
RI 07011 December 2007 Computer Science/Mathematics

IBM Research Report

Pattern Classification using the Principle of
Parsimony: A Least Square Kernel Machine with

Box Constraints

Jayanta Basak

IBM Research Division

India Research Lab

4, Block-C, Institutional Area (ISID Campus),

Vasant Kunj, Phase - II,
New Delhi - 110070, India.
e-mail : bjayanta@in.ibm.com

IBM Research Division

Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of

IBM and will probably be copyrighted is accepted for publication. It has been issued as a Research Report

for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its

distribution outside of IBM prior to publication should be limited to peer communications and specific

requests. After outside publication, requests should be filled only by reprints or legally obtained copies

of the article (e.g., payment of royalties). Copies may be requested from IBM T.J. Watson Research

Center, Publications, P.O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com).

Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

1

Abstract

Among various principles in the theory of pattern classification to improve generaliza-

tion, one of the most widely used principle is Occam’s razor or the principle of parsimony.

Structural risk minimization (SRM) and minimum description length (MDL) principle and

their variants are essentially two different forms of Occam’s razor used in pattern classifi-

cation. In this article, we present a modified view of Occam’s razor and use this principle

to design a kernel-based classifier. The proposed classifier has close relationships with a

widely different variety of “least-square” kernel-machines such as adaptive ridge regression,

least square support vector machine, regularized least square classifier, LASSO (least abso-

lute shrinkage and selection operator), and generalized LASSO. However, unlike the existing

“least-square” kernel machines, the proposed classifier uses box constraints on the priors,

and the box constraints are derived from the modified principle of parsimony. Experimental

results demonstrate that the proposed classifier is capable of outperforming SVM in terms

of cross-validation scores on several datasets. In addition, we also prescribe some kernel

functions other than the Gaussian for obtaining better performance on real-life datasets.

1 Introduction

In pattern classification [64, 19, 66] problems, the loss or discrepancy L(t, f(x, α)) between the

desired response t to a given input x and the response provided by a learning machine f(x, α) is

minimized with respect to the distribution F (x, t). The goal is to minimize the risk functional

R(α) =

∫

L(t, f(x, α))dF (x, t) (1)

and obtain an α0 such that f(x, α0) minimizes R(α). The general expression of the risk functional

is quite broad to encompass various specific problems such as pattern classification, regression

(linear or nonlinear depending on the form of f(x, α)), or density estimation. In the present

article, we restrict ourselves only to the problem of pattern classification.

In two-class classification tasks, usually the desired response t can take two different values e.g.,

t ∈ {−1, 1} and f(x, α) represents a set of indicator functions (with two possible values of −1

and 1) for different values of α. The loss function is then defined as

L(t, f(x, α)) =

{

0 if t = f(x, α)

1 if t 6= f(x, α)
(2)

Since the distribution F (x, t) is unknown, the loss functional is often replaced by the empirical

risk functional

Remp(α) =
1

N

N
∑

i=1

L(ti, f(xi, α)) (3)

where L(ti, f(xi, α)) is the error or loss on the observed pair (xi, ti). In different classifiers,

this empirical risk functional is minimized in various forms. For example, in neural networks

[27], the output of the network f(x, α) is represented as a hyperbolic tangent function of the

2

total activation received from the previous layer (tanh(.)) due to the presence of input x at the

input layer. The hyperbolic tangent function ensures that the output lie in the range [−1, 1] (or

[0, 1] if the function is sigmoidal depending on the convention of representation). In such cases,

assuming the Gaussian error model for the loss function [2], the maximum likelihood estimate of

the empirical risk functional reduces to the least square estimate such that

Remp(α) =
1

N

N
∑

i=1

(ti − f(xi, α))2 (4)

The empirical risk minimizes the error on the observed samples (training set) by finding out one

optimal α depending on f(.). However, the major question remains on the performance of the

model f(x, α) on the unobserved samples. Since the true distribution F (x, t) is unknown, we have

to rely only on the observed samples, however that may lead to overfitting. Simple minimization

of the empirical loss does not tell us anything about the generalization performance i.e., the

performance of the model on the unobserved data. In general, minimization of the empirical

risk functional with increased model complexity adds to the variance part of the generalization

error [19, 21, 60, 23, 33], and thus leads to poor generalization. Among the various principles to

improve generalization performance (a few representatives among the vast existing literature can

be found in [17, 56, 57, 30, 20, 51, 32, 70, 55, 8, 9, 10, 49]), one of the most widely used principle

is Occam’s razor or the principle of parsimony [59].

The principle of parsimony or Occam’s razor merely states that entities or explanations should

not be multiplied beyond necessity. In the pattern classification, it can be interpreted as that

the classifiers that are more complicated than necessary should not be used. The ‘necessary’

can be determined by the quality of fit (i.e., empirical loss) on the observed data. According

to Vapnik [67], “when solving a given problem, try to avoid solving a more general problem

as an intermediate step.” This basic philosophy gives rise to many interesting principles for

classification with an aim to improve the generalization performance. These include the structural

risk minimization (SRM) [68, 66] and minimum description length (MDL) principle [45, 46].

Minimum description length (MDL) principle is based on the information theoretic analysis of the

randomness in the concept. In pattern classification, as discussed in [19], according to MDL, the

sum of the classifier’s algorithmic complexity and the description of the training data with respect

to the classifier should be minimized. MDL can also be observed from a Bayesian perspective

where we have a hypothesis h for a training set D such that

P (h|D) =
P (h)P (D|h)

P (D)
(5)

Since P (D) is independent of h, the optimal hypothesis h∗ can be obtained as

h∗ = argminh[(−log2P (h)) + (−log2P (D|h))] (6)

where −log2P (h) and −log2P (D|h) are the cost or complexity of the description of the hypothesis

(model) and the training data respectively. In general, we need to minimize the cost of description

K(h, D), such that

K(h, D) = K(h) + K(D|h) (7)

3

where K(h) is the complexity of the model (hypothesis) and K(D|h) is the cost of description

of the observed data D with respect to the model h. For example, in the case of decision trees,

K(h) is the number of leaf nodes (the total number of nodes is simply twice the leaf nodes minus

one for binary trees), and K(D|h) is the weighted sum of entropies of the data at the leaf nodes.

Thus by pruning decision trees, if we can reduce K(h) without significantly increasing K(D|h),

we can obtain better generalization. Different variations of the MDL principle such as Akaike

information criteria (AIC) [1], Bayes information criteria (BIC) [50] and network information

criteria (NIC) [35] are available in the literature.

In structural risk minimization (SRM), on the other hand, the complexity of a classifier is mea-

sured in terms of the VC-dimension [68, 66]. Although SRM has originally been applied in

classification, it provides a generic inductive principle for model selection for learning from a

finite dataset (possibly small in size). SRM principle finds a trade-off between model complexity

(VC confidence) and the empirical error of model fitting. According to this principle, functions

or models in the hypotheses space are arranged into a hierarchy of nested subsets of increasing

VC-dimension. If we have empirical risk in each subset then a model in the subset is selected for

which the sum of empirical loss and VC confidence is minimum. According to the SRM principle,

the overall risk R(α) is bounded as

R(α) ≤ Remp(α) +

√

V C(h)(log(2N/V C(h)) + 1) − log(δ/4)

N
(8)

with probability 1 − δ (PAC theory), where N is the number of training samples and V C(h)

is the VC-dimension of a hypotheses h. Clearly, as the V C(h) of a hypotheses h increases, the

overall risk R(α) increases for a given δ even with the same empirical risk. Later in [52], the

SRM principle has been modified to “data dependent SRM” using the fat shattering dimension.

