

RI08002, 4 November 2004 Computer Science

IBM Research Report

Performance Modeling and Placement of Transforms for Stateful Mediations

Vinayaka Pandit

IBM Research Division
IBM India Research Lab

Block I, I.I.T. Campus, Hauz Khas
New Delhi - 110016, India.

Rob Strom

IBM T. J. Watson Research Center
19 Skyline Drive, Hawthorne

NY 10532-1596

Gerry Buttner
IBM T. J. Watson Research Center

19 Skyline Drive, Hawthorne
NY 10532-1596

Roman Ginis
BAE Systems Advanced Information Technologies

Autonomic Distributed Systems

IBM Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication
outside of IBM and will probably be copyrighted is accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of
the transfer of copyright to the outside publisher, its distribution outside of IBM prior
to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained
copies of the article (e.g., payment of royalties). Copies may be requested from IBM
T.J. Watson Research Center, Publications, P.O. Box 218, Yorktown Heights, NY
10598 USA (email: reports@us.ibm.com).. Some reports are available on the
internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Performance Modeling and Placement of

Transforms for Stateful Mediations

Vinayaka Pandit1 and Rob Strom2 and Gerry Buttner2 and Roman Ginis3

1 IBM India Research Laboratory, email:pvinayak@in.ibm.com
2 IBM TJ Watson Research Center, email:{strom, gbuttner}@watson.ibm.com

3 BAE Systems Advanced Information Technologies, Autonomic Distributed Systems
Division, email:roman.ginis@baesystems.com

Abstract. In this paper we propose a new technique for placing large
delivey plans for streaming systems on a network of machines to opti-
mize efficiency measures such as latency. In the model we consider, there
is a large network of machines and the different fixed end-points of the
network act as publishers and subscribers of information. Information
demanded by subscribers is a transformed view of the information pub-
lished by the publishers. The transformed view is the outcome of an
acyclic network of simple transformations operating on the publishers’
information or some intermediate transformed view of it. We propose
algorithms for the optimal placement of the acyclic transform network
on the network of machines. As an example scenario to evaluate the effi-
cacy of our algorithms we consider SQL queries on streaming relational
tables. The transform network in this case is the SQL operator tree for
the query. We first show how to model the performance of individual
operators acting on distributed streams and then develop the optimal
placement strategy for different optimization measures. We present our
work on a distributed message-oriented middleware and a programming
platform for large-scale publish-subscribe applications called SMILE. In
our system, we use incremental implementation each of the relational
operator for streaming data. We demonstrate that our technique per-
forms significantly better than straightforward approaches like greedy,
and random placement.
Keywords: Stream Processing, Publish-Subscribe, Local Search, Opera-
tor Placement, Distributed Computing, and Performance Modeling.

1 Introduction

In this paper, we consider performance modeling and efficient evaluation of
streaming queries on a distributed infrastructure. Our platform is called SMILE
(Smart MIddleware, Light Ends) [15, 23] which is a distributed middleware for
publish-subscribe systems. The middleware facilitates anonymous exchange of
information between sets of publishers and subscribers on a distributed net-
work. The middleware not only provides anonymity between publishers and sub-
scribers, but also allows transforms to published streams, allowing subscribers to
subscribe to states derived from complex operations, such as aggregation, join,

and top-K over these streams (or other derived states). For example, the pub-
lished streams can be events describing problem reports on managed devices and
events describing resolutions, and a subscription might be to the set of devices
having the top 5 number of unresolved problem reports. The SMILE platform
allows the publishers to publish information in the form of tuple updates to a re-
lation and the subscribers to specify information by specifying SQL queries over
the relations. Two prominent issues in such a setting are the implementation
of various operators (also called “transforms”) for a streaming model and effi-
cient execution of the operators on a distributed network of servers (also called
“message brokers”). While there has been a flurry of recent work [1, 8, 5, 19, 7,
21, 6] focusing on computation in the streaming model, the problem of efficient
execution over a network has not received much attention. Notable exceptions
to this trend are [25, 2]. In this work, we consider the problem of placing the
transforms of a query plan to optimize efficiency measures such as end-to-end
latency.

The contributions of the SMILE system are twofold: First, SMILE exposes
a simple and easy-to-use programming model to deriving state from distributed
streams, allowing the users to focus on specifying what state to derive rather
than specifying how to derive it. Second, SMILE hides from developers and
administrators the details of how to efficiently deploy multiple queries between
multiple publishers and subscribers on a distributed system, and how to recover
from lost or re-ordered messages, or failed message brokers. The scalability of
SMILE’s middleware crucially depends on how efficiently it executes its queries
and routes results to the consumers. In support of efficient execution, SMILE
includes steps to model the performance of a flow of events through a tree of
operators, to use this model to compute an optimal placement of transforms on
message brokers that can be used to drive deployment. It is this modeling and
placement that is the subject of this paper.

In many deployments of messaging-oriented middleware under the publish-
subscribe paradigm, the transforms simply route and filter messages. However,
there is a growing interest in more sophisticated middleware, where subscriptions
can define not just a filtered stream, but a continuously derived view that can
depend on an event history or multiple histories. Subscriptions are specified by
means of declarative queries in a language such as SQL or XQuery, and compiled
into a transform network or operator tree consisting of a flow graph of transforms
that take in published messages, and incrementally compute the changes to the
derived state. Such systems are variously called streaming systems or continu-
ous query systems [21, 1, 29, 8]. SMILE provides a simple programming interface
which allows the users to specify complex, large queries in simple, easy to under-
stand, English-like declarative fashion viewing streams as tuple-updates to a base
relation. The framework constructs the equivalent SQL query and constructs the
operator tree along with the java objects corresponding to the transforms and
with necessary functionality to resolve names and communicate on a wide-area
distributed network. This is expected to make application development for such
middleware very easy and popular.

