application is a 

DB2 database whereas the touchpoint for the Billing application is an Oracle 

database. A single query may be used to retrieve the response time and throughput 

data from a touchpoint.  In the example, a single JDBCProvider class implements 

interactions with various types of databases, including DB2 and Oracle. Thus two 

instances of this class are created for the two sensors for CRM and Billing 

touchpoints. The SQL queries are configured in the JDBCProvider to retrieve the 

response time and throughput timeseries samples periodically. Further, for each 

JDBCProvider instance, two collectors are instantiated to demultiplex the query result 

and extract response time and throughput values.  
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Figure 2: Agent Architecture 

 

 

Collectors are responsible for tagging all data items they publish. The topic for 

publishing a data item into the publish-subscribe system is a default ordered 

concatenation of the set of tags assigned to a data item. Data consumers, such as 

processing logic in the Tango server, pick up corresponding tagged data items from 

the messaging bus.  

The control plane of the agent-based system involves installation and update of 

sensor state in agents so that they can collect data which is routed through 

potentially distributed sensor layers to the appropriate processing logic in the Tango 

server. In addition, the agents can dynamically join or leave the system or can lose 

their state information. For example, when a production server is rebooted the agent 

will disappear along with all associated configuration state. Configuration state 

cannot be persisted on the production machine to keep the agent light-weight. The 

control plane agent management protocol implemented in Tango is similar to an 

acknowledgement-free announcement protocol built on the publish-subscribe 

system. The control message announcements are published periodically from the 

Tango server as soft state refreshes containing agent configuration state. An agent 

can pick up messages addressed to itself and check for new or updated state 

corresponding to itself on the server. 

 

C. Data Processing by Server 

 

Fig. 3 shows the Tango server internals. The server classes contain processing 

logic, such as for data aggregation and event generation, which can be applied on 

the tagged data streams produced by the sensors. The server classes can be 

instantiated on the fly and configured (using the objective authoring tool) to receive 

and process data streams of certain tags. Aggregated data streams with associated 

tags can be persisted in a local repository on the server or published on to the JMS 

server cluster to be picked up by an analysis application. Events generated as a 

result of the processing can also be persisted in the repository with accompanying 

tags. Additionally, events are always published on the JMS cluster to be picked up by 

visualization tool instances that show events in real time. 

New server classes can be plugged in easily. For example, we implemented a 

simple event filtering module which had a few filtering rule templates based on 

tagged events generated by the basic event generation logic. This module was 

plugged in to intercept, buffer, and filter events before they reach the repository or 

JMS communication modules.  
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Figure 3: Tango server internals 

 

Additionally, the Tango server also contains algorithms for tag-driven data purging 

of the repository as opposed to time-based purging. In the latter, all data beyond a 

certain threshold time is deleted. In Tango’s purging algorithm, data is retained 

based on its speculated importance. Importance is derived from several 

considerations such as tags, proximity to events, age etc. Details of the purging 

algorithm are beyond the scope of this paper. 

 

The notification dispatcher (ND) process that runs on the Tango server can be 

configured to receive events from the JMS server or from the repository. Event 

generation in Tango is tied to a series of stages that process the metric data before 

the relevant contacts are notified. Basically, these stages decide: i) Whether an 

event has occurred ii) Who needs to be informed about the event iii) How the 

concerned person/persons need to be notified and iv) What the content of the 

notification message would be.  The first step involves an escalation matrix, which is 

described in detail in the following subsection. The event generation logic fills in the 

applicable escalation level, or the cell identifier of the escalation matrix, in the event. 

The cell identifier corresponds to a collection of users and groups. The time of the 

event and the information on work shifts are then factored in to identify the contacts 

available at the given time. Once the list of contacts is enumerated, their availability 

status is obtained from the repository along with their contact information and 

preferred mode of contact which could be email, SMS or a voice call. Depending on 

the availability of users, their contact preferences and the urgency of the situation, 

the final list for notification is created.  ND then customizes the body of the message 

for each individual contact based on the considered factors. For instance, a 

notification through email contains all the available information including the 

corresponding logs for the event whereas an SMS only contains the event description 

along with the time and value of the event. It might be useful in some cases to also 

consider the presence information available from the cellular network to know the 

proximity of the contacts to the physical location of the event. This would ensure 

that those events that need physical proximity for resolution (e.g.: network cable 

unplugged) would be attended to at the earliest.. Similarly on an event closure, the 

event generation logic identifies the appropriate contacts for the event.All the 

information required by ND for the aforementioned steps with the exception of 

presence and user status are made available through the authoring tool. 