Possibly one of the most unique pattern classifier developed in the light of SRM principle is

the support vector machine (SVM) [16, 67, 13, 24]. In SVM, the margin between two classes is

maximized by minimizing the description of the linear classifier, i.e., ‖w‖2 in a higher dimensional

space φ(.) under the constraint of inequality type

ti(w
T φ(xi) + b) ≥ 1 (9)

The problem is transformed into an unconstrained problem by the method of Lagrange undeter-

mined multipliers such that the functional

L(w, b, α) =
1

2
‖w‖2 −

∑

i

αi(ti(w
T φ(xi) + b) − 1) (10)

is minimized with respect to w, b, and maximized with respect to 0 ≤ αi ≤ 1. This leads to a

quadratic optimization problem of the form

Wsvm(α) =
∑

i

αi −
1

2

∑

i,j

αiαjtitjφ(xi)φ(xj) (11)

subject to αi ≥ 0 and
∑

i αiti = 0. Introducing slack variables for non-separable cases, and

taking into account of the inner product in the Hilbert space, the functional Wsvm(α) is modified

4

as

Wsvm(α) =
∑

i

αi −
1

2C

∑

i,j

αiαjtitjK(xi, xj) (12)

subject to 0 ≤ αi ≤ 1 and
∑

i αiti = 0, where C is judiciously chosen constant and K(xi, xj) =

φ(xi)φ(xj) is a symmetric kernel expressible as an inner product in the higher dimensional space

subject to Mercer condition [67]. Alternatively [53, 6] have shown that the quadratic optimization

functional for soft-margin SVM in the non-separable cases can be expressed as

Wsoftsvm(α) =
∑

i

αi −
1

2

∑

i,j

αiαjtitj(K(xi, xj) +
1

C
δij) (13)

subject to 0 ≤ αi ≤ C, where δij is a Kronecker delta function such that the constant 1/C can

be multiplied only with the diagonal entries. Once the functional Wsvm(α) is maximized with

respect to αis to obtain nonzero αis (support vectors), the indicator function f(x, α) is obtained

as

f(x, α) = sign(
∑

i

αiK(x, xi)ti + b) (14)

where

sign(u) =

{

+1 if u > 0

−1 otherwise
(15)

is a signum function.

Support vector machines are constructed on the basis of maximizing the margin between two

classes in some higher dimensional input space. In this article, we propose a pattern classification

scheme using a modified form of the principle of parsimony. The way we view the principle of

parsimony is different from the principle of SVM or MDL principle. It does not consider the

margin maximization as performed in the SVM. We use the information that is optimum for

classification of the patterns. We view the task of pattern classification from the point of view of

approximating class-conditional densities (such as Parzen window [39]) subject to the modified

form of the principle of parsimony.

Instead of maximizing the margin between two classes in a higher dimensional space as performed

in SVM, we fix a margin and minimize the redundancy in estimating the class posteriors. In SRM

or MDL, the redundancy is viewed as the redundancy present in the model i.e., model complexity

(either information theoretic or in the VC framework). Here we do not view the redundancy as

the model complexity rather consider the redundancy in the form of superfluity in the outcome.

First, we show how to use our principle by formulating a two-class classification problem. We

then consider the multiclass classification using the one-against-all strategy [43].

Our formulation for pattern classification leads to a classifier which is very similar to the existing

family of “least square” kernel machines [12, 48, 58, 65, 44, 61, 38, 47] with the exception that we

design a least square kernel machine with box constraint. Box constraint has not been applied in

designing least square kernel machine for pattern classification so far. We derive the motivation

for applying box constraint in designing a least square kernel machine from the modified principle

of parsimony as we stated in the next section. Experimental results show that our technique is

5

capable of outperforming SVM on several datasets that we have used. We also do not require

the kernels to satisy the Mercer condition as it is required in SVM.

In Section 2, we state a modified view of the principle of parsimony (Occam’s razor) and then

provide the basic formalism for a two-class classification task by using this principle. We then

use this classification scheme for performing multi-class classification tasks using one-against-all

classification [43]. In Section 3, we show the relationship of the proposed classification technique

with a wide variety of existing “least-square” kernel machines such as adaptive ridge regres-

sion [12, 48], least square support vector machines or LSSVM [58, 65], Regularized least square

classification or RLSC [44], least absolute shrinkage and selection operator or LASSO [61, 38],

and generalized LASSO [47]. In Section 4, we demonstrate the effectiveness of our classification

method on certain real-life datasets in terms of 10-fold cross-validation score, and also compare

the results with that of SVM. Finally, we discuss and conclude our paper in Section 5.

2 Pattern Classification with the Principle of Parsimony

Principle: Here we present a modified form of Occam’s razor principle (the principle of parsi-

mony) which we use in the subsequent design of our classifier. We state our principle as

Minimize the superfluity in the outcome with a given margin.

The whole question now boils down into ‘how to measure the superfluity in the outcome’? We

address this question for a pattern classification problem. Let us first restrict ourselves in two-

class classification tasks.

Two Class Classification: In two-class classification task, let the desired response t can take

two different values such that t ∈ {−1, 1} and f(x, α) represent a set of indicator functions in

{−1, +1} for different values of α. The loss function is

L(t, f(x, α)) =

{

0 if t = f(x, α)

1 if t 6= f(x, α)
(16)

In any two-class classifier (either parametric or non-parameteric), the indicator function f(x, α)

can be viewed as a signum of a soft-indicator output g(x, α) such that

f(x, α) = sign(g(x, α)) (17)

where sign(u) has the same definition as in Equation (15).

For example, in a k-nearesr neighbor classifier [25, 19], a test sample x is assigned a label +1

(i.e., f(x, α) = +1) if the number of positive training samples (i.e., training samples with t = +1)

is more than the number of negative training samples (i.e., training samples with t = −1) in a

neighborhood Ωk(x) of x comprising of k nearest neighbors. The corresponding soft-indicator

function g(x, α) can be expressed as

g(x, α) =

(

2N+(x)

k
− 1

)

(18)

6

where N+(x) is the number of positive training samples in Ωk(x). Note that, we scaled the

soft-indicator function g(x, α) such that g(x, α) ∈ [−1, +1], although it can be scaled differently.

The model α here is defined by k. In a decision tree [11, 42], a leaf node is assigned a positive or

negative label depending on the majority of the labels of the training samples allocated to that

leaf node. Thus if a test sample x is allocated to a leaf node lT (x) of a decision tree T then the

soft-indicator function g(x, α) is given as

g(x, α) =

(

2N+(lT (x))

N+(lT (x)) + N−(lT (x))
− 1

)

(19)

where N+(lT (x)) and N−(lT (x)) are respectively the number of positive and negative training

samples allocated to leaf node lT (x). In the case of support vector machines, the soft-indicator

function g(x, α) directly comes from Equation (14) such that

g(x, α) =
∑

i

αiK(x, xi)ti + b (20)

In the case of parametric classifiers such as logistic regression models [29] and semi-parameteric

classifiers such as neural networks [27], hierarchical mixture of experts [31], and online adaptive

decision trees [4, 5], the classifiers themselves produce the soft-indicator function g(x, α). The

final outcome of such classifiers is interpreted as f(x, α) = sign(g(x, α)). In short, the outcome

of any two-class classifier can be viewed as a soft-indicator function g(x, α) which is then mapped

onto f(x, α) ∈ {−1, +1} for making a decision.

The nature of g(x, α) is driven by the underlying model α and the generalization performance of

the classifier depends on the nature of g(x, α). In this paper, we refer to g(x, α) as the “outcome”

of a classifier (as in the modified principle). Evidently, we can map the “outcome” into a decision

by comparing it with zero. At the boundary i.e., g(x, α) = 0, we fix a margin λ (as in principle)

as a tolerence parameter such that for all training samples,

f(x, α) =

{

+1 if g(x, α) ≥ λ

−1 if g(x, α) ≤ −λ
(21)

The parameter λ can be connected to regularization such that if λ is very small then a small

perturbation in x can cause g(x, α) to be mapped from one class to the other. Thus for better

performance on the training samples, we need to a select as large λ as possible. On the other

hand, if we select a very large λ then the model α will be highly perturbed by the noisy training

samples resulting in a poor generalization performance.

According to the modified principle of parsimony, we fix a margin λ and minimize the superfluity

in the outcome g(x, α) with the given margin. Note that, it is different from either MDL or SRM

principle in the sense that we do not take into account the model complexity (description length)

or maximize the margin (defined by the model). Rather we concentrate only on the outcome g(.)

for a given margin λ. If the outcome g(x, α) is greater than λ for a training sample x with a label

+1 or if g(x, α) < −λ for a training sample x with label −1 then we say that there is superfluity

in the outcome since g(x, α) = ±λ is sufficient to make a decision for a given margin λ.

