
RI08006 17 April 2008 Computer Science

IBM Research Report

Planning with Communicating Automata

Jana Koehler
IBM Zurich Research Laboratory
CH-8803 Rüschlikon, Switzerland

Biplav Srivastava
IBM India Research Laboratory
4, Block - C, Institutional Area

Vasant Kunj, New Delhi - 110 070, India.

IBM Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will proba-
bly be copyrighted is accepted for publication. It has been issued as a Research Report for early dissemination of its contents.
In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be
limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints
or legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T.J. Watson Re-
search Center, Publications, P.O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports
are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

Planning with Communicating Automata∗

Jana Koehler
IBM Zurich Research Laboratory
CH-8803 Rüschlikon, Switzerland

koe@zurich.ibm.com

Biplav Srivastava
IBM India Research Laboratory
4, Block - C, Institutional Area

Vasant Kunj, New Delhi - 110 070, India
sbiplav@in.ibm.com

Abstract

Until today, planning operators are mostly considered
as atomic transitions that change the value of boolean
or numeric state variables. This remains also true if
nondeterministic effects are added to operator descrip-
tions. Solely, the compound tasks used in HTN plan-
ners encapsulate more complex behavior, but it is dif-
ficult to model nondeterminism and iterations using
HTN representations. In many real-world applications
however, in particular in technical environments such
as hardware and software systems (for example net-
works, server farms, or embedded controllers), more
expressive planning operators that encapsulate nonde-
terministic and iterative behavior are needed.

In this paper, we propose to use nondeterministic com-
municating automata as the operators for a planning
system. We show how to model such operators, de-
fine the planning problem with communicating au-
tomata and present a first, preliminary planner involv-
ing model checking techniques.

Introduction

Many real-world planning applications are currently
emerging from the need to equip complex technical sys-
tems with more flexibility allowing deliberative and re-
active behavior. A typical example is the planning and
distributed execution of application systems based on
web services. A web service as it is defined in WSDL,
the Web Services Definition language (Christensen et al.
2001) encapsulates a particular piece of software that
can be invoked via the Internet. WSDL is an XML-
based language used to specify the location of the web
service and the operations (or methods) that it exposes.
A web service is characterized by port type, an element
that specifies the operations and messages involved in
interacting with the web service. Four types of com-
munication are defined involving a service’s operation
(endpoint):

• One-way: The endpoint receives a message.

• Request-response: The endpoint receives a message,
and sends a correlated message.

∗This manuscript was last edited in Nov 2002.

• Solicit-response: The endpoint sends a message, and
receives a correlated message.

• Notification: The endpoint sends a message.

A WSDL message element defines the data elements
of an operation. Each message can consist of one or
more parts. The parts can be compared to the parame-
ters of a function call in a traditional programming lan-
guage. The binding element defines the message format
and protocol details for each port. XML Schema syntax
is used to define platform independent data types.

In a nutshell, a WSDL specification only tells us
something about the syntax of messages that enter or
leave a computer program. Today, the interaction with
a web service is very limited in the sense that only sin-
gle send and receive operations on messages are spec-
ified in WSDL. One can, however, imagine that this
limitation opens up and allows to use web services to
implement entire processes that receive different mes-
sages and return other messages. The functionality of
those services needs to be described with some addi-
tional piece of information, either by some semantic
annotation of what it does and/or by some functional
annotation, how it behaves. Semantic annotations have
been widely discussed in the semantic web community.
By using pre-agreed ontologies, the meaning of the mes-
sages to be exchanged can be understood. To enable
the semantic-based composition of services in order to
support business-to-business or enterprise application
integration, using ontologies is not enough. It is often
assumed that a business process or application is asso-
ciated with some explicit business goal definition that
can guide a composition tool to select the right service
(McIlraith & Son 2002). Unfortunately, we found that
this is usually not the case. A business process model
usually describes the processing of persistent data ob-
jects that can be created at runtime by some application
system or a human user. The real “goal” of a business
process can hardly be captured in such a model, but
often remains implicit. However, a more practical goal
of a business process is the correct handling or creation
of data documents.

We can see services as the operators in a plan that en-
capsulate some behavior, but this behavior differs from

what we find in PDDL operators (McDermott 2000). A
functional annotation of a non-trivial service that goes
beyond WSDL has to add some elementary information
about the specific input-output behavior that occurs,
i.e., in which order the ports become active and either
wait for messages to arrive or in which order they will
send messages. This behavior cannot be specified with
sequences of actions, but requires loops, branching and
nondeterminism.

Consequently, in this paper, we investigate how the
functional annotation in form of a communicating non-
deterministic automaton can support the automatic
composition of services with a planning system. We
found that modeling planning operators as commu-
nicating nondeterministic automata yields a powerful
planning representation formalism that is applicable to
many other planning problems we find in complex tech-
nical systems. Such a formalism has quite a number of
interesting features:

• we obtain a very compact representation of quite
complex behavior,

• allowing more than atomic state transitions in an op-
erator supports a flexible decomposition of domains
into planning operators,

• automata theory provides a solid theoretical foun-
dation of this planning approach and provides
many techniques that are helpful when developing
automata-based planning and domain-analyzing sys-
tems,

• by considering special types of automata, we can ei-
ther obtain tractable special cases, e.g., in the case
of finite-state machines, or model complex planning
problems involving durative actions, e.g., by using
timed automata.