A key novelty in Tango architecture is the use of class reflection to loosely couple 

the components and ensure plug-and-play of new components in Tango server or 

agent to process or sense data. Class reflection technology is widely used within the 

system to enable template-drive configuration by the authoring tool. Every 

configurable class, such as providers, collectors, event generation classes etc, need 
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to support the reflection interface so that the objective authoring tool can present 

templates to the user. In the following subsection, we describe the process of 

objective authoring. 

 

D. Objectives Authoring 

We now describe how the authoring tool lets the users easily configure both the 

Tango server as well as the sensors running on the agent machines through 

template-driven authoring.  

The configuration of an objective or SLO is done by the Objective Authoring Tool. 

Tango provides some support for objectives composition; however more 

sophisticated composition can be implemented as an application using the tagged 

data in the Tango repository, or runtime feed from the JMS server cluster. A sample 

objective that monitors the queue size of an application is shown in Figure 4.  All 

templates presented in screenshots are created by querying the appropriate classes 

from the authoring tool using Java reflection.  

 

 

 
 

Figure 4: Objective authoring pane 

 

 

 

The screenshot in Fig. 4 shows the first pane of an objective being authored. The 

template of the first pane shows a variety of administrative information like access 

control parameters, period of operation, frequency of data logging, priority of events 

generated, heartbeat intervals to detect non-working objectives etc.  Most 

importantly, it shows the tags that are taken from structured or unstructured data 

models in the Tango server. If an ontology is specified for a Tango deployment, then 

structured tags are picked from the ontology. For example, in this case, application, 

LOB, city, service, server, metric, are shown as part of the defined ontology. 

However, the tag processA is an unstructured piece of text. In fact, additional tags 

can also be attached to the data stream by the agent at run-time. For example, 

processA could be a run-time tag attached to the data stream by an appropriate 

sensor logic without being configured statically in the authoring tool. Section 2 

discusses tagging and tag representation in more detail. 

 The authoring tool can process the tags from the structured data model and 

look up the appropriate sensor classes, i.e. provider and collector classes, to collect 

the data and instantiate the appropriate Tango server processing logic classes to 

handle the collected data stream. Alternatively the user can manually pick the 
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classes from the existing list. New sensors or processing logic classes need to be 

written only in case the user is not able to create a specification with the existing 

classes.  

 

 

 
 

Figure 5: Escalation matrix 

 

 

Configuring Tango Server: The authoring tool may be used to easily configure the 

event generation and notification capabilities of the Tango server component. 

Continuing the above example, since queue size is a numeric value, multiple 

thresholds may need to be applied on the value to generate alerts. Based on this, 

the authoring tool presents an escalation matrix to the user, Fig. 5. The escalation 

matrix is essentially a state diagram that represents all the ‘bad’ states that an 

objective can be in. A cell in the matrix corresponds to a state and contains the 

logical notification group for that bad state. In this case, a bad state is characterized 

along two dimensions, severity of queue size (along the columns) and elapse of time 

(along the rows). For example, in the 2x2 matrix, the cell [col=20,row=30] 

implements the rule “If qsize is >20 for 30 minutes, notify John Kifer”. Note that if, 

instead of queue size, the objective was to monitor availability of a process, then a 

one-dimensional (time-based) escalation matrix would have been generated. 

An objective enters into a problem phase, identified by a unique problem identifier 

associated with the event, when it first enters the escalation matrix, i.e. one of the 

bad states. Alerts are generated at matrix entry and exit and, also whenever 

transitions are made from one cell to another. Logical contact groups keep getting 

added, or deleted, to the set of logical notification groups for an event as transitions 

are made to higher escalation, or lower escalation, levels respectively. Finally, when 

the objective makes a transition out of the escalation matrix, i.e. into ‘good’ state, 

the problem identifier is closed and the existing set of logical notification groups is 

contacted and contacts in this group are alerted of the closing of event.  

