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Abstract

Principle of parsimony or the Occam’s razor is a key principle to improve the generaliza-

tion performance in pattern classification. The principle is essentially equivalent to reducing

the variance of a classifier at the cost of increased boundary bias. In this paper, we provide

a quantitative way to express this principle in terms of the outcome of a classifier instead

of explicitly regularizing the model complexity in terms of model parameters. We then use

this principle to design a new kernel machine and a modified k-nearest neighbor algorithm.

Experimentally we validate the performance of these two classifiers over real-life datasets.

We also discuss the relationship of the proposed kernel machine with several other existing

kernel machines.

1 Introduction

In pattern classification (Tsypkin, 1973; Duda, Hart, & Stork, 2001; Vapnik, 1995), the loss

or discrepancy L(t, f(x, α)) between the desired response t to a given input x and the response

provided by a learning machine f(x, α) is minimized with respect to the distribution F (x, t). The

goal is to minimize the risk functional

R(α) =

∫

L(t, f(x, α))dF (x, t) (1)

and obtain an α0 such that f(x, α0) minimizes R(α). The general expression of the risk functional

is quite broad to encompass various specific problems such as pattern classification, regression,

and density estimation. In the present article, we restrict ourselves only to the problem of pattern

classification.

In two-class classification tasks, usually the desired response t can take two different values e.g.,

t ∈ {−1, 1} and f(x, α) represents a set of indicator functions (with two possible values of −1

and 1) for different values of α. The loss function is then defined as

L(t, f(x, α)) =

{

0 if t = f(x, α)

1 if t 6= f(x, α)
(2)

Since the distribution F (x, t) is unknown, the loss functional is often replaced by the empirical

risk functional

Remp(α) =
1

N

N
∑

i=1

L(ti, f(xi, α)) (3)

where L(ti, f(xi, α)) is the error or loss on the observed pair (xi, ti). Assuming the Gaussian error

model for the loss function (Amari, 1967), the maximum likelihood estimate of the empirical risk

functional reduces to the least square estimate such that

Remp(α) =
1

N

N
∑

i=1

(ti − f(xi, α))2 (4)

The empirical risk minimizes the error on the observed samples (training set) by finding out

one optimal α depending on f(.). In general, minimization of the empirical risk functional with
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increased model complexity increases the generalization error i.e., the error on the unobserved

data. (Duda et al., 2001; Friedman, 1997; Tibshirani, 1996a; Geman, Bienenstock, & Doursat,

1992; Kohavi & Wolpert, 1996).

Various principles are applied to improve the generalization performance which include (Cover,

1969; Stone, 1974, 1977; Jain, Dubes, & Chen, 1987; Efron, 1983; Shao, 1993; Kohavi, 1995;

Zhang, 1992; Smyth & Wolpert, 1999; Breiman, 1996a, 1996b, 1998; Schapire & Singer, 1999)).

In general, the basic spirit of all these approaches is to reduce the unnecessary model complexities

while performing the classification by minimizing the empirical risk functional. This basic prin-

ciple of reducing unnecessary complexity is often referred to as Occam’s razor or the principle of

parsimony (Duda et al., 2001). The different forms for realizing this principle include Tikhonov

regularization (Tikhonov & Arsenin, 1977; Tsypkin, 1973), minimum description length principle

(Rissanen, 1978), and structural risk minimization (Vapnik & Chervonenkis, 1974; Vapnik, 1995).

For example, in Tikhonov regularization, normally an additional cost dependent on the model

complexity is added to the empirical loss functional. Such a cost functional imposes a smoothing

on the classification boundary. Minimum description length (MDL) principle is based on the

information theoretic analysis of the randomness in the concept. As discussed in (Duda et al.,

2001), according to MDL, the sum of the classifier’s algorithmic complexity and the description

of the training data with respect to the classifier is minimized. Different variations of the MDL

principle such as Akaike information criteria (AIC) (Akaike, 1978), Bayes information criteria

(BIC) (Schwarz, 1978) and network information criteria (NIC) (Murata, Hoshizawa, & Amari,

1993) are available in the literature. In structural risk minimization (SRM), on the other hand,

the complexity of a classifier is measured in terms of the VC-dimension (Vapnik & Chervonenkis,

1974; Vapnik, 1995). SRM principle finds a trade-off between model complexity (VC confidence)

and the empirical error of model fitting. According to this principle, functions or models in the

hypotheses space are arranged into a hierarchy of nested subsets of increasing VC-dimension.