The paper is organized as follows: In the next section,
we review the well-known trip planning scenario1 from
the perspective of synthesizing a network of communi-
cating processes. Then we discuss the structure of plan-
ning operators based on automata and we define the
associated planning problem more formally. The sec-
ond part of the paper discusses a first prototype of our
planner based on Promela/SPIN (Holzmann 1991) and
introduces the dimensions along which different classes
of automata-based planning problems can be defined.
We conclude with a review of related work, an outline
of other potential application areas, and the many ques-
tions that remain to be investigated.

An example Scenario

To explain the problem and discuss our solution, we dis-
cuss an example scenario of booking travel packages in a
travel agency. Let us consider the evolution of this sce-
nario from a simple, closed-world process to a dynamic,
integrated solution. In the simple, closed-world travel
agency, a customer talks to the travel agent who notes

1See also http://www.w3.org/2002/04/17-ws-usecase.

the customer’s requests and generates a tripReserva-
tionRequest document that may contain several needed
flight and hotel reservations. The travel agent performs
all bookings and when he is done, he puts the tripReser-
vationRequest either into the cancelledRequests or the
completedRequests repository, see Figure 1.

Figure 1: The closed-world travel agency.

Let us assume that our travel agency wants to cooper-
ate with external specialized service providers that offer
hotel and flight reservations, see Figure 2. This cooper-
ation will require to reorganize the entire processing of
customer requests. New services have to be integrated
and all services must correctly interact with each other.

Figure 2: The open-world travel agency. Black solid
lines show the transfer of reservation request data ob-
jects between the various operations in the process,
while gray dashed lines show the sending of notifica-
tion messages.

In this new process, upon receiving the customer or-
der, the travel agent will still create a tripReservation-
Request. We cannot of course know, what a customer
desires, and we also want to implement a system that
works for any customer request. In any case, some in-
dividual flight and hotel requests will result that are
sent to the specialized service agencies. The tripReser-
vationRequest is put into a pendingRequests repository

where the document is accessible by the specialized
services. The hotel and flight reservation services get
triggered by the individual hotelRequests and flightRe-
quests. Each of them works independently and tries
to book the desired reservations. A reservation that
is completed is put into a repository by the service.
Although both services work independently, there is
the need to coordinate their behavior, since they work
on the same customer request. The coordination is
achieved through updating the status of the pending
tripReservationRequest by each service in case of a suc-
cessful completion or failure. When both services have
been successfully completed, a confirmation service can
put all documents together and inform the customer
about the completed trip plan. If one of the services
fails, a cancellation mechanism should be available that
performs several functions:

• it immediately tells the service providers to stop mak-
ing reservations,

• it makes sure that all completed reservations are can-
celled,

• it informs the travel agent to contact the customer.

In this example scenario, we see properties that are
quite typical for real-world planning scenarios:

• a number of concurrent processes (we could also call
them agents) is up and tries to jointly achieve some
goal,

• the processes partially interleave with each other,
synchronize or run fully independently of each other,

• each process itself is showing a complex behavior,

• certain planned operations may fail and require to
recover from a failed execution.

We are looking for a very general approach that
would allow us to model planning problems resulting
from such a scenario at a very abstract design level.
First, we want to describe the individual activities oc-
curring in the process as our planning operators. Sec-
ond, we want to compose these operators (either by
hand or automatically) to generate a design specifica-
tion of the process from which, in a next step, an im-
plementation can be derived.

As could already be seen from the informal descrip-
tion of the scenario, our planning operators are quite
different from “classical” PDDL style operators. In
particular, they have to encapsulate iterating and non-
deterministic behavior. We want to specify this behav-
ior of each service independently of the others and then
let the planning system explore the possible interactions
within the services and determine their “orchestration”.

Planning Operators as Automata

To illustrate our approach, let us discuss how automata
can model our example scenario. Figure 3 shows the
customer automaton. The customer will start from a

state calling and send a message request.2 Then he will
enter a state waiting, which can only be left if the travel
notification (either positive or negative) is received.

Figure 3: The customer behavior as a simple sequential
automaton.

The behavior of the travel agent (Figure 4) is more
complicated as it involves iteration and nondetermin-
ism. The travel agent starts in the receiving state.
When receiving a request message, he enters the cre-
ateHotelRequests state. There are two nondeterministic
transitions from this state: either by sending a hotel-
Request and returning to the same state or by sending
nothing anymore and entering the createFlightRequests
state. Finally, the agents creates a tripRequest docu-
ment summarizing all information.

Figure 4: The travel agent behavior as an automaton
with cyclic and non-deterministic transitions.