2 Problem Formulation

Consider a financial system where clients are investment houses distributed
around the globe, who subscribe to a service (such as from Reuters or Bloomberg)
to receive stock trade streams in real time from all the major exchanges in the
world. For example, an event stream from NYSE carries information about trades
or offers (to buy or sell), including the stock issue, price, exchange name, etc.
Typically a particular trader is only interested in very specific information con-
cerning their investment, such as “Portfolio Value,” and wants to continuously
observe the value of a portfolio based on the latest ticker prices. SMILE allows
a trader to compute this derived stream from original stream published by the
exchange by writing a ‘subscription’ (e.g. in SQL) as follows:

CREATE Subscription "Portfolio Value" =

SELECT SUM (stock.price * portfolio.volume)

FROM (stock JOIN portfolio ON stock.name)

WHERE (stock.timestamp is LATEST)

The SMILE system compiles it into a DAG of relational operators like JOIN,
SELECT, and PROJECT acting on different streams. Every event occurring in
all the stock exchanges passes through this transform graph so that the query can
be evaluated. In this paper, we consider the problem of placing such a transform
graph efficiently on a topology graph of brokers.

2.1 Transform Graph

We now elaborate on the intermediate representation of the user query which is
one of the two inputs to the placement problem. As in databases, user’s SQL-
like query is compiled into an operator tree which we call as transform graph.
The transform graph is a DAG of relational operators connected by their inputs.
The inputs could be either original streams which are called as producers or
derived streams called derived views. Derived views which are subscribed to by
fixed locations in the distributed infrastructure are called as consumers. The
producers update their relations in a streaming manner. In general, we use Q to
denote a transform graph. We use O to denote the set of operators in Q.

Transforms can be specified as operations on histories (e.g., an operator could
compute the moving average of the last minute’s trades), but they are typically
implemented incrementally: that is, the transform keeps the current state and
enough information so that in response to a message describing a change to
its input, can produce another response describing a change to its output. For
example, a transform for computing the moving average over the last minute
takes as input insertion and deletion events and generates the resulting updates
to the moving average. We assume window sizes such that we can compute the
transformations without worrying about the limitations imposed by the “tradi-
tional” streaming model which assumes that the transforms work on “massive”
datasets. Note that, depending on the operation being performed, a transform
could have one or more operation histories as its inputs.

A pipelined transform flow is a path in the transform graph from a producer P
to a consumer C. It consists of an ordered sequence of transforms T = {t1, .., tn}.
When P generates an event e, this event traverses the transform graph which
effectively computes a composite function g = tn(...t2(t1(e))). This computation
is carried in a pipeline, such that once tk has computed the result tk(e) and sent
it to tk+1, it can immediately start on the next event e′.

2.2 Topology Graph and Computation

The distributed infrastructure is a key component of the SMILE system. It
consists of a set of processing units each of which is called a broker. The network
of communication channels which connects the brokers in the system is called as
topology graph.

Individual transform of the transform graph are assigned to the different bro-
kers in the topology graph which carry out the computations. The flow of events
between different transforms on different brokers is assigned to the communica-
tion links connecting the two brokers. All the transforms assigned to a brokers
are coalesced into execution modules M. An m ∈ M contains a connected sub-
graph Q′ of the transform graph such that the operators in Q′ are all assigned
to the same broker. The sources of m are either input stream messages, or are
messages travelling between a transform which is not on the same broker and
a transform which is in m. The sinks of m are either output stream messages,
or are messages travelling an edge in Q to a transform which is assigned to a
different broker. Figure 1 shows a broker with two distinct flows.

t1

t2

t3

JOIN

NYSE

JOIN

NYSE

JOIN

NYSE

t4 t5
JOIN

Zipf

SELECT

Exponential

demux

path id = 0

path id = 5

FIFO Queue

service completion events

Broker

Fig. 1. Broker with two flows

The messages arrive on the input queue1 of a broker. The broker is modeled
as a server that dequeues a message from the input queue, determines which
transform it is destined to, and then executes that transform. This may cause
one or more output messages to be produced. Messages destined outside of the
broker will be delivered either to the client or to the channel to the next broker.

1 We are assuming single-threaded brokers here, but the model can be extended for
multi-threaded brokers.

Messages destined for another transform in the same execution module will cause
that transform to execute, possibly generating more messages. This cascade will
continue until all dependent transforms have executed, and then the next mes-
sage will be dequeued. We observe that dequeing of messages and scheduling of
the transforms within a broker so as to address issues like starvation of operators
and messages is itself a research problem and not addressed here.

2.3 Problem Statement

The input consists of a transform graph Q and a topology graph G = (V, E)
where V is the set of brokers and E is the set of network links. Every broker has
certain processing power, and for each link, we have the available bandwidth
(depending on current network status). We also have a set of producers with
specific inut rates. A subset of the operators in Q are fixed to specific locations
in G as they are tied to the producers or consumers. Let FX denote the set
of fixed operators. We, (i) model the performance of a transformation graph
deployed on a topology graph and (ii) place the operators in O \ FX of the
transform graph on G to optimize efficiency measures such as latency.