As articulated in (Friedman, 1997), the overall classification error as measured by the deviation

of a model’s performance with respect to a theoretically optimal classifier (Bayes classifier), can

be expressed as a nonlinear relationship between the boundary bias and the variance. The per-

formance of a classifier is more dependent on the variance component and a reduced variance can

enhance the classification performance. However, the reduction in variance can cause an increase

in the boundary bias due to over-smoothing. The increase in boundary bias does not necessarily

deteriorate the generalization performance of a classifier so long as the sign of boundary bias

remains consistent. In the existing realizations of the principle of parsimony, essentially the vari-

ance is reduced by increasing the bias, and the bias is increased to the extent such that the sign

remains consistent.

In this paper, we propose an alternate approach of reducing the variance component and provide

a simple quantitative way of expressing the principle of parsimony for classification. According

to this principle, we essentially reduce the superfluity in the outcome (variance) constrained

by a certain regularization parameter. We first articulate the principle and then explain the

principle in the perspective of the bias-variance decomposition. We then design a kernel based

classifier using this principle. We also use the same principle for designing a modified k-nearest

neighbor classifier. For the kernel based classifier, we draw the relationships with other existing
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kernel machines. We show the effectiveness of this principle by demonstrating the classification

performance of our kernel machine and the enhanced k-nearest neighbor classifier.

2 Pattern Classification with the Principle of Parsimony

2.1 Principle

We present an interpretation of the principle of parsimony which we use in the subsequent design

of our classifier. We state the principle as

Minimize the superfluity in the outcome with a given margin.

Here we use this principle to regularize the outcome of a classifier which in turn regularizes

the model complexity. Using this principle we design classifiers without directly considering the

minimization of model complexity in the loss functional. Rather we design classifiers such that

the outcomes of the models follow this principle. At a later part of this paper, we show that the

principle can be connected to the model complexity under certain constraints. Note that, this

principle is not new; however, we express the principle of regularization in this form which helps

us in designing two different forms of classifiers. We first explain the notion of the “superfluity”

that we use in the sequel restricting ourselves to two-class classification tasks. We then draw the

connection with the bias-variance perspective of the same principle. Subsequently, we design two

different classifiers using the same principle.

Two Class Classification : In two-class classification task, let the desired response t can take

two different values such that t ∈ {−1, 1} and f(x, α) represent a set of indicator functions in

{−1, +1} for different values of α. The loss function is

L(t, f(x, α)) =

{

0 if t = f(x, α)

1 if t 6= f(x, α)
(5)

In any two-class classifier (either parametric or non-parameteric), the indicator function f(x, α)

can be viewed as a signum of a soft-indicator output g(x, α) such that

f(x, α) = sign(g(x, α)) (6)

where sign(.) is +1 or −1 if the argument is positive or negative respectively.

For example, in a k-nearest neighbor classifier (Hart, 1968; Duda et al., 2001), a test sample x is

assigned a label +1 (i.e., f(x, α) = +1) if the number of positive training samples (i.e., training

samples with t = +1) is more than the number of negative training samples (i.e., training samples

with t = −1) in a neighborhood Ωk(x) of x comprising of k nearest neighbors. The corresponding

soft-indicator function g(x, α) can be expressed as

g(x, α) =

(

2N+(x)

k
− 1

)

(7)
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where N+(x) is the number of positive training samples in Ωk(x). We scaled the soft-indicator

function g(x, α) such that g(x, α) ∈ [−1, +1], although it can be scaled differently. The model

α here is defined by k. In a decision tree (Breiman, Friedman, Olshen, & Stone, 1983; Quinlan,

1993), a leaf node is assigned a positive or negative label depending on the majority of the labels

of the training samples allocated to that leaf node. Thus if a test sample x is allocated to a leaf

node lT (x) of a decision tree T then the soft-indicator function g(x, α) is given as

g(x, α) =

(

2N+(lT (x))

N+(lT (x)) + N−(lT (x))
− 1

)

(8)

where N+(lT (x)) and N−(lT (x)) are respectively the number of positive and negative training

samples allocated to the leaf node lT (x). In the case of support vector machines (and in various

forms of kernel machines), the soft-indicator function g(x, α) is defined as

g(x, α) =
∑

i

αiK(x, xi)ti + b (9)

In the case of parametric classifiers such as logistic regression models (Hosmer & Lemeshow,

2000) and semi-parametric classifiers such as neural networks (Haykin, 1999) and hierarchical

mixture of experts (Jordan & Jacobs, 1994), the classifiers themselves produce the soft-indicator

function g(x, α). The final outcome of such classifiers is interpreted as f(x, α) = sign(g(x, α)).