The flightReservation service (Figure 5) waits in the
receiving state for incoming reservation requests or a
cancellation event that will be sent by some cancella-
tion mechanism. When a reservation request arrives,
the service enters the createFlightReservations state and

2We use “!” to denote the sending of a message and “?”
to denote the receiving of a message.

either sends a reservation, a failure event (in case that a
flight reservation failed) or a completion event (in case
it booked all requested reservations). If it receives a
cancellation event, it immediately stops processing.

Figure 5: The behavior of the flight reservation service.

Let us define our planning operators more formally.

Definition 1 A communicating automaton A is a tu-
ple 〈S, M, δ, I, E〉 with S being a finite set of states of
the automaton, M being the set of messages that can
be sent to or received from a communication channel by
A, δ : S × M → 2S is the transition function (which
may be partial), I ∈ S is the initial state of A, E ⊆ S
is the set of end states of A.

We assume that there is a unique initial state, but al-
low multiple end states. Communicating automata ex-
change messages by writing them into or reading them
from communication channels. Each process is mod-
eled by using one automaton only and the channels are
passive communication devices.

Definition 2 A channel is a queue of finite or infinite
capacity that can store messages of a particular data
type.

A message is an ordered set of constants in some data
type, e.g., integers, booleans, strings, XML schemas.
A message could also be a formula over some logical
theory.

Definition 3 A global state is the state of all automata
and the contents of the communication channels.

Definition 4 The planning problem with communicat-
ing automata is given by the tuple 〈A, C, I,G〉 where

• A is a set of automata,

• C is a set of channels, which we currently assume to
be global, i.e., accessible by all automata,

• I is the initial global state with all automata A ∈ A
being in their initial state I and with an initial (pos-
sibly empty) distribution of messages in the channels,

• G is the goal represented as another communicating
automaton AG, which may be empty.

Definition 5 A plan AP solves a planning problem
〈A, C, I,G〉 if and only if AP ⊆ (A ∪ AG), AG ∈ AP

and all automata in AP can execute in I and termi-
nate in an end state under all possible executions.

Note that a plan is a network of communicating au-
tomata that can encapsulate more than a single sequen-
tial behavior.

Our definitions capture the “propositional” variant
of the problem where the set of automata is given and
new instances of an automaton cannot be added to the
search space (similar to the set of ground actions in a
classical planning problem).

We can vary the problem in the sense that the set
of automata must execute and terminate for a set of
different initial message distributions that are sent by
some initialization automaton, by considering different
types of goal formulas, or by allowing automata with
more than just a single initial state. Using automata to
represent goal formulas has been proposed recently in
(Dal-Lago, Pistore, & Traverso 2002), where the au-
thors also address the problem of complex planning
problems in nondeterministic domains. While we make
an explicit use of automata to represent operators and
goals, they define an intermediate goal representation
language from which the automata can be automati-
cally built and consider actions as atomic transitions.

Theorem 1 Planning for communicating automata is
undecidable for unbounded communication channels,
but NP-hard if the channels are bounded.

The results follow immediately from the theorems
proven in (Brand & Zafiropulo 1983) who have proposed
communicating finite-state machines as the foundation
for the specification and verification of communication
protocols. We extend their thoughts here to the prob-
lem of designing dynamic processes.

In the next section, we will present a first represen-
tation of our planning domain using the design spec-
ification language Promela (Holzmann 1991) that has
an automata-theoretic semantics. Promela allows us to
consider the simplest form of automata, namely finite
state machines with designated end states communicat-
ing via bounded channels, i.e., the planning problem is
decidable and a model checking approach can be used
to generate plan.

Designing a planning domain with

Promela

Promela (Holzmann 1991) is a design specification lan-
guage that implements the approach given in (Brand &
Zafiropulo 1983). We briefly review the major features
of the language that are necessary to understand the
code below.

Among the elementary data types are int (for inte-
gers) and chan for communication channels. A channel
has finite capacity and holds messages of a specific type.
For example chan sent = [2] of { int,chan,int } spec-
ifies that the channel named sent can hold up to two

messages being a sequence of an integer and a chan-
nel name followed by an integer. The boundedness of
channels guarantees the finiteness of Promela models.
We can use the first message field as the message type,
e.g., define a constant letter and write letter(5,3) to de-
note a specific letter message.

Processes are specified using the proctype construct.
A process specification contains a sequence of state-
ments that are executed in the order they appear in
the sequence. Basic statements allow to receive and
send messages or perform simple calculations with in-
tegers. A statement can only be executed when it be-
comes executable, which depends on the type of the
statement. A statement of the form < channelname >
? < message > denotes the attempt to read a mes-
sage from a channel. It becomes executable only when
a message of the declared format is contained in the
channel. A statement of the form < channelname >
! < message > denotes the sending of a message to
a channel and becomes executable only if the channel
has enough capacity to hold that message. Important
control statements are branching if . . . fi and loops do
. . . od. Inside a branching or loop construct, alternative
sequences of execution can be specified using the :: op-
erator. The first statement in a “::”-branch is called the
guard, since its executability determines whether the
branch becomes executable or not. Several branches
can be become executable in a state, which results in
nondeterminism of the process.