Configuring sensors: The authoring tool greatly eases the task of configuring 

sensors for an objective. The tool presents the existing sensor classes to the user, 

and once a selection has been made, it can query the corresponding provider and 

collector classes using reflection, and present templates to the user to configure the 

sensor. For the queue size monitoring example, the templates for the provider and 

collector are shown in Fig. 6. The provider queries the database for the queue size 

and possibly other parameters to amortize the query cost. The collector shown in the 

figure selects the queue size value for EMEA from the query result. 
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Figure 6: Sensor configuration 

 

Once an objective has been configured using the authoring tool as described 

above, the system will automatically pick up the objective, instantiate a sensor for it, 

configure the event generation and notification capabilities of the server for this 

objective, and set up topics on the publish-subscribe cluster using which the sensor 

and the server can communicate.  

 

E. Overhead Experiments 

 

The following overhead related experiments were performed in an actual data 

center deployment of the Tango system. The Tango Server is hosted on an IBM p 

9113-550 with 16GB of RAM and 4 CPUs running at 1.6 GHz each. Close to 1500 

SLOs are configured to monitor around 500 servers.  
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Figure 7: Tango server overheads 

 

The average CPU utilization for the server component, consisting of 3 Java 

processes each handling around 500 SLOs, was found to be 6.14% and the memory 

utilization was 4.95%. Fig. 7 shows the timeseries plot of the CPU and memory 

utilization of the server showing stable low utilization for several hours. 

 

Tango 
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Figure 8: Tango agent overheads 

 

A typical Tango agent’s CPU and memory utilization timeseries plots for several 

hours are shown in Fig. 8. The agent measured was configured to handle 235 

objectives. The average utilization of this agent was 0.9% of CPU and 1% of the 

available memory. The utilization measurements do not include the actual running of 

the code that performs the data sensing and processing activity at the agent but the 

overheads of agent itself to support the operation of the configured sensors. The 

system currently generates over 1600 automated event notifications besides 

collecting over 500,000 data samples per day. 

V. TANGO DEPLOYMENT 

 

We have successfully deployed Tango at a very large data center undergoing rapid 

transformation. A second deployment is in progress at the time of this writing. The 

system has been in operation at the first data center for over 12 months. The 

objectives have been configured by low skilled operations staff using the Tango 

authoring tool and a pre-created tag dictionary. Occasionally tag types and tag 

strings have been contributed in the dictionary when existing ones have been found 

insufficient.  

Analysis of the SLO tag values in the first deployment reveals 18 types of metrics, 

45 applications and 500+ servers. Fig. 9 shows the frequency distribution of SLOs 

across the most common metrics.  As would be expected in monitoring 

engagements, availability of machines is the most common property that is 

monitored (around 21% of SLOs), while utilization and latency related metrics are 

also very common. The distribution of SLOs by applications is quite skewed, with 

only 6 of the 45 applications accounting for 52% of the SLOs. The SLO distribution 

across servers is, however, more even, with the top 7 servers accounting for only 

9% of the SLOs. The tag types and values used in a Tango deployment thus provide 

a useful index into the overall span of the monitoring activity as well as the relative 

importance of individual infrastructure elements from the service level perspective. 

Tags also help to slice and dice the data along various dimensions to generate 

informative views as shown in Section VI on tag-driven visualization. However, 

organized views may not suffice given the large volume of event notifications. One 

needs sufficient labor cost to handle even 1600 events per day. In Section VII we 

also describe ongoing analysis on tagged events to reduce the large volume of 

events to a smaller number of problem situations. 

 

Tango 
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Figure 9: SLO distribution across metrics 

 

VI. TAG DRIVEN VISUALIZATION 

 

In this section we describe the Tango dashboard and show how it utilizes the tags 

described previously to systematically organize and present the metric data.  The tag 

corresponding to a data item attaches meaning to the data; different elements of the 

tag provide different contexts in which the data was measured. Users of the 

dashboard can use the contexts to group data and customize their views.  

 

 

 
Figure 10: Dashboard tag hierarchy selection 

 

Fig. 10 shows the default view of the dashboard application. The default view 

allows the user to select meta-data that the data should be grouped by. Selection of 

multiple meta-data leads to nested grouping in the specified order. In the example 

shown in Fig. 10 the user has selected the meta-data, LOB, service, location, 

application, server, and metric, in that order of nested grouping.  The actual tag 

instances are CreditCards for LOB, Billing for service, and EMEA, AP, US for location. 