2.4 Related Work

Pipelined processing of relational operators has been studied as efficient meth-
ods for evaluating traditional database queries in parallel environments [14][18]
and for continuous queries [27], long-standing requests to a database system that
need to produce outputs as soon as their inputs change. Much of the work re-
lated to performance of pipelined operators for stream processing has focused on
the development of efficient algorithms for evaluating various transforms, and,
in the more recent research projects[7][8][1][21], on the performance optimiza-
tions of memory and load management[6]. The problem of placing the operators
of a query to optimize efficiency measures for distributed query processing has
been considered in [25, 2]. Srivastava et. al [25], consider the problem of opera-
tor placement to minimize end-to-end delay when the topology of brokers is a
single chain. They give an approximation algorithm for the problem. But, they
do not report any experimental evaluation of their algorithm. There is no avail-
able implementation of their algorithm against which to compare the results of
our experiments. Ahmad and Cetintemel [2] consider the problem of operator
placement to minimize the bandwidth utilized in the network. They assume that
the processing time of the transforms is zero whereas we consider the processing
time of the operators to be nonzero. Thus, the combinatorial structures of our
problem and theirs are quite different. Both [25, 2] consider only static version in
which all the source-destination pairs are known prior to placement. They do not
consider the dynamic version in which only the sources are known apriori and
the clients can subscribe to states after the placement has been carried out. We
give algorithms for both the static as well as dynamic version of the placement
problem. Thus, we contribute significantly to the state of the art in operator
placement for distributed query processing.

2.5 Contributions

We propose an analytical framework based on queueing theory which models
the performance of important relational transforms like select, projects, joins,
sliding window in terms of parameters like input rate, selectivity etc. We extend
the modeling for the case of composition of individual transforms on a network.
Based on this modeling, we develop two new algorithms for efficient deployment.
The first algorithm computes placement to minimize latency of a query using a
novel local search heuristic. The second algorithm computes efficient placement
for dynamic subscription. This problem is modeled as a balanced-k-partition of
the transformation graph and its embedding on the topology graph. We employ
a novel local search heuristic to obtain near-optimal assignments. We experi-
mentally validate our performance modeling as well as demonstrate the efficacy
of our placement algorithms.

3 Performance Models

3.1 Modeling Approach

We use queueing models to describe the behavior of brokers on the topology
graph. We start by modeling the simple relational operators which constitute
building blocks of flows in a transform graph. For each transform, it is necessary
to determine the distribution of its service time per input message, and the dis-
tribution of the “batch sizes” of output messages. The batch sizes are significant,
since some transforms (such as SELECT) might absorb some messages without
generating new messages (a batch size of zero), and other transforms (such as
JOIN) might absorb a message and transmit multiple messages.

3.2 Relational SELECT

The select transform in a stream processing system acts as a filter. It tests
every arriving event for a logical predicate and passes it through if the predicate
is satisfied. From the performance perspective we need to analyze the service
time of the transform and its departure process. Although a select predicate
represented in a conjuctive normal form, could take varying amount of processing
time, in most applications, the time consumed is assumed to be a constant
dominated by the access time for different fields of the record. In our modeling,
we assume that the service time is approximately constant, and the batch size
is distributed as a random variable, either 0, or 1, whose mean, a measured
parameter %, corresponds to the selectivity of the transform.

3.3 Sliding Window

We model every stream as a mapping of discrete ticks to “silences”, “events”,
or “unknown” values. The sliding window transform operates on a stream I
and considers only its W most recent events. The output of a sliding window

transform is another stream O except that in this case, a silence can mean either
no-event or a tick that is “old” (that is there are more than W later ticks known).

We exploit the fact that, every stream can be maintained by a time horizon

h, such that for i ≤ h, tick i maps to either an event or a silence and for every
i > h, it maps to unknown, representing the fact that the events are received
in order 2. Messages updating I correspond to new events, and contain the tick
number m of the new event, and the range of preceding silent ticks (so that lost
or out-of-order messages can be detected; ideally range should be [h+1, m−1]).
When an event is received, it is recorded in the list, and the horizon is advanced
from h to m. Thus, it generates one update event in the output stream and
upto m− h “anti-events” to eject the events from the earliest m− h ticks in the
current window.

We consider the case where the events arrive by a stochastic process. Clearly,
the output distribution matches the input distribution. What we need to anal-
yse more carefully is the batch size. Suppose the probability distribution func-
tion(pdf) W1(t) models the probability waiting for t ticks for the first event.
Similarly, suppose p(k, t) gives the probability of exactly k events occurring in
t ticks. When an event occurs after t ticks, we generate one output update and
anti-events for the events recorded in the t earliest ticks. We can derive the prob-
ability of generating k anti-events and hence, a batch size of k + 1 as follows:

Pk =

∫ ∞

0

W1(t)p(k, t)dt

Given the set of Pk, one can derive the moments M1 and M2 as M1 =
∑∞

k=0 kPk

and M2 =
∑∞

k=0 k2Pk, where the mean M1 and the variance v = M2 − M1
2.

The expected batch size is then 1 + M1.
In particular, for a Poisson process with an arrival rate of λ, we know that

p(k, t) = (λt)ke−λt/k! and W1(t) = λe−λt. Simple substitution steps show that
Pk = 2−1−k. One can also verify that M1 = 1 and M2 = 3, thus yielding an
expected batch size of 2 with a variance of 2.

3.4 Relational JOIN

One of the key transforms in a stream processing systems is the relational JOIN.
Stream joins are widely used for specifying correlations and operating on more
than one stream at a time, for example matching buy offers and sell offers that
match in issue and price.

We consider the streaming version of the double-hash join. To compute
J(R1, R2) it maintains two hash tables H1 and H2 corresponding to R1 and
R2 respectively. As the tuples of the two relations continue to arrive indefinitely,
the two phases of the join algorithm are executed for every tuple that arrives.
For example, a new tuple r arriving to R1 is first hashed in H1 and then imme-
diately probed against H2. As a result, the streaming join continuously produces

2 The above description is a simplification of the actual implementation, which allows
for the possibility that event messages can either be lost or can arrive out of order.

rows in response to changes to its input relations R1 and R2 to complete the
join result R1 ./ R2. We assume that over long time periods, the state needed
for each transform is kept in main memory and will not grow without bounds.
In practice, this assumption is either valid or can be enforced via mechanisms
like short windows, expiration time etc.