Let us now proceed to formulate a loss function for two-class classification problem using the

modified principle of parsimony. With a given margin λ, we can say that there is an error if

7

g(x, α) < λ for a training sample x with a classlabel +1 i.e., t(x) = +1. Similarly, there is an

error if g(x, α) > −λ for a training sample x with a classlabel t(x) = −1. Therefore, with the

convention of representing classlabels as t ∈ {−1, +1}, we can measure the empirical error for a

training sample x as

L1(x, t) =

{

h1((λt − g(x, α))sign(t)) if (g(x, α) < λ)and(t = 1) or (g(x, α) > −λ)and(t = −1)

0 otherwise

(22)

where h1(.) is a monotonically increasing function.

On the other hand, as we mentioned, with the given margin λ, if for a positive training sample

x, g(x, α) > λ, or for a negative training sample x, g(x, α) < −λ then there is superfluity in the

outcome g(x, α). We can measure the superfluity in the outcome for a training sample x as

L2(x, t) =

{

h2((g(x, α) − λt)sign(t)) if (g(x, α) > λ)and(t = 1) or (g(x, α) < −λ)and(t = −1)

0 otherwise

(23)

where h2(.) is a monotonically increasing function.

According to our modified principle of parsimony, we need to minimize the superfluity in the

outcome (Equation (23)) for better generalization as well as need to minimize the empirical error

(Equation (22)) for better training with a given margin λ. Thus the resulting loss function for a

training sample x is given as

L(x, t) = L1(x, t) + L2(x, t) (24)

Restricting h1(u) = h2(u) = u2, we have

L(x, t) = (g(x, α) − λt)2 (25)

for a sample x. In this context we mention that it is not necessary that h1(.) and h2(.) have to

be identical. However, restricting them to be identical we express the total error as quadratic

loss. Note that, the expression in Equation (25) looks similar to the empirical loss for regression

[67, 19]. In regression, the quadratic expression represents only the empirical error underlying

Gaussian noise or non-Gaussian noise expressible as Huber loss. However, the loss functional in

regression has nothing to do with the redundancy in the form of superfluity in the outcome. Here

Equation (25) represents the empirical error and redundancy in the form of superfluity in the

outcome together for a two-class classification problem subject to a given margin λ.

Let us now consider the kernel based classifiers such that the function g(x, α) is given as

g(x, α) =
∑

j

αjK(x, xj)tj (26)

where xj is an observed sample and tj is the given label of the observed sample, and 0 ≤ αj ≤ 1

indicates the contribution of the sample j in the classifier (equivalent to undetrmined Lagrangian

as used in SVM), and the indicator function f(.), f(x, α) = sign(g(x, α)). K(x, xj) is a kernel

function such as Gaussian kernel of the form

K(x, xj) = exp(−‖x − xj‖2

2σ2
) (27)

8

Therefore, if we consider the empirical error and superfluity in the outcome on all observed(training)

samples together, we can get

L =
1

2

∑

i

(
∑

j

αjK(xi, xj)tj − λti)
2 (28)

For a given λ, the minimization of L with respect to α is equivalent to maximization of the

functional

W (α) = λtT KD(t)α − 1

2
αT D(t)KT KD(t)α (29)

subject to the condition that 0 ≤ αi ≤ 1 for all i. The entry D(t) is a diagonal matrix whose

diagonal entries are the same as that of t.

The effects of αs are similar to that used in the SVM where αs define the support vectors. However

the quadratic function to be maximized in SVM is derived on the basis of margin maximization

with respect to optimal separating hyperplane in some higher dimensional space φ(.) such that K

is expressible as a inner product, K(x, xi) = φ(x)φ(xi), and αs are the Lagrangians. In our case,

we do not explicitly consider the margin maximization with respect to separating hyperplane in

the space of φ(.), rather we minimize the superfluity in the outcome for a given margin λ with

respect to the difference in the class posteriors. This leads to a difference in the quadratic term

KT K in our formulation in Equation (29) from that in the SVM. Apart from the quadratic term,

we also observe the difference with SVM in the linear term. In SVM, due to margin maximization

all αis contribute equally in the linear term as in

Wsvm(α) = 1T α − 1

2C
αT D(t)KD(t)α (30)

with an additional constraint that αT t = 0 and αi ≥ 0 for all i. In the modified framework of

soft margin SVM [53, 6], the funcitonal is expressed as

Wsoftsvm(α) = 1T α − 1

2
αT D(t)(K +

1

C
I)D(t)α (31)

where I is the identity matrix with the same constrint i.e., αT t = 0. We do not require this

constraint (Equation (29)) since different αis contribute differently in the linear term depending

on the kernel function and the distribution of the patterns.

Once the pattern vectors with non-zero α values are obtained by maximizing the functional W (α)

with respect to αis (Equation 29), we classify any new sample x, i.e., assign a classlabel t to x as

t =

{

1 if
∑

i αiK(x, xi)ti ≥ 0

−1 otherwise
(32)

In the sequel, we refer to our method of classification as ‘B’ machine as opposed to SV machine

which we consider as ‘A’ machine. The non-zero αs determine the ‘B’ vectors as opposed to the

support vectors which we consider as the ‘A’ vectors. Alternatively, B-machine can also be called

B-SVM to represent the ‘Box’ constrained least square SVM.

Multi-class Classification: We formulated the classification problem for a two-class classifi-

cation task. In the case of multi-class classification, we consider the one-against-all strategy,

9

i.e., classify the patterns of each class against all other classes and obtain the B-vectors for each

class separately. Here we mention that we take the stand-point as provided in [43] where the

authors have shown that one-vs-all classification scheme is as accurate as any other multiclass

classification approach.

Formally let there be l classlabels L = {1, 2, · · · , l}. Each time we consider one classlabel at

a time. Let the classlabel of concern be c. In that case ti ∈ L is transormed into a vector

{ti1, ti2, · · · , til} such that

tic =

{

1 if ti = c

−1 otherwise
(33)

For each classlabel c, we compute the B-vectors separately, and the classlabel t to a new sample

x is assigned as

t = argmaxc∈L{
∑

i

αicK(x, xi)tic} (34)

where αics are the B-vectors obtained for class c.

3 Relationship with “Least Square” Kernel Machines

The proposed B-machine has a close relationship with a class of existing variants of kernel ma-

chines which we refer to as “least-square” kernel machines. Ridge regression framework [34] which

is variant of the well-known least square method where the objective functional is of the form

L = ‖t − wT x‖2 (35)

for a linear regression fit. In general, for any functional form, considering additive Gaussian noise

the regression functional becomes

L = ‖t − f(x)‖2 (36)

In the ridge regression framework [34], the least square framework is duly modified to include a

regularization factor such that

L = ‖t − wT x‖2 + a‖w‖2 (37)

where a is a Lagrangian. The ridge regression framework introduces priors over the coefficients

w for a smooth regression function estimation, the priors being subjected to a spherical Gaus-

sian prior distribution. In adaptive ridge regression [48], automatic relevance determination is

performed in such a way that each variable is penalized by the method of automatic balancing

while keeping the average penalty constant. In relevance vector machines [63] also, an automatic

relevance determination over the priors is intorduced by having prior variance for each expansion

coefficient (a Bayesian framework). In this framework, an iterative method is employed. It starts

with a current estimate of α vectors, and based on this estimate the most probable hyperprior

(prior varaince) parameters are chosen. The prior variance parameters are then used in the

posterior to get new estimates of α. Both adaptive ridge regression and RVM (relevance vector

machine) follow iterative processes to estimate the coefficients and hyperpriors, although they

differ in their treatment.

10

The proposed B-machine has similarity with the class of “least-square” kernel machines namely

least-square support vector machine or LS-SVM [58, 65] and regularized least-square classification

or RLSC [44]. In RLSC [44], the objective functional is derived as a simple square-loss function

and regularized using the Tikhonov regularization [62] with a quadratic term in α vectors. In

RLSC reproducing Hilbert kernels are considered such that the objective functional takes a form

L =
1

N
(t − Kα)T (t − Kα) +

λ

2
αT Kα (38)

where N is the number of samples, λ is a regularization parameter, and α are the coefficients

(the notation of α is same throughout this article). This convex optimization problem is then

transformed into a set of linear equations (similar to least square regression) by equating the

first order derivative to zero based on the assumption that the underlying noise is generated by a

Gaussian model. The coefficients are then derived from the resulting set of linear equations such

that

(K + λNI)α = t (39)

An approach similar to RLSC namely, least-square support vector machine (LSSVM) was pro-

posed by [58, 65]. In LSSVM also, a squared error term is considered in addition to a regu-

larization term wT w where w represents the directionality of the separating hyperplane. The

convex optimization functional is then transfromed into a set of linear equations by equating the

first derivative to zero. Here also the underlying assumption is that the noise is generated by a

Gaussian model and thus a regression framework has been built in the kernelized representation.