To use Promela as our preliminary planning repre-
sentation formalism, we begin by defining the message
types that will be sent and the channels that have to
be used to communicate those messages between the
various automata. Each repository in our example be-
comes a global asynchronous communication channel
that holds messages of a particular type and that can
(in principle) be accessed by any automaton.

chan pendingRequests = [CAPACITY] of
{int,int,chan,int,int,int,int,int}

The pendingRequests channel holds messages of the
following structure: tripReservation(id, custId, tStatus,
hStatus, hcount, fStatus, fcount). Each message is of
type tripReservation, contains an identification num-
ber id that denotes the particular customer request we
process, followed by a channel variable custId that de-
fines the return address under which the customer can
be reached. The remaining variables define the sta-
tus of processing the trip request (tstatus), the sta-
tus of processing the associated hotel requests (hsta-
tus), the number of different hotel stays associated with
this customer request (hcount), the status of processing
the flight requests (fstatus) and the number of flights
(fcount).

We add two more channels that store the completed
or cancelled trip requests having the same message
structure:

chan cancelledRequests = [CAPACITY] of
{int,int,chan,int,int,int,int,int}

chan completedRequests = [CAPACITY] of
{int,int,chan,int,int,int,int,int}

Four channels are needed to exchange hotel and flight
requests that have a simpler structure:

chan pendingHotels = [CAPACITY] of
{int,int,int,int};

chan processedHotels = [CAPACITY] of
{int,int,int,int};

/*hotelReservation(id,hcount,hstatus)*/

chan pendingFlights = [CAPACITY] of
{int,int,int,int};

chan processedFlights = [CAPACITY] of
{int,int,int,int};

/*flightReservation(id,fcount,fstatus)*/

Finally we need a communication channel to transfer
hotel and flight requests from the travel agency to the
service providers, set up a channel to send the can-
celEvent that stops one service in case of failure of
the other, and we also need to define a communication
channel between the customer and the travel agency:

chan cancelEvent = [1] of {int}; /*id*/

chan newRequest =[1] of {chan}; /*B2C channel*/

chan pendingHotels = [CAPACITY] of
{int,int,int,int};

chan pendingFlights = [CAPACITY] of
{int,int,int,int};

Now we can define our planning operators as a
Promela process. The customer process uses a local
variable answer to store the result of his trip request
processing. The customer sends his return address (a
local channel under which he wants to be informed) to
the channel that will later be read by the travel agency.
This will initiate a trip reservation process. We do not
make any assumptions about what details else the cus-
tomer communicates about his trip as this will be dif-
ferent for each customer.

proctype customer(){
int answer;
chan result = [1] of {int};
newRequest!result;
result?answer}

The travelAgent process represents the travel agent
creating the tripReservationRequest document from
talking to the customer and preparing a nondeterminis-
tic number of hotel and flight requests that he sends to
the service providers. The status of processing these re-
quests is set to pending. The nondeterministic process
has to respect the capacity of the channels, which is
an artificial restriction that we have to obey due to the
finiteness of Promela models.3

3A Promela process can also create a local channel and
instantiate a new process on that local channel. This would
allow planning operators to not only create new domain ob-
jects in the form of messages, but also to instantiate other

proctype travelAgent(){
int id=1; int fcount=0; int hcount=0;
chan custId;

newRequest?custId;
do
:: nfull(pendingFlights)

-> fcount = fcount+1;
pendingFights!flightReservation(id,fcount,

pending);
:: break
:: full(pendingFlights)

-> break
od;
do
:: nfull(pendingHotels)

-> hcount = hcount+1;
pendingHotels!hotelReservation(id,hcount,

pending);
:: break
:: full(pendingHotels)

-> break
od;
pendingRequests!tripReservation(id,custId

pending,pending,hcount,pending,fcount)}

The flight reservation and hotel reservation services
have an identical structure in our domain model and
we only show the former. The flight reservation service
contains a loop that reads from the pendingFlights chan-
nel unless a message arrives in the cancelEvent channel,
i.e., this channel becomes non empty (“nempty”). The
unless construct in Promela allows us to define priority
events that can interrupt the execution of a process. If
the channel still contains messages, the first message is
read and either this request is added to the processed-
Flights channel with the status updated to complete or
the service cannot complete the reservation and updates
the fstatus variable in the tripReservationRequest from
pending to cancelled. It also keeps some local variables
to count the number of processed reservations. When
the channel contains no more messages and the service
has completed all incoming messages, it updates the
fstatus variable from pending to complete. If a flight
request cannot be completed, the service updates the
status of the tripReservationRequest in the pendingRe-
quests channel from pending to cancelled.

proctype reserveFlight(){
int id,leg,hstatus,hcount,fstatus,

fcount;
int incoming=0; int completed=0;
chan custId;

{do
:: nempty(pendingFlights)

-> pendingFlights?flightReservation(id,leg,
pending);

incoming++;
if

operators (or copies of themselves) during execution. These
are two very interesting features, but they go beyond the
scope of this paper and require further investigation.