Transform Parameters: Let J(Ri, Rj) be a join transform and let p(v ∈
Ri) be the probability mass function (pmf) of the distribution of values in rela-
tion Ri with respect to the join predicate of J . Let zi, zj ∈ N+ be the number
of tuples available for joining for the relations Ri and Rj respectively. While
p(v ∈ Ri) and p(v ∈ Rj) and zi, zj can be different, for simplicity of exposition
and without loss of generality, we will assume that the pmf’s and the window
sizes are respectively the same for both relations and refer to them simply as p
and z respectively.

Now for a given tuple v ∈ Ri the number of tuples matched in Rj is then:

m(v) : Ri → R
+ = z ∗ p(v)

From this we can define selectivity of J(Ri, Rj), as the probability density
function of the number of tuples matched N by a new event as:

%(n) =
∑

n=m(v)

p(v)

where n is a value of N . The random variable N and its probability distribution
%(N) are key to characterizing the service time and the output batch size.

Mapping to Performance Parameters: Suppose that the amount of pro-
cessing work required by the stream join is c (cycles/tuple) for a tuple that
matches exactly one tuple in the target table (which is a special case when the
join is performed on the key column of the target table). Then, it would require
k ∗ c cycles if the tuple matched k tuples on the target table. This includes the
hashing of the tuple, the lookup cost, the retrieval and return of the k matched
tuples.

Using our definition of selectivity one evaluation (processing one incoming
tuple event) of stream join J requires C = N · c cycles. Furthermore, when this

join is deployed on a single processor machine β with speed β̂ cycles/(unit time),
its service time would be described by:

D =
C

β̂
=

N ∗ c

β̂
(time) (1)

Now D is a random variable describing the service time of join J . As expected,
it is a function of only the original distribution of values in the joined relations
p, the window size z, cost c and processor speed β̂. Its mean and variance are as
follows:

E[D] = c
bβ

E[N]

σ2[D] = c2

bβ2
σ2[N]

(2)

Using this terminology, the service rate of join J is just 1
E[D] joins/sec and the

batch size is essentially N . As mentioned earlier, when the pdf’s, window sizes or
single-tuple costs are different for the relations being joined, then the calculations
above can be carried out separately for each join relation.

4 Flow Performance Model

Using the performance models developed in 3, we can characterize the perfor-
mance of execution modules inside a broker and eventually, the performance of
a query deployment on the topology graph.

As described earlier each broker hosts a subgraph of the complete transform
graph. As shown in Figure 1 the subgraph can consist of a number of logically
unrelated segments of various flows. In order to characterize the performance
of the broker using a queueing model we need to estimate: 1) the Mean service
time (1

µ
) 2) Service time Variance (σ2

s) and the 3) interarrival and interdeparture

time Variances (σ2
a, σ2

d). Of course, we will have a mean of the arrival rate (λ).

4.1 Service Time

Let F be the set of flows in a broker. Let f ∈ F be a flow that consists of a tree (as
the transform graph network is feed-forward) of transforms T = {t1, .., tn}. The
transforms ti will be executed in a scheduler-dependent order. The scheduling
strategy can also change dynamically and non-uniformly across the network. We
assume that there is a serialization of the transforms on a single broker.

The service time of the flow is, of course, the sum of the service times of
the transforms, however, some transforms will need to be executed more than
once if their ancestors in the execution sequence produced more than one event.
We call this the intra-batching effect, which has a very important ramification:
many events can be leaving a flow in response to a single incoming event and
their number and distribution depends on the batch sizes produced within the
flow. Considering this, we define service time as follows.

Definition 1. The Service time Df of a flow f ∈ F is the total amount of time

the server is occupied due to an incoming event arriving at f .

In the special case, when the output batch sizes of each transform in the flow
is exactly 1, the difference in the departure and arrival times for a given event
would be the traditional service time for that event.

Formalizing this definition, let θi ⊆ Q be the set of transforms in the path
from transform ti to the root transform t1 (the entry transform for events in this
flow), with θ1 = {}. Then, if Bj is the batch size of the transform tj ,

Df =
∑

i

Di

∏

j|tj∈θi

Bj (3)

The exact execution order for a flow will depend on the broker implementation,

t
1

t
3

t
2

t
4

t
5

Fig. 2. A flow in a broker

the hardware and operating system scheduler where the flow would be deployed.
However, all of these factors will only change the departure process distribution,
but not the total number of computing cycles given by Df .

Computing Service Time Means and Moments: Using equation 3 we
can immediately estimate Df by adding and multiplying the expected values of
the individual transforms’ service times (according to the flow structure using θi).
If the service times and batch sizes are independently distributed, the variance
can be computed using the Goodman’s formula [12] as follows:

σ(X ∗ Y) = E(x)2σ(Y) + E(Y)2σ(X) + σ(X)σ(Y)

The E(Df) and its variance σ(Df) are immediately useful in the M/G/1 and
G/G/1 models as will be shown ahead.

Service Time Distribution: If the information about the transform service
time distribution allows it, we can also derive the complete pdf for Df . This can
be used to determine a queueing model which gives a good approximation.

If the service times of the transforms in the flow can be considered indepen-
dent, then one can compute φf (df), the probability density of flow service time
Df , by convolving the summands, using Laplace or Fourier transforms on the
pdfs of the summands to convert to the frequency domain and multiplying the
resulting functions. If the service times are dependent for some transforms, then
the pdf of their sum can be found using the joint pdf of their service times.