In the framework of LASSO (least absolute shrinkage and selection operator) [38], a similar

quadratic function is minimized which simply reduces to L1-constrained least square problem

given as

L = ‖t − Kα‖2
2 (40)

subject to ‖α‖1 < λ where λ is a constant. As discussed in [47], the value of the constant

λ determines the approximation accuracy and therefore can be viewed as a model selection

parameter. The LASSO type models can be connected to adaptive ridge regression (AdR) by

considering the exponetial hyperpriors instead of the Gaussian hyperpriors. Considering the

exponential hyperpriors, the LASSO model can be expressed in the form

L = ‖t − Kα‖2
2 + b‖α‖1 (41)

where b is a Lagrange parameter determined by the exponential hyperpriors.

The quadratic functional in all these related models, is directly motivated by the underlying

Gaussian noise model. However, if the noise deviates from the Gaussian model then quadratic

loss functional becomes sub-optimal. In order to incorporate a more robust error measure, gener-

alized LASSO [47] has been proposed. Generalized LASSO takes into account of the Huber loss

function [54] which is quadratic for smaller deviation, however follows a linear pattern for larger

deviations. In generalized LASSO, iteratively reweighted least square (IRLS) technique is incor-

porated with this robust Huber’s loss criteria. The generalized LASSO using IRLS technique

has been successfully applied to two-class classification problems where logistic regression [29]

11

has been formulated with binary target variables using a Bernoulli error model. The generalized

LASSO model for classification finally boils down to an optimization functional

L = ‖t̂ − K̂τατ‖2
2 (42)

subject to ‖ατ‖1 < κ. The subscript τ represents a vector preserving only those samples for

which the coefficients α do not vanish. The transformed variables t̂ and K̂ are given as

(t̂, K̂) = (W 1/2q, W 1/2K) (43)

where W is a diagonal matrix (dependent on α coefficients) such that W = diag(π1(1−π1), π2(1−
π2), · · · , πN (1 − πN)) for N samples, π is the success probability such that π(x) = p(y = 1|x).

The variable q is expressed as q = Kα + e where e is the error vector such that ej = (πj −
yj)/Wjj . Essentially, in generalized LASSO an equivalent problem is solved in the form of

iterative optimization by following the gradient of the logistic regression functional for two-class

classification.

Interestingly, the quadratic loss has been considered in a wide variety of similarly aligned algo-

rithms considering the Gaussian noise model as well as non-Gaussian model such as generalized

LASSO. In the B-machine construct, we also consider the quadratic loss both to measure the

error in observation as well as the redundancy as measured in terms of the superfluity in the

outcome for labeled samples. Although we deal with quadratic loss functional, we derive it from

a different viewpoint of the principle of parsimony. We can revisit our B-machine construct in

the following way. As in equation (28), the loss for B-machine is given as

L =
1

2

∑

i

(
∑

j

αjK(xi, xj)tj − λti)
2 (44)

subject to 0 ≤ αi ≤ 1 for all i. The loss can be reformulated as

L =
λ2

2

∑

i

(
∑

j

αj

λ
K(xi, xj)tj − ti)

2 (45)

which is equivalent to minimizing a functional

L =
1

2

∑

i

(
∑

j

K(xi, xj)α̂jtj − ti)
2 (46)

subject to the constraints 0 ≤ α̂i ≤ 1
λ . From the Equation (46) and the respective constraints,

we observe that B-machine employs a uniform prior over the coefficients α. The uniform prior

can be better observed if we replace α̂iti by βi then we obtain the quadratic loss as

L =
1

2

∑

i

(
∑

j

K(xi, xj)βj − ti)
2 (47)

subject to the constraint that 0 ≤ |βi| ≤ 1
λ , and sign(βi) = ti where ti is a binary observation

in {−1, 1}. Thus the B-machine construct can be observed in a Bayesian framework where the

model selection parameter is governed by λ, and the coefficients have uniform prior over [0,±1]

depending on the classlabel of the observed sample. In other words, B-machine operates on

12

a quadratic optimization functional similar to the “least square” kernel machines except that

B-machine employs box constraint on the parameter values.

We observe the similarity of the first part in Equation (38) of RLSC with the optimization

functional of B-machine as indicated in Equation (47). However, in RLSC, the coefficients are

derived based on the assumption that the noise is generated by a Gaussian model. Since the

prior is Gaussian, it is possible to take the first-order derivative of the optimization functional.

B-machine, on the contrary, does not assume the Gaussian prior rather it considers the uniform

prior over the coefficients. Secondly, RLSC derivation is based on the assumption of reproducing

Hilbert kernels. B-machine is not limited only to Mercer kernels or reproducing Hilbert kernels

since in Equation (29) of B-machine, the quadratic term is always positive semi-definite. B-

machine differs from LSSVM in the same aspect as it differs from RLSC, i.e., in B-machine

uniform prior is constructed over the coefficients, and the generating noise is no more attributed

to Gaussian model. Generalized LASSO also deviates from the Gaussian noise model and develops

on a more robust Huber loss measure. From equation (47) and the generalized LASSO model in

equation (42), we observe the similarity in the loss functionals except that the B-machine employs

uniform prior. As we view the expanded quadratic loss in Equation (29), we also observe the

similarity of B-machine with ν-SVM [15], where the optimization functional is given as

L = −1

2
αT D(t)KD(t)α (48)

subject to 0 ≤ αi ≤ 1
λ , λ being a regularization parameter λ ∈ [0, 1], and αT t = 0,

∑

αi ≥ ν.

In ν-SVM the quadratic optimization in ν-SVM does not contain any linear term as in standard

SVM. The performance of ν-SVM [15] depends on two parameters namely ν and λ. However, in

ν-SVM also, no box constraint is imposed on the parameters as it is in the case of B-machine.

4 Experimental Results

4.1 Nature of the Classifier

We first illustrate the B-vectors generated by B-machine for two-dimensional Gaussian parity

problem. We select the Gaussian kernel of different sizes. First, in Figure 1, we illustrate the B-

vectors for 2σ2 = 1. The B-vectors are marked by ‘o’, and the samples from two different classes

are marked by ‘x’ and ‘.’ respectively. We observe that even though we do not perform margin

maximization as performed in SVM, the B-vectors concentrate towards the boundary between

opposite classes. However, this behavior of the B-vectors is specific to the choice of kernel. In

the next figure, we observe a different behavior of the B-vectors as we change the kernel width.

Figure 2 illustrates the change in the B-vectors as we change σ of Gaussian kernel as 0.2, 0.5,

1 and 2. We observe that for a low σ, the B-vectors are not necessarily concentrated near the

opposite classes. This is due to the fact that B-machine does not use the principle of margin

maximization, rather it finds B-vectors such that existence of other points becomes interpretable

subject to a given margin. As we increase σ, the B-vectors starts getting concentrated towards

13

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: B-vectors obtained by the B-machine for a two-dimensional Gaussian parity problem.

The two classes are represented by ‘x’ and ‘.’ respectively. The B-vectors are marked by ‘o’. The

Gaussian kernel of the B-machine is chosen such that 2σ2 = 1.

14

the opposite class samples. This is due to higher interaction between samples from other classes

due to larger width of the kernel function.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) (d)

Figure 2: B-vectors obtained by B-machine for the same two-dimensional Gaussian parity problem

as in Figure 1 with different kernel sizes. (a), (b), (c), and (d) illustrate the B-vectors for σ = 0.2,

σ = 0.5, σ = 1.0 and σ = 2.0 respectively.