:: processedFlights!flightReservation(id,
leg,complete);

completed++;
:: pendingRequests?tripReservation(id,custId,

pending,hstatus,hcount,fstatus,fcount);
pendingRequests!tripReservation(id,custId,

pending,hstatus,hcount,cancelled,fcount)
fi

:: empty(pendingFlights) && incoming == completed
-> pendingRequests?tripReservation(id,custId,

pending,hstatus,hcount,fstatus,fcount);
pendingRequests!tripReservation(id,custId,

pending,hstatus,hcount,complete,fcount);
break

:: empty(pendingFlights) && incoming != completed
-> break

od} unless nempty(cancelEvent)}

The confirmItinerary process listens to the pending-
Requests channel and waits for the hstatus and fstatus
to change to complete. In this case, it can read the
tripReservationRequest message and send it to the com-
pletedRequests channel with tStatus also set to complete.
It also uses the custID channel information and informs
the customer about the completion of his reservation
request.

proctype confirmItinerary(){
int id,hcount,fcount;
chan custId;

pendingRequests?tripReservation(id,custId,
pending,complete,hcount,complete,fcount)

-> completedRequests!tripReservation(id,custId,
omplete,complete,hcount,complete,fcount);

custId!complete}

The cancelItinerary service also watches the pending-
Requests channel, but for either the fstatus or hstatus
variable to change to cancelled. In this case, it first
sends out the request identification number to the can-
celEvent channel to which the services are listening.
Then it cancels all hotel and flight reservations by read-
ing out the reservation messages with status pending
and writing them back with status cancelled. It finally
sends the tripReservationRequest with status cancelled
to the cancelledRequests channel to which the travelA-
gent could be listening in order to become active again
(which we have not modeled here). In our model, it
directly sends a negative notification to the customer.

proctype cancelItinerary(){
int hstatus,fstatus,

id,hcount,fcount,stay,leg;
chan custId;

if
:: pendingRequests?tripReservation(id,custId,

pending,cancelled,hcount,fstatus,fcount)
:: pendingRequest?tripReservation(id,custId,

pending,hstatus,hcount,cancelled,fcount)
fi;
cancelEvent!id;
do
:: processedHotels?hotelReservation(id,

stay,complete);
-> processedHotels!hotelReservation(id,

stay,cancelled);
:: processedHotels?hotelReservation(id,

stay,cancelled)
-> break

:: empty(processedHotels)
-> break

od;
do
:: processedFlights?flightReservation(id,

leg,complete);
-> processedFlights!flightReservation(id,

leg,cancelled);
:: processedFlights?flightReservation(id,

leg,cancelled)
-> break

:: empty(processedFlights)
-> break

od;
cancelledRequests!tripReservation(id,

custId,cancelled);
custId!cancelled}

We have omitted a few details from our representa-
tion that are Promela specific. For example, we used
timeout statements that will allow a process to termi-
nate when no statements are executable anymore. Fur-
thermore, we used atomic constructs to reduce the pos-
sible interleaving of processes and reduce the number
of states in the state space. Of course, alternative rep-
resentations of this domain could also be imagined.

Planning with Automata

Given our planning operators as automata and a set of
communication channels, we now need to specify the
initial distribution of messages in those channels to de-
fine a planning problem. For the moment we consider
the special case that all channels are initially empty
and that we also do not have a specific goal formula to
satisfy. Thus, it remains to select a non-empty subset
of automata that can execute and terminate in an end
state.

We are currently experimenting with a simple search
algorithm that indexes each process by its receive and
send operations, nondeterministically selects an exe-
cutable process and checks whether the resulting set
of automata can terminate in an end state. Figure 6
summarizes our simple, preliminary planner.

The algorithm deals with the “propositional” case of
our planning problem. For this special case, it is sound
and complete when a sound and complete termination
checking procedure is used and all possible subsets in
2A are systematically explored.

In our example, A contains six automata, of which
only the customer automaton is initially executable,
since it is the only one that writes to a communica-
tion channel and does not wait to receive a message.
The customer process can execute and send its mes-
sage. However, it cannot terminate since it waits to
receive a message. Thus, our search algorithm needs

plan(A, C, I, AG)
AP = AG

do
determine subset A′ of executable automata
if A′ = ∅

then backtrack over previous choices,
return failure if no such choice exist

else
nondeterministically select an A ∈ A′

if AP = AP ∪ A terminate in end states
then return AP , break
else continue

fi
fi

od

Figure 6: A preliminary planning algorithm.

to select another process that could provide that mes-
sage to the channel the customer listens to. The cus-
tomer can receive the required message either from the
confirmItinerary or cancelItinerary process. Here, the
search algorithm encounters a choice point, but none
of the processes is executable. Only after adding the
travelAgent process and both reservation services, the
confirmItinerary or cancelItinerary process can execute.
If only one of these two automata is added, the cus-
tomer automaton can terminate, but not in all possible
execution traces of the reserveFlight and reserveHotel
automaton, i.e., only in some executions the customer
will be able to receive the message it is waiting for.
Thus, only when all automata are contained in the re-
sult set AP we can verify that termination in some end
state is guaranteed under all executions.