For the product terms one can use the methods in [22] [11], namely the pdf
of V = XY , where X and Y are two random variables, is

fv(ν) =

∫ ∞

−∞

fX,Y (x,
ν

x
)

1

|x|
dx

where fX,Y is the joint pdf. If X and Y are independent, the one can use a
shortcut of finding the pdfs of ln X and ln Y , and converting the product into a
convolvable sum using the following:

n∏

i=1

xi = exp

n∑

i=1

ln xi (4)

where xi are random variables for 1 ≤ i ≤ n, and then performing a transfor-
mation of variables to get the resulting pdf of the product.

4.2 Departure Distribution

Note that, for the messages leaving broker, the delay across the communication
link is significantly larger than the offsets caused by departure distribution. Thus,
when messages leaving a broker arrive at another broker,what matters most is
their arrival rate rather than the arrival distribution. So, we focus on capturing
the departure rate at a broker.

If we have the pdf of the service time distribution of a flow as derived in
Section 4.1, we can construct a corresponding density function for the departure
process. Let af (t) be the pdf of inter-arrival times Ta for some flow f in broker
β. Let Sf (t) be the cdf of the service time of the flow. The cdf CTf (t) of the
inter-departure time random variable Tf can be estimated [13] as:

CTf (t) = ρSf (t) + (1 − ρ)

∫ t

0

Sf (t − u)a(u)du

where ρ =
∑

f (
λf

µf
), the broker utilization due to all flows. For each transform

ti whose outputs leave the broker, that transform will emit a batch of events of
size Xi, each time an event arrives at the root of its flow, where:

X(i) =
∏

j|tj∈θi

Bj (5)

Therefore, the outgoing event rate Ni (in events per unit time) at transform ti
is Ni = Xi

Tf
, whose distribution φN we can be readily computed using the same

log expansion approach as in equation (4).
If we do not have either the interarrival or the service time distributions, we

can approximate the departures using:

c2
d = 1 + (1 − ρ2)(c2

a − 1) + ρ2(max(c2
s , 0.2)− 1)

where c2
d is the coefficient of variance for the departure distribution, while the

departure rate is the arrival rate λ ∗ Xi. However, note that the approximation
for c2

d is likely to be sensitive to the transform evaluation schedule on the broker.

5 Complete Broker Model

To model the complete broker with multiple incoming streams and multiple flows
we propose using the aggregation / disaggregation approach due to Whitt [28].
The basic idea of the approach is to first aggregate the input streams into a
single stream and pretend that all the transform flows behave as one server.
Then, compute the marginal metrics for the individual flows from the combined
result. The formula for aggregation applicable in our case is:

µ̂ =
λ̂

∑
f (

λf

µf
)
; ĉ2

s =
µ̂2

λ̂

∑

f

λf

µ2
f

(c2
sf

+ 1)

− 1 (6)

where µf = 1/Df , the service rate for flow f and λf is its input rate. c2
sf

≡

σ(Df)/E[Df]2 is the squared coefficient of variance for flow service time.
If the combined input stream distribution is known to be Poisson, then one

can directly use the Pollaczek-Khintchine(PK) formula [13] for M/G/1 using
the service time and variance derived in the previous section. In this case, the
aggregate λ̂ is the sum of the expected values of the individual flow input rates.
For other cases we have to assume a general distribution for arrivals, for which
we use second Whitt’s [28] formula:

ĉ2
a = (1 − w) + w

∑

f

c2
af

λf

λ̂

 (7)

w = [1 + 4(1 − ρ)2(v − 1)]−1 (8)

v =

∑

f

(
λf

λ̂
)2

−1

(9)

where c2
af

is the coefficient of variance for the flow f and ρ = λ̂/µ̂.

We can now use these to compute the expected queue wait via a G/G/1
approximation due to Marchal[20]:

Wq =

(
ρ

1 − ρ

)(
ĉ2
a + ĉ2

s

2

)(
1

µ̂

)
(10)

This can be used to compute the expected latency Wf of a flow f through a
broker by adding its expected service time to its queueing delay:

Wf = Wq + 1/µf (11)

In summary, if the service time for each flow is predicted correctly we can
use existing machinery for estimating system performance. For the delay across
network links, we model it in the standard way in terms of the batch sizes of
all the operators communicating over that link and the available bandwidth on
the link. This means that the first few flows placed on a link have to account for
additional flows that may come later.

6 Placement for end-to-end delay minimization

In this section, we consider the placement for end-to-end delay minimization. We
consider a scenario in which a transform graph has to be deployed on a topology
graph and the locations of both the producers and the consumers is known.
The goal is to minimize the average time required for an event originating at a
producer to reach its destined consumer. Both the service time for the transforms
on the brokers they are placed in, and the latency across communication links
have to be taken into account in the end-to-end delay. Let stob denote the actual

service time of operator o on a broker b. Let G denote the topology graph and Q
denote the transform graph. Suppose π denotes the assignment of the trasforms
to the brokers, the end-to-end delay is given by

∑
b∈V

∑
o∈O:π(o)=b sob +

∑
(o,o′)∈Q bs(oi) · PL(π(o), π(o′))

where bs(oi) denotes the actual batch size of oi and PL(b, b′) denotes the actual
delay on the shortest path between brokers b and b′. We would like to com-
pute an assignment π with minimum end-to-end delay. As it is not possible to
obtain actual statistics even before placement, we optimize with respect to the
performance models developed in the previous sections.