We now illustrate the effect of λ on the number of B-vectors. If we lower the margin λ then we

observe that the number of B-vectors decreases and it increases with the increase in λ. This is

due to the fact that if we reduce the margin, we require less number of B-vectors to support the

existence of other samples from the same class subject to the margin. Figure 3 illustrates the

B-vectors for the same Gaussian parity problem with λ = 0.1, 0.2, 0.5, and 1 respectively for

σ = 1.

15

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) (d)

Figure 3: B-vectors obtained by B-machine for the same two-dimensional Gaussian parity problem

as in Figure 1 for different margins (λ) with a fixed size of Gaussian kernel σ = 1. (a), (b), (c),

and (d) illustrate the B-vectors for λ = 0.1, λ = 0.2, λ = 0.5, and λ = 1.0 respectively.

16

4.2 Selection of the Kernels

Apart from Gaussian kernels, we select two other kernel functions which are centrally peaked

with longer tails in nature, such that the distant B-vectors have greater interaction between. The

first one is given as

K1(x, µ) =
1

1 +
(

‖x−µ‖
σ

)2 (49)

The kernel in Equation (49) is derived from the Cauchy distribution which has a long tail, and we

call this kernel function as Cauchy kernel. Note that, Cauchy kernel has also been applied in the

formation of sparse codes for natural scenes leading to a complete family of localized, oriented,

bandpass receptive fields [37]. Cauchy kernel is continuous and it is differentiable except at the

point x = µ.

The second form of kernel is a mixture of Guassian and exponential kernel such that for smaller

deviation it is squared loss and for larger deviation the loss is linear. In the second kernel

function, we use Gaussian kernel near the center of the kernel (the logarithm of Gaussian is

essentially squared deviation) and exponential decay away from the center (the logarithm of

exponential represents linear deviation). The second kernel function is given as

K2(x, µ) =







exp
(

−‖x−µ‖2

2σ2

)

for ‖x − µ‖ ≤ ε

exp
(

−‖x−µ‖√
2σ

)

otherwise
(50)

Note that, K2 is continuous only for ε =
√

2σ and we choose the same value although in the

framework of B-machine it is not necessary that the kernel function needs to be continuous. We

refer to the kernel K2 as the Gaussian + Exponential kernel which is not differentiable on the

hyperplane ‖x − µ‖ =
√

2σ. In the next section, we demonstrate the performance of B-machine

with Cauchy kernel and Gaussian + Exponential kernel in addition to Gaussian kernel.

4.3 Data Sets

We demonstrate the effectiveness of our classifier on certain real-life data sets. We have considered

the data sets available in the UCI machine learning repository [7]. Table 1 summarizes the data

set description. We considered the data sets from UCI machine learning repository [7] mostly

based on the fact that the data should not contain any missing variable and consist of only

numeric attributes. Note that, the ‘Iris’ dataset that we used is the ‘BezdekIris’ data in the UCI

repository. We modified the ‘Ecoli’ data originally used in [36] and later in [28] for predicting

protein localization sites. The original dataset consists of eight different classes out of which three

classes namely, outer membrane lipoprotein, inner membrane lipoprotein, and inner membrane

cleavable signal sequence have only five, two, and two instances respectively. Since we report the

10-fold cross-validation score, we omitted samples from these three classes and report the results

for the rest five different classes. Note that, in the original work [36] also, the results are not

cross-validated. We normalize all input patterns such that any compponent of x lies in the range

[−1, +1].

17

Data Set No. of Instances No. of Features No. of Classes

Indian diabetes 768 8 2

(Pima)

Diagnostic Breast 569 30 2

Cancer (Wdbc)

Prognostic Breat 198 32 2

Cancer (Wpbc)

Liver Disease 345 6 2

(Bupa)

Flower (Iris) 150 4 3

Bacteria (Ecoli) 326 7 5

AI (Monks1) 556 6 2

AI (Monks2) 601 6 2

AI (Monks3) 554 6 2

Table 1: Description of the pattern classification datasets obtained from the UCI machine learning

repository [7].

4.4 Results

We report the 10-fold cross-validation performance of B-machine for Gaussian kernel, Cauchy

kernel, and Gaussian+Exponential kernel respectively. In computing the 10-fold cross-validation

scores, we randomly partitioned the data into 10 disjoint groups, and used 90% (i.e., 9 disjoint

groups) samples as the training sample and the rest 10% samples as the test samples, and iterated

this procedure using each group in the partition as the test set and the rest as the training

set. We used 10 such trials of random partitioning the data. For each trial, we compute the

mean and variance of the classification score over the ten different test sets, and then compute

the overall mean and variance scores over the ten different trials. We performed this random

partitioning of the dataset and averaged over ten different trials in order to reduce any inherent

bias generated due to sample ordering present in the data set. We also compare the performance

of B-machine with that of SVM using Gaussian kernel and third degree polynomial kernels. In

addition we compare the performance with the LSSVM using Gaussian kernels. In comparing the

performance, we use the same training set and the test set for each trial and each fold throughout

for all these classifiers.

Table 2 summarizes the 10-fold cross-validation score of B-machine on the datasets in Table 1

for Gaussian kernels, Cauchy kernels, and Gaussian+Exponential kernels. We report the mean

accuracy as well as the standard deviation in the accuracy as the indicator of significance. As

a comparison, we also provide the same scores of SVM for Gaussian kernel and polynomial

kernel, and LSSVM with Gaussian kernel in Table 2. For implementing SVM, we used the

publicly available code in [14]. Note that, WEKA [22, 69] also provides an implementation of

SVM, particularly the sequential minimal optimization (SMO) [41]. However, SMO algorithm as

provided in WEKA cannot handle more than two class labels. We therefore, implememted the

18

multi-class SVM using the software provided in [14]. We implemented LSSVM using the Matlab

code available in [40]. In implementing LSSVM for multiclass classification (such as ‘Iris’ and

‘Ecoli’), we used ‘minimum output coding’ as provided in [14]. Note that for B-machine, we used

‘one-against-all’ classification scheme, however, for LSSVM we observed that ‘minimum output

coding’ provides much better scores as compared to ‘one-vs-all’ coding. We also tested LSSVM

using ‘error-correcting-output-coding’ as provided in [14]. However, ‘minimum output coding’

provided the best results for the datasets that we considered.

The performance of SVM depends on the choice of the kernel and the constant C as in Equation

30. For LSSVM also, the performance is dependent on the kernel width (Gaussian kernel), and

the regularization parameter (γ) used for performing the regression. Similarly, the performance of

B-machine is dependant on the choice of kernel and the margin λ. In Table 2, we have reported the

best performances of all the classifiers namely, SVM, LSSVM, and B-machine. Here we mention

that we obtained the best scores of SVM by searching over different possible configurations of

(σ, C). A better way of searching an optimum configuration for (σ, C) is provided in [26], which

is a smarter search as compared to exhaustive search. For B-machine also, we report the best

results for all three types of kernels by searching over different possible combinations of (σ, λ).

We obtained the set of parameters for LSSVM in the same way, i.e., searching over different

possible combinations. Note that, in Table 2, we provide one set of parameters for each classifier

and each dataset. However, we observed that all these three classifiers are able to obtain similar

scores over a significantly large neighborhood of the parameter values as provided in Table 2.

In other words, these classifiers are not very sensitive on the choice of parameter values over a

neighborhood of the candidate values that we report, although the performance can significantly

differ if the choice of paramter is widely different.

As we observe from Table 2, B-machine outperforms SVM in terms of 10-fold cross-validation

score on several datasets but not all that we have used. In particular, both SVM and LSSVM

outperform the proposed B-machine on the artificial datasets ‘Monks1’, ‘Monks2’, and ‘Monks3’.

For the real-life datasets like ‘Pima’, ‘Bupa’, ‘Wpbc’, ‘Iris’ and ‘Ecoli’, B-machine outperforms

SVM and LSSVM, particularly when we observe the performance of B-machine with Cauchy

kernel. For ‘Wdbc’ dataset, the best performance of SVM is marginally better than that of B-

machine although LSSVM is much worse than the other two. Interestingly, we observe that the

performance of B-machine often improves significantly with long-tailed kernels such as Cauchy

kernel.