The applications being monitored are PrintBill and Rating, while jupiter, neptune, 

ganga, etc. are servers. Finally qsize/db, availability/process, utilization/cpu are 

instances of metric. In the example, the metric data is grouped by server, then 

applications, locations, services and finally line of business. Once the meta-data has 

been selected and ordered, the default view presents the corresponding tags in a 

hierarchy, or tree. This is called a context hierarchy. Different selections and 

ordering of the meta-data tags would result in different context hierarchies. 

Reorganization of the context hierarchy to get different views of the data can be 

done in real-time using the tags associated with the data. The dashboard can also 

present the data in a tabular manner by mapping the above tree to a nested 
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spreadsheet structure, which is a more comfortable option for many operations 

people. 

 

 
Figure 11: Dashboard views 

 

In the dashboard, data is associated with each level of the hierarchy.  While the 

leaf data is always the measured data, i.e., data from the monitoring system; the 

data at a higher “node” in the tree could be measured data or aggregated data. In 

the example, of Fig. 11, the data at the node jupiter could be an aggregation of the 

metric data corresponding to the measurements of availability/process, 

availability/connectivity, qsize/db, utilization/cpu and qsize/os.  The user could 

supply aggregation functions, or there could be built-in functions that could 

aggregate by doing simple operations like union, intersection, addition etc. The 

dashboard can interpret the type and use inbuilt intelligence to decide the 

aggregation operations, e.g., the dashboard would do a union of the five data 

streams in the above example.  

Let us take a few examples to explain the use case scenarios of the dashboard. In 

a data center environment different users have different roles and thus need 

different views on the data being collected, e.g., a business executive would be 

interested in the performance of her line of business, while a data center operator 

would be interested in the minute operational details of a server. In the dashboard, 

the business executive can select the LOB tag at the root of the context hierarchy 

and would get a summary of the performance of all applications and infrastructure in 

her line of business. In contrast, a data center operator managing servers would 

group data by the server tag and hence view all metrics associated with the servers, 

as shown in the top half of Fig. 11. A data center operator responsible for storage 

across the entire operation will group by a storage metric and hence in one screen, 

view the storage across all servers and be alerted to any events in the storage. As 

stated earlier, given the type of the data the dashboard can chose from among a set 

of inbuilt aggregation functions. For example., for the metric utilization/storage, the 
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dashboard would aggregate across all servers by finding the average storage usage 

utilization over all servers.  

Though the above discussion has focused on selecting structured meta-data to 

customize views, the idea can be extended to the unstructured tags also. We are 

currently developing an algorithm to interpret the unstructured information and infer 

meta-data. These inferred meta-data can be used then to group data much like as 

described previously. The important feature of our unstructured data is that it is 

accompanied by structured data that not only constraints the “similarity matching” 

that can be done on it, but also provides an “index” into a system management 

ontology which can be then be used for interpreting the unstructured data. This can 

be done using modifications of standard unstructured information management 

algorithms [13]. 

 

VII. CONCLUSION AND FUTURE WORK 

 

In this paper we described a monitoring system that uses a hybrid data model 

consisting of structured and unstructured parts to describe the semantics of 

monitoring data and events. The representation of data semantics is in terms of 

string tags. The benefit of using the tagging architecture is that the authoring of 

specifications becomes simpler and more intuitive for operations people who are less 

skilled in complex object-oriented data models. We also described a sample 

visualization application that uses the string tags to organize real-time views of the 

data.  

We plan to build tag-based reusable monitoring ontologies for various domains 

through actual engagements. This will further ease the programming of a monitoring 

solution and thus reduce the deployment time in a new environment. 

 
Figure 12: Extracting problem situations 

 

We are also exploring both online and offline analysis of tagged events for better 

event management and notification. On the one hand, pre-defined rules defined on 

tags may be used to filter and/or correlate events in real-time, based on known 

relationship between tag values. On the other hand, offline analysis of tagged events 

may also reveal interesting problem situation patterns. Such situations may be 

represented by clusters of tags whose events occur within a specified time window. 

With a sufficiently rich historical event database, support/confidence metrics may 

also be associated with these situations, and presented to system administrators to 

verify, edit and label. Fig. 12 shows such a clustering of events and possible problem 
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situations that we have discovered by analyzing the event database of an actual 

deployment. These known patterns can then be used to generate richer notifications 

by clustering events based on problem situations. 
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