In short, the outcome of any two-class classifier can be viewed as a soft-indicator function g(x, α)

which is then mapped onto f(x, α) ∈ {−1, +1} for making a decision.

The nature of g(x, α) is driven by the underlying model α and the generalization performance of

the classifier depends on the nature of g(x, α). In this paper, we refer to g(x, α) as the “outcome”

of a classifier. According to the principle, we fix a margin (regularization parameter) λ and

minimize the superfluity in the outcome g(x, α) with the given margin. If the outcome g(x, α) is

greater than λ for a training sample x with a label +1 or if g(x, α) < −λ for a training sample

x with label −1 then we say that there is superfluity in the outcome since g(x, α) = ±λ is

sufficient to make a decision for a given margin λ. For a training sample x with a class label +1

(t(x) = +1) there is an empirical error in matching the class label if g(x, α) < λ. Similarly, there

is an empirical error if g(x, α) > −λ and t(x) = −1. We can express the empirical error as

L1(x, t) =

{

h1((λt − g(x, α))t) if (g(x, α) < λ)and(t = 1) or (g(x, α) > −λ)and(t = −1)

0 otherwise

(10)

where h1(.) is a monotonically increasing function. Due to superfluity, the error for x is

L2(x, t) =

{

h2((g(x, α) − λt)t) if (g(x, α) > λ)and(t = 1) or (g(x, α) < −λ)and(t = −1)

0 otherwise

(11)

where h2(.) is a monotonically increasing function.

We minimize the error due to superfluity and the empirical error together such that the loss

functional can be written as

L(x, t) = L1(x, t) + L2(x, t) (12)
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The parameter λ can be connected to regularization such that if λ is very small then a small

perturbation in x can cause g(x, α) to be mapped from one class to the other. Thus for better

performance on the training samples, we need to a select as large λ as possible. On the other

hand, if we select a very large λ then the model α will be highly perturbed by the noisy training

samples resulting in a poor generalization performance.

2.2 Bias-Variance Perspective

As articulated by (Friedman, 1997) (also available in (Duda et al., 2001; Bishop, 2006; Le Borgne,

2005)), the overall probability of classification error can be expressed as

P [f(x, α) 6= t] = (1 − 2P [tB 6= t])P [g(x, α) 6= tB ] + P [tB 6= t] (13)

where t is the actual observed outcome (in terms of ±1) for a sample x, tB is the outcome produced

by the optimal Bayes classifier. The second term in Equation (13) is the noise component and

independent of the classifier. The first term is the product of the error committed by the classifier

with respect to the optimal Bayes classifier and a noise term which attenuates the total error of

the classifier. If the Bayes classifier output is exactly the same as the actual outcome then the

resultant error is the same as that committed by the classifier. However, if the outcome of Bayes

classifier deviates from the actual outcome then it imposes a wrongly right effect since f(x) can

differ from tB and tB can differ from t and therefore f(x) produces the same outcome as t. The

optimal Bayes classifier is obtained as

tB = sign(F (x) > l) (14)

where

F (x) = P [t = 1|x] = 1 − P [t = −1|x] (15)

The error of the classifier with respect to the optimal Bayes classifier is expressed as

P [f(x, α) 6= tB ] = 1(F (x) < l)

∫ ∞

0

p(g)dg + 1(F (x) > l)

∫ 0

−∞
p(g)dg (16)

where 1(.) indicates a 1/0 function where 1(y) = 1 if y > 0 and 0 otherwise. Intuitively the

classifier commits an error when the optimal Bayes classifier assigns a class +1 and the classifier

assigns f(x, α) = −1 i.e., g(x, α) ≤ 0, and vice-versa. The parameter l is the decision boundary

for the Bayes classifier such that

l =
c−1,1

c−1,1 + c1,−1
(17)

where cij is the cost of misclassifying a sample in class i to class j. As provided in (Friedman,

1997), p(g) is assumed to be Gaussian, and the resulting error committed by the classifier with

respect to the optimal Bayes model is given as

P [f(x, α) 6= tB ] = Φ
[

sign(F (x) − l)µgσ
−1
g

]

(18)

where

µg = ED[g(x, α;D] (19)

6



is the expectation of g(x, α) over the dataset D. Similarly, σg is the standard deviation or the

square-root of the variance of g(x, α) computed over the dataset D. The function Φ is a nonlinear

function given as

Φ(y) =
1

2
[1 − erf(y/

√
2)] (20)

The bias term is dictated by µg and the resulting classification bias increases as µg decreases.