In order to establish the comparison between these classifiers in a more quantitiave way, we

performed resampled paired t-test as provided in [18]. As described in [18], we randomly divided

the dataset such that two-thrid of the dataset constituted a training set, and the rest one-third

constituted a test set. We then used the same training set and test set for all the variants of the

three classifiers. We then computed the rate of misclassification on the test set. We repeated

this experiment for 30 different trials, where in every trial we randomly partitioned the data

and computed the rate of misclassification by each classifier. For every trial, we computed the

difference in the rate of misclassification. For example, if c1 and c2 are two different classifiers with

rates of misclassification p
(i)
1 and p

(i)
2 respectively for trial i, then the difference in misclassification

19

Classifier Pima Bupa Wdbc Wpbc Iris Ecoli Monks1 Monks2 Monks3

SVM 76.88 69.39 98.03 80.78 96.13 88.17 90.43 92.07 96.40

(Gaussian) (±4.74) (±6.53) (±1.80) (±6.15) (±4.87) (±4.53) (±3.30) (±3.63) (±2.60)

(σ, C) (1, 2) (0.3, 1) (2, 20) (1, 2) (1, 1) (0.5, 1) (2, 1) (0.5, 1) (2, 1)

SVM 75.58 71.72 96.20 74.39 96.13 87.25 100 99.07 97.97

(Polynomial) (±4.74) (±6.40) (±2.26) (±8.72) (±5.06) (±4.88) (0) (±1.49) (±1.95)

(C) (1) (5) (1) (1) (5) (3) (3) (10) (1)

LSSVM 76.28 68.87 93.78 78.13 84.53 77.40 99.46 95.34 96.97

(Gaussian) (±5.18) (±7.21) (±2.93) (±3.93) (±7.90) (±5.54) (±0.83) (±2.78) (±2.39)

(σ2 , γ) (5, 0.1) (1, 2) (4, 0.3) (5, 4) (0.2, 15) (1, 10) (2, 20) (2, 20) (5, 20)

BM 77.51 72.42 97.68 81.05 95.87 87.93 85.26 89.46 96.14

(Gaussian) (±5.41) (±6.37) (±1.65) (±7.11) (±5.02) (±4.79) (±4.84) (±3.96) (±2.56)

(σ, λ) (5, 0.2) (2, 0.2) (1.5, 1) (5, 0.6) (1, 0.4) (1, 0.5) (0.5, 0.4) (0.5, 0.3) (2, 0.4)

BM 76.28 73.17 97.61 80.83 97.07 88.77 94.38 80.64 96.29

(Gauss+Expo) (±4.78) (±6.59) (±1.76) (±6.35) (±4.70) (±4.56) (±2.46) (±5.23) (±2.42)

(σ, λ) (2, 0.2) (2, 0.6) (0.2, 0.2) (3, 1) (1, 0.6) (2, 0.4) (1, 0.2) (1, 0.3) (3, 0.6)

BM 77.10 72.77 97.81 82.33 97.60 89.16 99.06 92.48 96.54

(Cauchy) (±5.40) (±6.55) (±1.65) (±6.51) (±4.21) (±4.37) (±1.56) (±3.43) (±2.55)

(σ, λ) (5, 0.2) (3, 0.4) (2, 0.7) (3, 0.5) (2, 0.3) (3, 0.8) (1, 0.2) (1, 0.5) (3, 0.5)

Table 2: Classification performance in terms of the 10-fold cross-validation scores on the datasets

described in Table 1. Classification performance summarizes the mean classification accuracy

and the standard deviation of the accuracies as a significance check. In B-machine, we use three

different types of kernels namely, Gaussian kernel, Gaussian kernel augmented with exponential

kernels, and Cauchy kernels. Note that, the later two do not follow the Mercer condition. For

SVM, we use Gaussian and third degree polynomial kernels, and for LSSVM we use Gaussian

kernel. All scores are obtained with normalized input such that each variable in each pattern is in

the range [−1, +1]. For each variant of B-machine, SVM, and LSSVM, the best results obtained as

determined by the cross-validation score is reported. We also show the corresponding parameter

values i.e., (σ, C) for SVM, (σ2, γ) for LSSVM, and (σ, λ) for BM. Certain candidate parameter

values for which we obtained the best results are reported. However, in each case SVM, LSSVM,

and BM produce the best results over a neighborhood of the parameter values as shown here.

We implemented SVM with Gaussian and polynomial kernels using the Matlab code available in

[14], and LSSVM with Gaussian kernel using the code available in [40].

20

is p(i) = p
(i)
1 − p

(i)
2 , and the statistic is obtained as

t =
p̄.
√

N
√

∑

N

i=1
(p(i)−p̄)2

N−1

(51)

where N(= 30) is the number of trials, and p̄ = 1
N

∑N
i=1 p(i) is the average difference in the

misclassification rate. Evidently, if t < 0 then classifier c1 is better than the classifier c2 and vice-

versa. The significance to which the two classifiers are different is obtained from the measure

t. As provided in [18] (as obtained from the Student’s cumulative t-distribution function with

N − 1(= 29) degrees of freedom), if |t| > 2.0452 then the classifiers are different from each other

with a confidence level of 97.5%, and the classifiers are different with a 95% confidence level if

|t| > 1.6991.

Table 3 summarizes the t-statistic as obtained by the resampled paired t-test. As we observe

from Table 3 that for the ‘Monks1’ dataset the best B-machine (with Cauchy kernel) falls short

of best SVM with polynomial kernel with a t-measure 10.77 which shows that SVM is better

than the B-machine with a probability very close to unity. Similarly, LSSVM is also better than

B-machine with a probability very close to unity. We observe the similar performance for the

‘Monks2’ dataset where SVM and LSSVM are definitely better than B-machine with probability

very close to unity. For ‘Monks3’ dataset, SVM with polynomial kernel (the best variant) is

better than B-machine with Cauchy kernel with a confidence level 69.65% (t = 0.52) whereas B-

machine is better than LSSVM with a confidence level of 80.96% (t = −0.89). In ‘Wdbc’ dataset,

the best variant of B-machine (Gaussian kernel) is worse than the best SVM (Gaussian kernel)

with a confidence 58.24% (t = 0.21), however, the B-machine performs significantly better (with

a probability very close to unity) than LSSVM. In all other datasets, we observe that the best

variant of B-machine significantly outperforms the best variant of SVM and LSSVM.

5 Discussion and Summary

We presented a kernel machine called B-machine which uses quadratic loss funcitonal with box

constraint on the parameter values. B-machine is related to various existing “least-square” kernel

machines such as adaptive ridge regression, regularized least square classifier, least square support

vector machine, LASSO (least absolute shrinkage and selection operator), and generalized LASSO

by the fact that these existing kernel machines are also motivated by the quadratic loss functional.

However, B-machine uses box constraint on the parameter values which makes it different from

the existing ones. Interestingly, almost all existing quadratic loss kernel machines were motivated

from the regression framework and therefore use Gaussian prior on the parameter values except

the generalized LASSO which was motivated from a more robust Huber loss. B-machine on the

contrary is motivated directly from the principle of parsimony or Occam’s razor. We modified

the principle of parsimony in the context of classification to state that “Minimize the superfluity

in the outcome with a given margin”. We discussed the meaning of ‘outcome’ as a soft-indicator

function g(x, α) depending on the model α, and the outcome is interpreted as the final output

f(x, α) ∈ {−1, +1} for any binary classifier. We viewed the redundancy (as stated in the original

21

Classifier Pair Pima Bupa Wdbc Wpbc Iris Ecoli Monks1 Monks2 Monks3

BM (Gauss) -3.94 -7.33 0.21 -3.33 -3.26 2.37 8.60 8.31 3.61

SVM (Gauss)

BM (Gauss) -7.0 -3.81 -6.93 -9.59 -2.72 -2.19 29.62 9.84 2.82

SVM (Poly)

BM (Gauss) -4.27 -8.10 -14.73 -4.75 -17.83 -12.10 26.13 14.32 3.88

LSSVM

BM (GaussExpo) 1.73 -8.00 1.48 -0.41 -5.43 -2.54 -6.44 25.43 5.63

SVM (Gauss)

BM (GaussExpo) -2.03 -4.61 -4.91 -6.41 -4.63 -8.53 27.21 25.07 2.93

SVM (Poly)

BM (GaussExpo) 1.52 -8.56 -14.11 -2.29 -17.81 -13.34 11.13 26.31 3.61

LSSVM

BM (Cauchy) -4.84 -6.97 1.09 -2.71 -4.82 -3.25 -16.59 -4.74 0.37

SVM (Gauss)

BM (Cauchy) -7.4 -3.49 -5.38 -7.45 -4.85 -6.56 10.77 5.57 0.52

SVM (Poly)

BM (Cauchy) -4.9 -7.91 -14.68 -3.90 -17.94 -13.79 6.89 8.04 -0.89

LSSVM

Table 3: Resampled paired t-test scores in terms of t-statistic comparing the three variants of

B-machine with the two variants of SVM and LSSVM on the datasets described in Table 1.

principle of parsimony) as the ‘superfluity in the outcome’ and measured the superfluity with

respect to a given margin λ, the margin λ being viewed as a regularization parameter. Considering

both empirical error and superfluity together we came up with the quadratic loss. We also

discussed that the B-machine is designed based on the difference between the class posteriors

(which is the outcome of the classifier) subject to the modified form of the principle of parsimony.