It is obvious that the planning problem involves a
verification step that tests for termination in an end
state after each selection process. This makes such a
planning algorithm much more costly than a classical
planner that only needs to test whether the goal state
is contained in the current state. The search space
is the Cartesian product of all individual operator au-
tomata and grows significantly with each automaton be-
ing added. We used the model checker SPIN (Holzmann
1991) to verify whether our incrementally growing set of
automata terminates in valid end states. Thus, model
checking plays an important role in this planning ap-
proach that we will further explore below.

The Role of Model Checking

By using a non-empty goal formula AG either during
the planning process or once a plan has been found,
we can formulate additional requirements the commu-
nicating automata should satisfy. When adding AG

to the planning process, we will usually encode system
invariants—“maintenance goals” in (Dal-Lago, Pistore,
& Traverso 2002)—into the automaton representing AG

and make sure that those invariants, if true in the ini-
tial system state, remain true in all reachable system

states, independently of the execution sequence that
leads to each specific state. To express the invariant
that when the customer receives an answer, this an-
swer should always either be cancelled or complete, the
following monitor process can be added as a goal AG:4

proctype maintenanceGoalMonitor(){
do
:: answer != pending

-> assert(answer==complete) || answer==cancelled);
break

od
}

Alternatively, we can (once a set of automata has
been determined), formulate requirements to demon-
strate specific behaviors, i.e., sequential sub plans that
are contained in our non-sequential plans.

In the planning as model checking paradigm, the
usual approach is to add the negation of the require-
ments to the model and have the model checker pro-
duce a violating trace demonstrating such a behavior.
In the travel agency scenario, one may be interested in
the following requirements, which can be stated as LTL
formulas:

• Always, eventually, a request is completed or it is can-
celled.

�
(

♦
(

requestCompleted ∨ requestCancelled
))

• Always a cancelled hotel or flight will eventually lead
to a cancelled request.

�
((

hotelCancelled ∨ flightCancelled
)

→ ♦ requestCancelled
)

A request is completed once the customer process can
receive the message answer=complete. A request is can-
celled once the cancelEvent channel contains a message.
A hotel or flight reservation request is cancelled once a
service updates the hstatus or fstatus message field to
cancelled. In our model, one can show that both re-
quirements are satisfied. By formulating the negation
of the above requirements in form of a so-called never
claim in the SPIN tool we can also extract a violating
trace demonstrating a specific behavior that satisfies
the requirement, see Figure 7.

Limitations of Model Checking

The travel agency scenario is also interesting from an-
other angle since it involves the nondeterministic gener-
ation of multiple instances of hotelRequest and flightRe-
quest messages. At planning time, we do not know how
many requests will result from the travelAgent process,
and therefore need a plan that works for any number
of requests. At run time, it will turn out how many
particular requests have been generated.

4As a slight change to our model, it requires the answer

variable to be global such that the assertion can be formu-
lated. The operator ! = stands for inequality, while || stands
for disjunction.

:init::0
23!999

9

createItinerary:1
11

1!2

15

18

23

26

33

reserveHotel:5
37

5!99,1,1,2

418!99,1,1,1

49

5!99,1,2,2

538!99,1,2,1

61

6!33,1,2,2,2,2,2,2

62

:7
65

reserveFlight:4
69

4!66,1,1,2

739!66,1,1,1

81

4!66,1,2,2

859!66,1,2,1

93

6!33,1,2,2,1,2,2,2

94

:6
97

confirmItinerary:2
99

6!33,1,2,2,1,2,1,2

10010!33,1,2,1,1,2,1,2

101

103
2!1

cancelItinerary:3
106

106
106

106

Figure 7: A plan for successfully booking a trip, which
is obtained from a trace violating a never claim. The
visualization in SPIN depicts vertical lifelines for the
running processes with lines between processes visual-
izing messages being exchanged.

In our representation, we have the travelAgent
process sent these requests to two global communica-
tion channels that are subsequently processed by the
reservation services. Alternatively, we could also have
modeled individual instances of the reservation services
that are created at runtime to process each particular
request message. The number of generated messages
or process instances is nondeterministic and limited by
a predefined bound in the Promela model. A model
checker can thus only show that the processes behave
correctly for that specific bound, but it cannot show
that the processes would behave correctly for arbitrary
finite bounds. Thus, when using a model checker we
only know that our system behaves correctly for up to
5, 10, or 15, etc. hotel or flight reservation requests.
The size of the search space is also significantly increas-
ing, which sets a limit on possible values of bounds that
can be investigated. For the basic case of a single flight
and hotel request, the automata generate a state space
of 725 states with 1094 transitions. With the bound set
to 2 flights and hotels, we obtain already 8,435 states
and 14,852 transitions. In the case of up to 5 flight and
5 hotel requests, 264,857 states and 526,492 transitions
result making complete model checking almost infeasi-
ble. This challenges to think about different ways of
showing termination in end states on which our plan-
ning approach heavily relies. A possible alternative we
are currently exploring is to use a specialized inductive
reasoner to prove termination for arbitrary values of
bound, e.g., (Walther & Schweitzer 2001).