Our design of the placement algorithm is based on the following simple ob-
servation. Consider a transform graph of depath two, i.e, the producers and the
consumers are separated by a relational transform. In such a case, the producers
and the consumers are the fixed points of the placement. The middle level of
relational transforms have to be placed in the network to minimize the total
latency, i.e, the sum of processing times, and network delays. We consider a
formulation of this special case to motivate our algorithm design.

Let the transform graph be Q. As always, let P denote the set of producers,
and C denote the set of consumers. Let M denote the set of operators in the
middle layer. It is easy to see that the placement problem is essentially that
of deciding the set of operators to be installed at every broker in the network.
Let so,b denote the service time of operator o on a broker b. Let π denote the
assignment function of operators to the brokers. Let dc,b denote the delay in-
volved in a fixed point c ∈ P ∪C either sending an event update to or receiving
an event update from, an operator installed at broker b. Let φ(c, b) denote a
boolean function which is true if there is an operator installed at b which the
fixed point c needs to contact for update. The placement problem is to compute
an assignment π which minimizes:

∑

b∈V

∑

o:π(o)=b

so,b +
∑

c∈P∪C

∑

b∈V

φ(c, b)dc,b

The first component of the above objective function can be thought of as the
cost of setting up operator “facilities” in the network and the second component
can be thought of as the cost of fixed points reaching the facilities. In fact, this
formulation (overlooking minor details), is that of the facility location problem
discussed in [24]. The case of general transform graph can similarly be modeled as
a generalization of the above problem called Facility location with Hierarchical
costs [26]. It is well known that local search is perhaps the best approxima-
tion algorithm for facility location problem involving capacities [17, 4, 30, 10, 26].
This is the motivation for us to choose local search heuristic for the placement
problem. Instead of the complex, exponential sized neighborhoods considered in
classical approximation algorithms, we consider simple local operations for fast
evaluations. Our experiments show that on practical instances, we still obtain
high-quality placements.

1. For every operator o ∈ Q \ FX do,
let b be a randomly chosen broker in V . π(o) = b.

2. improveCond = true;
3. While improveCond do,

contCond = true;
for all b ∈ V and while (contCond = true) do,

Lst = list of all operators assigned to b

for all o in Lst and while (contCond = true) do,
π′ = π; π′(o) = a randomly chosen neighbor of b;
If cost(π′) < cost(π)

π = π′; contCond = fasle;
endIf

endfor
endfor

endWhile
4. return π.

Fig. 3. Placement Algorithm

We consider the simple local search heuristic for placement described in Fig-
ure 3. The function cost in this algorithm includes the total service time of the
operators and the communication delays. It conducts a simple local search on
the search space of all possible assignments. We include elements of randomness
in the starting point as well as the improvement neighbor for better exploration
of the search space. It is a standard technique in local search and can be modified
to include restarts and jump-outs of local minima. The approximation guaran-
tees of [30, 10, 26] give plausible explanations for the high quality assignments
computed by our algorithm.

7 Placement for Dynamic Subscriptions

The SMILE platform supports the following scenario. Consider a popular query
Qpop which a service provider would like to install in the system to which the
subscriptions can be attached at any location of the network on a dynamic basis.
In general, the service provider would like to support many useful views repre-
sented in the form of a large transform graph and might prefer to place it on a
small subgraph of his network. Thus, when the assignment is being computed,
only the list of producers is available. In such a scenario, no meaningful estimate
of end-to-end delay can be formulated. So, we consider placing the transform
graph such that, the load on the brokers is roughly balanced and the communi-
cation across the network to evaluate the query ignoring the future subscriptions
is minimized. In this case, we make an assumption that the number of operators
in the transform graph is more than the number of brokers in the topology graph
denoted by k. Dynamic subscriptions can be used to support applications like
portfolio tracking of a large number of portfolios.

We relate the placement for dynamic subscription to that of embedding of
a minimum cost k-balanced graph partition [3] of the transform graph on to the
topology graph. The load balancing requirement implies that we need to compute
a k-balanced partitioning of the trasnform graph. Consider two operators oi and
oj which are connected by an edge in the transform graph and which are placed
in two different brokers π(oi) and π(oj). The communication load on the network
due to embedding of this edge on the topology graph is given by exp bs[oi] ·
distG(π(oi), π(oj) where distG denotes the distance on the topology graph. The
optimal load balanced placement is that embedding of a k-balanced partitioning
whose load on the topology graph is minimum. We adapt the popular local search
based heuristic for the balanced graph partitioning algorithm considered in [16,
9] to compute locally minimum k-balanced partition embeddings. It is easy to see
that every iteration can be implemented very efficiently when the local operation
is that of exchanging the partitions of the end-points of every cut edge (this is
necessary to maintain k-balancedness). Thus, we start with a random k-balanced
partition. At each step, we consider local moves of exchanging the partitions of
end-points of every cut-edge. If there is an exchange which improves the quality,
we make that move. We terminate no such exchange improves the quality of the
embedded partition.

8 Experimental Results

DISTRIBUTED SMILE RUNTIME

Java application
producing a base
relation

Java application
producing a base
relation

Java application
producing a base
relation

Java application
subscribing to a
view of the query

Java application
subscribing to a
view of the query

Java application
subscribing to a
view of the query

Fig. 4. Experimental Environment

In this section, we present the experimental evaluation of our modeling and
algorithms on the SMILE system. Our experimental set-up is as shown in Fig-
ure 4. A set of SQL queries required for the experiments are compiled and
deployed on the distributed runtime. Java client applications are used to gen-
erate streams corresponding to different base relations in the deployed system.
Similarly, Java client applications are used to subscribe to the different views
computed by the query deployment. These client applications also contain the
instrumentation to record time stamps for different events in the system. As the
client applications are external to the SMILE system, careful calibration is re-
quired to ensure reasonable accuracy of our experimental evaluation. We begin

by presenting a series of calibration steps to account for the interaction of the
client applications with the SMILE runtime.