The formulation of the proposed classifier can also be viewed from the Parzen window estimation

[39] of the class-conditional densities. In Parzen window estimate, the density p(x) is nonpara-

metrically estimated as

p(x) =
1

NV

n
∑

i=1

cK(x, xi) (52)

V being the volume spanned by the kernel K(.), and N being the number of samples. In a Bayes

classifier, samples are assigned the class labels based on the class posteriors such that if

P1p(x|ω1) ≥ P2p(x|ω2) (53)

then x is assigned a classlabel +1 else −1, where ω1 and ω2 represent the classes labeled as +1 and

−1 respectively. P1 and P2 are the priors, and p(x|ω) represents the respective class conditional

density. Letting the priors P1 = N1/N and P2 = N2/N , N1 and N2 being the respective number

of training samples in class ω1 and ω2 respectively such that N = N1 + N2, we can express the

classifier in the form of the difference between class posteriors (from Equations (52) and (53)) as

follows. If
n

∑

i=1

K(x, xi)ti ≥ 0 (54)

22

then x is assigned a class label +1 else −1. In Parzen classifier, we consider the contribution of

each training sample to be equal in computing the class posterior difference. From classification

point of view, we need to compute the difference between class posteriors “to the extent” such that

the class labels are attached “properly”. We therefore differentiate the effects of observations with

a factor αi as in Equation (26) such that the class labels are attached to the samples “properly to

the extent” that the difference between the class posteriors is subjected to a given margin λ. In

the present context, the difference between the class posteriors represents the outcome (Equation

(26)) of the classifier. The term “to the extent” is explained from the modified form of the

principle of parsimony and quantified with a loss L2 in Equation (23); and the term “properly”

is quantified by the empirical error L1 as in Equation (22). We minimize the loss in Equation

(28) subject to the constraints 0 ≤ αi ≤ 1 for all i. Note that, the loss in Equation (28) can also

be minimized in a linear regression framework considering Gaussian priors for αs. However, that

does not guarantee α ≥ 0, which means that there can be negative contribution from training

samples in computing the difference in posterriors. In our framework, we differentiate between

the training samples such a way that they either make positive contribution or zero contribution

in computing the difference between class posteriors subject to a given margin λ.

The basic difference between B-machine and SVM is that the B-machine does not perform any

margin maximization as it is performed in SVM with respect to the optimal separating hyperplane

in some higher dimensional space. Rather the B-machine minimizes the superfluity in the outcome

(in terms of the difference between class posteriors) with a given margin λ. The principle of

parsimony has been addressed in the literature of machine learning with two major interpretations

namely, minimum description length (MDL) and structural risk minimization (SRM). Both MDL

and SRM measures the redundancy (as in the principle of parsimony) in terms of the model

complexity – information theoretic complexity in the case of MDL and VC-dimension in the

case of SRM. In our interpretation of the principle, we did not consider the model complexity

rather we considered the superfluity in the outcome. Thus the modified principle of parsimony

that we presented does not involve any estimation of the model complexity, rather it involves

suitable interpretation of the outcome of a model such as the soft-indicator function that we used

in the context of a binary classifier. Although in the present context of pattern classification,

we used this modified principle to design a quadratic loss kernel machine with box constrained

parameters, this principle can possibly be applied to other learning machines also such as neural

networks [3, 27]. We considered only symmetric square loss in designing the objective functional.

However, other form of loss functional (not necessarily symmetric) can also be investigated for

this purpose. The symmetric square loss leads to a quadratic loss functional that can be handled

in a quadratic programming framework. The use of other kind of loss functionals may require

more complex and sophisticated methods of parameter estimation.

We observed that B-machine outperforms SVM on several real-life datasets. B-machine provides

us some flexibility of choosing kernels as it does not require any Mercer condition to be satisfied

as it is in the case of support vector machines. We also observed that the incorporation of

centrally peaked long-tailed kernel functions can enhance the performance of the classifier on

certain datasets. In addition to Gaussian kernel, we used two other kernel functions namely,

Cauchy kernel and a hybrid of Gaussian and exponential kernels. We observed that these long-

tailed kernel functions provide better performance on several real-life datasets as compared to

23

simple Gaussian kernel due to the long-range interaction between the B-vectors.

It may be mentioned here that the formulation of SVM (Equation (12)) minimizes the objective

functional under a constraint αiti = 0 which helps in avoiding the label bias problem. In other

words, if there is a large difference in the number of training samples of different classes then the

constraint helps in imposing a balance. The formulation of B-machine is not subjected to any

such explicit balance constraint. Rather it introduces the linear term
∑

i αiti(
∑

j K(xi, xj)tj) in

the objective functional (Equation (29)). Due to the explicit balance constraint in the formula-

tion, SVM is expected to perform better in terms of generalization for the unbalanced datasets,

although we observe that B-machine outperforms SVM by a significant margin (Table 3) on one

such dataset (‘Ecoli’ dataset). One disadvantage of the B-machine is that it produces relatively

non-sparse solution as compared to SVM and other least square kernel machines using Hilbert

kernels. This leads to relatively slower training and testing processes for B-machine. In this

respect, further investigation can be performed towards obtaining better variants of B-machine.

With respect to the run-time memory requirements, on-line learning of B-machine instead of

batch-mode learning for larger datasets can also be investigated as a scope of future study.

Acknowledgements: The author takes the privilege to gratefully acknowledge Prof. Shun-ichi

Amari of the RIKEN Brain Science Institute, Saitama, Japan for his thoughtful and constructive

suggestions which helped the author to improve this article.

References

[1] H. Akaike. A Bayesian analysis of the minimum AIC procedure. Annals of the Institute of

Statistical Mathematics, 30A:9–14, 1978.

[2] S. Amari. Theory of adaptive pattern classifiers. IEEE Trans., EC-16:299–307, 1967.

[3] P. L. Bartlett. For valid generalization the size of the weights is more important than the

size of the network. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in

Neural Information Processing Systems, volume 9, pages 134–140. The MIT Press, 1997.

[4] J. Basak. Online adaptive decision trees. Neural Computation, 16:1959–1981, 2004.

[5] J. Basak. Online adaptive decision trees: Pattern classification and function approximation.

Neural Computation, 18:2062–2101, 2006.

[6] T. D. Bie, G. R. G. Lanckriet, and N. Cristianini. Convex tuning of the soft margin pa-

rameter. Technical Report UCB/CSD-03-1289, University of California, Computer Science

Division (EECS), Berkeley, California, USA, 2003.

[7] C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998. Available

at: http://www.ics.uci.edu/m̃learn/MLRepository.html.

[8] L. Breiman. Bagging predictors. Machine Learning, 26:123–140, 1996.

[9] L. Breiman. Stacked regressions. Machine Learning, 24:49–64, 1996.

24

[10] L. Breiman. Arcing classifiers. The Annals of Statistics, 26:801–824, 1998.

[11] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression

Trees. Chapman & Hall, New York, 1983.

[12] P. J. Brown and J. V. Zidek. Adaptive multivariate ridge regression. The Annals of Statistics,

8:64–74, 1980.

[13] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining

and Knowledge Discovery, 2:121–167, 1998.