A further complication can occur if messages are not
as simple as we consider them here, but could be con-
cept descriptions based on some ontologies or arbitrary
logical formulas. In this case, determining whether a re-
ceive or send operation is executable could already be a
computationally expensive task. Figure 8 summarizes
the three dimensions that determine the complexity of
the planning problem.

Figure 8: Three dimensions along which planning prob-
lems with communicating automata can be character-
ized.

Related Work

We see our work very closely related to the “plan-
ning as model checking” work pioneered in (Giunchiglia
& Traverso 1999) that has been shown to yield pow-
erful planning tools to address conformant planning
problems (Cimatti & Roveri 2000), planning problems
under uncertainty and partial observability (Bertoli,
Cimatti, & Roveri 2001; Pistore & Traverso 2001;
Jensen & Veloso 2000), but also classical planning prob-
lems (Edelkamp & Reffel 1999; Hölldobler & Störr 2000;
Fourman 2000). In all these approaches the set of
ground PDDL actions is considered when develop-
ing a semantic model of a planning problem. Simi-
larly in HTN planning (Erol, Hendler, & Nau 1994;
Nau et al. 1999), operators can express aggregate be-
havior that can be further refined, but how to express
nondeterminism and iterations in compound tasks is
still an unexplored issue.

Driven by the problem of specifying, validating and
automatically synthesizing complex, reactive processes,
we have proposed to use nondeterministic automata as
a formalism to represent planning operators. A possi-
ble example of such operators are business services for
which the automata could serve as functional annota-
tions. So far, web service composition has been studied
based on explicit semantic goals, e.g., (McIlraith & Son
2002) who uses Golog to generate complex plans with
the services as atomic building blocks, or more from an
interaction logic viewpoint, e.g., (Piccinelli et al. 2002)
who consider only the information in the WSDL port

type definitions.
We also see connections to the area of distributed

planning (DesJardins et al. 1999). We specify a high-
level design that may involve abstract processes, which
can be refined as long as they meet the external speci-
fication, i.e., an operator itself can aggregate a distrib-
uted process or the operators can run in a distributed
environment.

Planning with communicating automata is also
closely related to the problem of synthesizing con-
trollers, see for example (Barbeau, Kabanza, & St-
Denis 1998).

Specifying goals as automata has been investigated in
(Dal-Lago, Pistore, & Traverso 2002) and it was shown
that automata can express goals that are neither ex-
pressible in LTL or CTL logics. In our first exploration
of planning with communicating automata, we showed
that goals represented in LTL can also be evaluated
over a set of automata to extract a more conventional
(sequential) plan from the violating trace. Although
the usage of LTL is not necessarily required in our ap-
proach, we got the impression that LTL is nevertheless
appropriate in the fully observable, technical environ-
ments that we investigate. In those environments, non-
determinism is used to represent different possibilities
of which only one actually occurs, which is also the view
of concurrency adopted in Promela and LTL, see also
(Lamport 1980) for an in-depth discussion of the issue.

Conclusion and Future Work
In this paper, we proposed to represent planning oper-
ators as communicating automata encapsulating quite
complex behavior and to generate plans from these au-
tomata. We borrowed a first, preliminary planning lan-
guage from the design specification language Promela.
The motivation driving this approach comes from the
need to equip complex technical systems with more
flexibility allowing deliberative and reactive behavior.
As an example we discussed the composition and dis-
tributed execution of application systems based on web
services. Many other application areas for this type of
planning can be imagined: the reactive scanning of net-
works where the scanning operations have to be planned
based on what information previous scan operations re-
turned and where the behavior of a scan operation is
described by an automaton, or the autonomic manag-
ing of server farms where a planning system should plan
the migration of complex application systems to other
server configurations (IBM Corporation 2001). Another
application is a smart service discovery that allows ap-
plications to discover distributed services based on ca-
pabilities described in terms of a domain ontology and
that guarantees that the invocation of the discovered
service would realize the required results. Such a service
discovery is feasible in specialized domains like bioinfor-
matics where public ontologies exist and a large variety
of services is available online.

We proposed a first planning algorithm that is sound
and complete for a subclass of the class of planning

problems we defined. It shows that the computational
properties of this approach are quite challenging: the
search proceeds over two interleaved worst-case expo-
nential spaces—the set of all subsets of automata and
the global state space of a given set of communicat-
ing automata. We experimented with a model checking
approach to verify the termination in end states and
identified clear limitations of model checking for this
problem.