The client application needs to establish connection with the runtime and
maitain the connection throughout its execution. We calibrate this interaction
by creating a query with empty transform, i.e, the output view is same as the
input stream. We install the empty transform on a single broker and execute
a client program which generates a stream and subscribes to the output of the
empty transform. Our experiments showed that, per message, this interaction
costs an average 0.241 milliseconds with a standard deviation of 0.006.

When multiple producers are deployed in the system and several views sub-
scribed to, a significant cost is incurred in the execution of the corresponding
client applications. To calibrate the delay thus incurred, we create a query which
has inputs from multiple streams and the output is a set of views which are repli-
cas of the input streams. We observe that the overhead depends on the number
of streams and views (i.e, the number of client applications). We measure the
overhead for n base relations for different values of n. Later, when we conduct
experiment with a real query with x streams and y subscribed views, we ac-
count for the overhead using the measurements for this dummy experiment with
x + y/2 base relations. The table indicating the overhead is as follows.

5 streams 10 streams 15 streams 20 streams

Delay (in ms per msg) 0.37 0.54 0.63 0.76

Fig. 5. Delay observed because different number of client applications

Finally, we have to account for the overheads incurred due to the fact that
the Java application is distributed. Streams can be published from different
brokers and the views can be subscribed to at different brokers. We calibrate
this delay by again considering the empty transform. This time, we deploy the
empty transform query as follows. The stream is produced at the first broker and
the view is subscribed to, at the second broker. Again, over multiple long streams
with different arrival rates, we observed an average delay of 5.346 milliseconds
with a standard deviation of 0.178.

We now present a set of experiments to validate our modeling of the perfor-
mance. The goal of the experiments is to show that the predicted performance of
out models is close to the experimentally observed performance. We present all
the experimental measurements after applying the corrections as indicated by
the calibration carried out above. We first measure the performance of simple,
one transform networks on a single broker. Specifically, we measure the perfor-
mance of the SELECT, WINDOW, and JOIN transforms. For each of these, we
run experiments with uniform arrival rates, random arrival rates, and poisson
arrival rates. The numbers we present are the average over these distributions
as they did not deviate significantly in our setup. Figure 6 shows the perfor-
mance measures for these transforms. We used a many-to-many join in which

roughly half the messages of the two streams joined with each other, thus keeping
transform extremely busy.

SELECT WINDOW 1:1 JOIN Many to Many JOIN

Time 0.035 0.063 0.054 0.285

Fig. 6. Performance Numbers of different operators

We now consider some queries, whose transformation network we know apri-
ori. Specifically, we consider two queries, one with depth three and other with
depth five (shown in Fig. 9). We measure the end-to-end latency for these queries
on one broker. We then compute the predicted end-to-end delay by the analytical
model. Our experiments show that the predicted delay is close to the observed
delay. Observe that the long delay in case of Q2 is due to the presence of many-
to-many joins.

Q1 Q2

Predicted Delay (per event) 0.485 0.96

Observed Delay (per event) 0.569 1.13

Fig. 7. Experimental measurement of composed queries

We now present the performance of our placement algorithm and compare it
with a greedy heuristic. We have experimented with queries which have 15 trans-
forms and topologies with 3 and 4 brokers. Here, we present the experimental
evaluation of the algorithms for the dynamic subscription with the restriction
that the load should be evenly distributed. We compare our algorithm with the
following intuitive greedy algorithm. It considers every producer to consumer
(subscribed view) pair and places it greedily in a load balancing manner (i.e, at
every step, load is roughly balanced). We present experimental numbers when
the messages are generated at different rates (Figure 8). We observed that, some-
times, the high message rates resulted in slightly higher delays than expected.
The performance of an algorithm suffers a lot when the output of a transform
which generates a large number of messages is input to a transform placed on a
different broker. This happened more frequently with the greedy when the num-
ber of brokers was 3. However, a consistent trend is that, our algorithm always
outperforms the greedy.

To qualitatively illutstrate why our placement performs better than greedy,
we present the placement computed for the transform network Q shown in Fig-
ure 9. In this figure Pr indicates a producer, S indicates a select operator, P
indicates a project operator, W indicates a window operator, A indicates an
aggregate operator, and J indicates a join operator. In particular, J1 and J2 are

100 msgs/sec 10 msgs/sec 1 msg/sec

Greedy on 3 Brokers 36.329 ms 28.927 ms 25.41ms

Our Algorithm (sec. 7) on 3 brokers 11.42ms 9.81ms 6.832ms

Greedy on 4 Brokers 34.29ms 33.137ms 32.528ms

Our Algorithm (Sec. 7) on 4 brokers 28.821ms 23.204ms 21.376ms

Fig. 8. Experimental evaluation of greedy and our algorithm

many-to-many joins. On a four broker network, Figure 10 shows the placement
computed by the greedy and our algorithm. In both the experiments, the pro-
ducers were available where the corresponding transforms S1. . .S5 were placed.
Suppose, we consider the number of edges that cross brokers as an indication of
expected delay, Greedy has 11 crossing edges, our algorithm has only 5 crossing
edges. As explained in Section 7, in the dynamic subscription, we would like to
embed a balanced partitioning of the transform graph on the topology graph
such that the size of cut implied by the embedding is minimum. This pictorial
illustation shows that our algorithm seems to achieve such an objective.