[14] S. Canu, Y. Grandvalet, V. Guigue, and A. Rakotomamonjy. SVM and kernel methods

matlab toolbox. Perception Systmes et Information, INSA de Rouen, Rouen, France, 2005.

Available at: http://asi.insa-rouen.fr/ãrakotom/toolbox.

[15] P.-H. Chen, C.-J. Lin, and Schölkopf. A tutorial on nu-support vector machines. Applied

Stochastic Models in Business and Industry, 21:111–136, 2005.

[16] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:1–25, 1995.

[17] T. M. Cover. Learning in pattern recognition. In S. Watanabe, editor, Methodologies of

Pattern Recognition, pages 111–132. Academic Press, New York, 1969.

[18] T. G. Dietterich. Approximate statistical test for comparing supervised classification learning

algorithms. Neural Computation, 10:1895–1923, 1998.

[19] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd Edition). Wiley, New

York, 2001.

[20] B. Efron. Estimating the error rate of a prediction rule : Improvement on cross-validation.

Journal of the American Statistical Association, 78(382):316–330, 1983.

[21] J. H. Friedman. On bias, variance, 0/1-loss, and curse-of-dimensionality. Data Mining and

Knowledge Discovery, 1:55–77, 1997.

[22] S. Garner. Weka: The waikato environment for knowledge analysis. In Proc. of the New

Zealand Computer Science Research Students Conference, 1995.

[23] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.

Neural Computation, 4:1–58, 1992.

[24] S. R. Gunn. Support vector machines for classification and regression. Technical Report

http://www.ecs.soton.ac.uk/s̃rg/publications/pdf/SVM.pdf, Faculty of Engineering, Science

and Mathematics, School of Elecetronics and Computer Sceince, University of Southampton,

1998.

[25] P. E. Hart. The condensed nearest neighbor rule. IEEE Trans. Information Theory, IT-

14:515–516, 1968.

[26] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the

support vector machine. Journal Machine Learning Research, 5:1391–1415, 2004.

25

[27] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle

River, NJ, 1999.

[28] P. Horton and K. Nakai. A probablistic classification system for predicting the cellular

localization sites of proteins. In Intelligent Systems in Molecular Biology, pages 109–115, St.

Louis, USA, 1996.

[29] D. W. J. Hosmer and S. Lemeshow. Applied Logistic Regression (2nd Ed.). John Wiley,

USA, 2000.

[30] A. K. Jain, R. C. Dubes, and C. Chen. Bootstrap techniques for error estimation. IEEE

Trans. Pattern Analysis and Machine Intelligence, PAMI-9(5):628–633, 1987.

[31] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.

Neural Computation, 6:181–214, 1994.

[32] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model

selection. In International Joint Conference on Artificial Intelligence (IJCAI-95), 1995.

[33] R. Kohavi and D. H. Wolpert. Bias plus variance decomposition for zero-one loss functions.

In Proceedings of the Thirteenth International Conference on Machine Learning (ICML96),

1996.

[34] D. W. Marquardt. Generalized inverses, ridge regression, biased linear estimation, and

nonlinear estimation. Technometrics, 12:591–612, 1970.

[35] N. Murata, S. Hoshizawa, and S.-I. Amari. Learning curves, model selection and complexity

in neural networks. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in

Neural Information Processing Systems (NIPS92), volume 5, pages 607–614. MIT Press,

Cambridge, MA, 1993.

[36] K. Nakai and M. Kanehisa. Expert sytem for predicting protein localization sites in gram-

negative bacteria. PROTEINS: Structure, Function, and Genetics, 11:95–110, 1991.

[37] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by

learning a sparse code for natural images. Nature, 381:607–609, 1996.

[38] M. Osborne, B. Presnell, and B. Turlach. On the LASSO and its dual. Journal Comput.

Graphical Statist., 9:319–337, 2000.

[39] E. Parzen. On the estimation of a probability density function and the mode. Annals of

Mathematical Statistics, 33:1065–1076, 1962.

[40] K. Pelckmans, J. A. K. Suykens, T. Van Gestel, J. De Brabanter, L. Lukas, B. Hamers,

B. De Moor, J. Vandewalle. LS-SVMlab Toolbox Users Guide. Technical Report 02-145,

Department of Electrical Engineering, ESAT-SCD-SISTA, Katholieke Universiteit Leuven,

Belgium, 2003. Available at http://www.esat.kuleuven.ac.be/sista/lssvmlab/.

[41] J. C. Platt. Sequential minimal optimization : A fast algorithm for training support vector

machines. Technical Report MSR-TR-98-14, Microsoft Research, USA, 1998.

26

[42] J. R. Quinlan. Programs for Machine Learning. Morgan Kaufmann, San Fransisco, CA,

USA, 1993.

[43] R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of Machine Learning

Research, 5:101–141, 2004.

[44] R. Rifkin, G. Yeo, and T. Poggio. Regularized least square classification. In J.A.K. Suykens,

G. Horvath, S. Basu, C. Micchelli, and J. Vandewalle, editors, Advances in Learning Theory:

Methods, Model and Applications, NATO Science Series III: Computer and System Sciences,

volume 190, pages 131–153. IOS Press, Amsterdam, 2003.

[45] J. Rissanen. Modeling by shortest path description. Automatica, 14:465–471, 1978.

[46] J. Rissanen. Stochastic Complexity and Statistical Inquiry. World Scientific, 1989.

[47] V. Roth. The generalized LASSO. IEEE Trans. Neural Networks, 15(1):16–28, 2004.

[48] C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm in dual vari-

ables. In Proceedings of the 15th International Conference on Machine Learning (ICML98),

1998.

[49] R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predic-

tions. Machine Learning, 37:297–336, 1999.

[50] G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

[51] J. Shao. Linear model selection via cross-validation. Journal of the American Statistical

Association, 88(422):486–494, 1993.

[52] J. Shawe-Taylor and P. L. Bartlett. Structural risk minimization over data-dependent hier-

archies. IEEE Trans. on Information Theory, 44(5):1926–1940, 1998.

[53] J. Shawe-Taylor and N. Cristianini. An Introduction to Support Vector Machines and other

kernel-based learning methods. Cambridge University Press, UK, 2000.

[54] A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Technical Report

NC-TR-98-030, NeuroCOLT, Royal Holloway College, University of London, UK, 1998.

[55] P. Smyth and D. Wolpert. An evaluation of linearly combining density estimators via stack-

ing. Machine Learning, 36:59–83, 1999.

[56] M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the

Royal Statistical Society B, 36:111–147, 1974.

[57] M. Stone. Asymptotics for and against cross-validation. Biometrika, 64:29–35, 1977.

[58] J. A. K. Suykens and J. Vandewalle. Least square support vector machine classifiers. Neural

Processing Letters, 9:293–300, 1999.

[59] W. M. Thorburn. The myth of Occam’s razor. Mind, 27:345–353, 1918.

27

[60] R. Tibshirani. Bias, variance and prediction error for classification rules. Technical Re-

port http://www.utstat.toronto.edu/t̃ibs, Dept. of Statistics, University of Toronto, Canada,

1996.

[61] R. Tibshirani. Regression shrinkage and selection via lasso. Journal Royal Statistical Society,

Series B, 58:267–288, 1996.

[62] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-posed Problems. W. H. Winston, Wash-

ington, D. C., 1977.

[63] M. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal Machine

Learning Research, 1:211–244, 2001.

[64] Y. Tsypkin. Foundation of the Theory of Learning Systems. Academic Press, New York,

1973.

[65] T. Van Gestel, J. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene, B. De Moor,

and Vandewalle J. Benchmarking least squares support vector machine classifiers. Machine

Learning, 54:5–32, 2004.

[66] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

[67] V. Vapnik. Statistical Learning Theory. Springer-Verlag, New York, USA, 1998.

[68] V. Vapnik and A. Chervonenkis. Theory of Pattern Recognition. Nauka, Moskow, Russian

edition, 1974.

[69] I. H. Witten and E. Frank. Data mining : Practical machine learning tools and techniques

with Java implementations (Chapter 8). Morgan-Kauffmann, USA, 2000.

[70] P. Zhang. On the distributional properties of model selection criteria. Journal of the Amer-

ican Statistical Association, 87(419):732–737, 1992.

28