Many questions have to be further explored ranging
from the appropriateness of different representations
and automata models to scaling search algorithms, bet-
ter techniques to establish termination or the quality of
automata-based plans.

References

Barbeau, M.; Kabanza, F.; and St-Denis, R. 1998. A
method for the synthesis of controllers to handle safety,
liveness, and real-time constraints. IEEE Transactions
on Automatic Control 43(22):1543–1559.

Bertoli, P.; Cimatti, A.; and Roveri, M. 2001. Heuris-
tic search + symbolic model checking = efficient con-
formant planning. In Nebel (2001), 467–472.

Biundo, S., ed. 1999. Proceedings of the 5th European
Conference on Planning, LNAI. Springer.

Brand, D., and Zafiropulo, P. 1983. On commu-
nicating finite-state machines. Journal of the ACM
30(2):323–342.

Christensen, E.; Curbera, F.; Meredith, G.; and Weer-
awarana, S. 2001. The web services description lan-
guage WSDL. http://www-4.ibm.com/ software/ so-
lutions/ webservices/ resources.html.

Cimatti, A., and Roveri, M. 2000. Conformant plan-
ning via symbolic model checking. Journal of Artificial
Intelligence Research 13:305–338.

Dal-Lago, U.; Pistore, M.; and Traverso, P. 2002.
Planning with a language for extended goals. In
Dechter, R.; Kearns, M.; and Sutton, R., eds., Proceed-
ings of the 20th National Conference of the American
Association for Artificial Intelligence, 447–454. AAAI
Press.

DesJardins, M.; Durfee, E.; Ortiz, C.; and Wolverton,
M. 1999. A survey of research in distributed, continual
planning. AI Magazine 20(4):13–22.

Edelkamp, S., and Reffel, F. 1999. Deterministic state
space planning with BDDs. In Biundo (1999), 381–
392.

Erol, K.; Hendler, J.; and Nau, D. 1994. UMCP: A
sound and complete procedure for hierarchical task-
network planning. In Hammond, K., ed., Proceedings
of the 2nd International Conference on Artificial In-
telligence Planning Systems, 249–254. AAAI Press,
Menlo Park.

Fourman, M. 2000. Propositional planning. In Tra-
verso (2000).

Giunchiglia, F., and Traverso, P. 1999. Planning as
model checking. In Biundo (1999).

Hölldobler, S., and Störr, H.-P. 2000. Solving the
entailment problem in the fluent calculus using binary
decision diagrams. In Traverso (2000).

Holzmann, G. 1991. Design and Validation of Com-
puter Protocols. Prentice Hall, New Jersey.

IBM Corporation. 2001. Autonomic computing - a
manifesto. www.research.ibm.com/autonomic.

Jensen, R., and Veloso, M. 2000. OBBD-based univer-
sal planning for multiple synchronized agents in non-
deterministic domains. In Chien, S.; Kambhampati,
S.; and Knoblock, C., eds., Proceedings of the 5th In-
ternational Conference on Artificial Intelligence Plan-
ning and Scheduling, 167–176. AAAI Press, Menlo
Park.

Lamport, L. 1980. Sometime is sometimes not never.
In Proceedings of the 7th ACM Symposium on Princi-
ples of Programming Languages, 174–185.

McDermott, D. 2000. The 1998 AI planning systems
competition. AI Magazine 21(2):35–56.

McIlraith, S., and Son, T. C. 2002. Adapting golog for
composition of semantic web services. In Fensel, D.;
McGuiness, D.; and Williams, M.-A., eds., Proceed-
ings of the 8th International Conference on Principles
of Knowledge Representation and Reasoning, 482–493.
Morgan Kaufmann, San Francisco.

Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H.
1999. SHOP - simple hierarchical ordered planner. In
Dean, T., ed., Proceedings of the 16th International
Joint Conference on Artificial Intelligence, 968–973.
Morgan Kaufmann, San Francisco, CA.

Nebel, B., ed. 2001. Proceedings of the 17th Interna-
tional Joint Conference on Artificial Intelligence. Mor-
gan Kaufmann, San Francisco, CA.

Piccinelli, G.; Emmerich, W.; Zirpins, C.; and Schuett,
K. 2002. Web service interfaces for inter-organisational
business processes - an infrastructure for automated
reconciliation. In Wegmann, A., and Duddy, K., eds.,
Proceedings of the 6th International IEEE Conference
on Enterprise Distributed Object Computing, 285–292.
IEEE Press, Los Alamitos.

Pistore, M., and Traverso, P. 2001. Planning as model
checking for extended goals in non-deterministic do-
mains. In Nebel (2001), 479–484.

Traverso, P., ed. 2000. AIPS Workshop on Model
Theoretic Approaches to Planning.

Walther, C., and Schweitzer, S. 2001. Verifun user
guide. Technical Report VFR 02/01, Technical Uni-
versity Darmstadt.