Q

S1

P1 A1

W1

J1
J2

J3

A2

S2

Pr5Pr4Pr3Pr2Pr1

W3P2

W2

S3 S4 S5

Q2
Q1

Fig. 9. Query Network

Placement S1 S2 S3 S4 S5 P1 P2 W1 W2 W3 J1 J2 A1 A2 J3

Greedy 4 3 4 1 2 4 3 3 2 1 2 3 1 4 1

Our Algorithm 2 4 3 3 1 2 4 2 4 3 1 1 2 2 4

Fig. 10. Placement computed by Greedy and our algorithm

One of the limitations of our experimentation is the small size of the broker
networks (and hence, moderate sized queries). In simulations with large task
graphs and topology graphs, we have observed that our algorithms do well for
both the static and dynamic subscriptions. In certain cases we output solutions
which are order of magnitudes better than those produced by the greedy ap-
proach. In our future work, we aim to validate this by carrying out experiments

on large broker networks and compare the performance of our algorithm with
those presented in [25, 2].

9 Conclusion and Future Work

In this paper, we considered issues related to the performance modeling and
placing an operator tree on a distributed network to optimize efficiency measures
such as latency. Experiments show that our performance modeling is reasonably
accurate and local search based optimizations work well in practice. An impor-
tant problem in distributed query processing is, how different scheduling policies
inside a broker affect end-to-end latency and if they necessitate new algorithms.
Prior work and our work address the problem of placement to optimize the ef-
ficiency of a single query. Although multiquery optimization is well studied in
the traditional databses, it has not been addressed in the context of distributed
stream processing. In our future work, we plan to extend the SMILE framework
for multiquery optimization as well.

References

1. D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik. Aurora: A new model and architecture for data
stream management. VLDB Journal, 2003.

2. Y. Ahmad and U. Cetintemel. Network aware query processing for stream based
applications. In Proceedings of Very Large Data Bases (VLDB), 2004.

3. K. Andreev and H. Räcke. Balanced graph partitioning. In ACM Symposium on
Parallel Algorithms and Architectures(SPAA), pages 120–124, 2004.

4. V. Arya, N. Garg, R. Khandekar, V. Pandit, A. Meyerson, and K. Munagala.
Local search heuristics for k-median, and facility location problems. Siam Journal
of Computing, 33:544–562, 2004.

5. R. Avnur and J. Hellerstein. Eddies: continuously adaptive query processing. pages
261–272, 2000.

6. B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation queries
over data streams. 20th International Conference on Data Engineering, 2004.

7. S. Chandrasekaran and M. Franklin. Streaming queries over streaming data, 2002.
8. J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: a scalable continuous

query system for Internet databases. pages 379–390, 2000.
9. C. Fiduccia and R. Mattheyses. A linear time heuristic for improving network

partitions. In Proceedings of the 19th IEEE Design Automation Conference, 1982.
10. N. Garg, R. Khandekar, and V. Pandit. Improved approximation for the universal

facility location. In Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms, January 2005.

11. A. Glen, L. Leemis, and J. Drew. Computing the distribution of the product of two
continuous random variables. Computational Statistics and Data Analysis, 2002.

12. L. Goodman. On the exact variance of products. Journal of the American Statis-
tical Association, (55):708–713, 1960.

13. D. Gross and C. Harris. Fundamentals of queueing theory. Wiley and Sons, 3rd
edition, 1998.

14. H. Hsiao, M. Chen, and P. Yu. On parallel execution of multiple pipelined hash
joins. pages 185–196, 1994.

15. Y. Jin and R. Strom. Relational subscription middleware for internet-scale publish-
subscribe. In DEBS, 2003.

16. B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal, 49(2):291–307, 1970.

17. M. Korupolu, C. Plaxton, and R. Rajaraman. Analysis of a local search heuris-
tic for facility location problems. In Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, 1998.

18. M. Lo, M. Chen, C. Ravishankar, and P. Yu. On optimal processor allocation to
support pipelined hash joins. pages 69–78, 1993.

19. S. Madden, M. Shah, J. Hellerstein, and V. Raman. Continuously adaptive con-
tinuous queries over streams. In SIGMOD Conference, 2002.

20. W. Marchal. Some simpler bounds on the mean queueing time. Operations Re-
search, 22:1083–1088, 1978.

21. R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku,
C. Olston, J. Rosenstein, and R. Varma. Query processing, resource management,
and approximation in a data stream management system. Proc. of the 1st Biennial
Conference on Innovative Data Systems Research, 2003.

22. V. Rohtagi. An introduction to probability theory and mathematical statistics. Wi-
ley Series in Probability and Statistics, 1976.

23. R.Strom. Extending a content based publish-subscribe system with relational sub-
scriptions. Technical report, IBM Research Report, 2003.

24. D. Shmoys, C. Swamy, and R. Levi. Facility location with service installation cost.
In Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms, 2004.

25. U. Srivastava, K. Munagala, and J. Widom. Operator placement for in-network
stream query processing. In Proceedings of ACM Symposium on Principles of
Database Systems (PODS), 2005.

26. Z. Svitkina and E. Tardos. Facility location with hierarchical facility costs. In
Proccedings of the 17th ACM-SIAM Symposium on Discrete Algorithms, 2006.

27. D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over append-
only databases. In Proceedings of the 1992 ACM SIGMOD international conference
on Management of data, pages 321–330. ACM Press, 1992.

28. W. Whitt. The queuing network analyzer. Bell Systems Technical Journal,
66:2779–2813, 1983.

29. Y. Xing, S. Zdonik, and J. Hwang. Dynamic load distribution in the borealis
stream processor. In In Proceedings of Internation Conference on Data Engineering
(ICDE), 2005.

30. J. Zhang, B. Chen, and Y. Ye. Multi-exchange local search algorithm for ca-
pacitated facility location problem. In Proceedings of Integer Programming and
Combinatorial Optimization (IPCO), 2004.