On the other hand, the classification variance decreases as sigmag decreases. The bias and

variance are related by certain nonlinear way in the case of classification. As defined by Friedman

(Friedman, 1997), the bias

bias = sign(l − F (x))µg (21)

does not affect the classification so long as the bias is negative. The classification becomes

incorrect when the bias becomes positive. This bias is called the boundary bias in classification.

The variance is more important aspect of classification and even if the reduction of variance

causes high bias, the classification remains correct so long as the boundary bias remains negative.

Reduction in the variance and subsequent increase in the bias leads to over smoothing of the

classification boundary.

Instead of considering unimodal Gaussian on g(.) if we consider bimodal distribution (mixture

of two Gaussians) over g(.) for a two-class problem then the resultant error committed by the

classifier with respect to the optimal Bayes model is given as

P [f(x, α) 6= tB ] = k1Φ[sign(F (x) − l)µ1σ
−1
1 ] + k2Φ[sign(l − F (x))µ2σ

−1
2 ] (22)

where k1 + k2 = 1 are the weights of each individual Gaussian in the mixture, µ1 and −µ2 are

the means of individual Gaussians, and σ1, σ2 are the respective standard deviations. So long as

the sign of (F (x) − l) is consistent with that of µ1 and sign of (l − F (x)) is consistent with −µ2,

the classification is correct. The accuracy increases with the reduction of σ1 and σ2.

In our approach, we also perform the variance reduction by minimizing the superfluity in the

outcome. In other words, from Equations (10) and (11), we observe that the labels t are multiplied

by a factor λ which essentially shrinks g(x, α) and thus the variance is reduced. However, if we

simply use linear scaling of the model g(x, α) then the variance reduction is completely cancelled

by the reduction of mean (gain in bias) and there is effectively no change in the classification

performance. If we identify the model parameters within the same setting (without any linear

scaling) to restrict the superfluity in the outcome then the reduction of variance is not cancelled

by the gain in bias. In the sequel, we show the use of this principle to design two different

classifiers where we gain in terms of variance with respect to certain parameter λ.

2.3 Relationship with the Regularization using Model Complexity

As a special case, if we restrict h1(u) = h2(u) = u2 then the resultant loss functional for a training

sample x (Equation (12)) becomes

L(x, t) = (g(x, α) − λt(x))2 (23)
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Thus the total normalized loss over the training dataset D is

L(D|α) =
1

|D|
∑

x

(g(x, α) − λt(x))2 (24)

The Equation (24) can be expressed as

L(D|α) =
1

|D|
∑

x

[λ(g(x, α) − t(x))2 + (1 − λ)g2(x, α) − λ(1 − λ)t2(x)] (25)

Since the third term in Equation (25) is independent of α, we can equivalently express L(D|α)

as

L(D|α) =
1

|D|
∑

x

(g(x, α) − t(x))2 +
1 − λ

λ

1

|D|
∑

x

g2(x, α) (26)

The second term in Equation (26) imposes explicit regularization on the outcome of the classifier

and 1−λ
λ

is the Lagrangian multiplier of the regularization functional. Since 1
|D|

∑

x g2(x, α) is a

function of α, we can equivalently express Equation (26) as

L(D|α) =
1

|D|
∑

x

(g(x, α) − t(x))2 + γΓ(α) (27)

where γ = (1 − λ)/λ is the Lagrangian multiplier and

Γ(α) =
1

|D|
∑

x

g2(x, α) (28)

is a function of the model parameters α; Γ(α) represents the model complexity. Thus although

we express the principle in terms of reducing the superfluity in the outcome, it is connected to

the explicit regularization of the model complexity. However, the model complexity in Equation

(27) is not the same as that defined in MDL or SRM. For example, in SRM principle, the

model complexity is driven by the worst-case performance over the training samples whereas

in the present framework the model complexity is the average over all training samples. Often

the squared norm of the model parameter vector is considered in the Tikhonov regularization.

In our approach, we do not explicitly consider any function Γ(.) for regularization, rather the

regularization function is derived from the outcome of the classifier itself. Also we observe that the

contribution of the regularization term increases as we decrease λ and effectively bias increases.

On the other hand for λ = 1, the regularization term vanishes.

3 Design of Classifiers using the Principle of Parsimony

In this section, we design two different classifiers using the stated principle.

3.1 A Kernel Machine

We consider a kernel based classifier such that the function g(x, α) is given as

g(x, α) =
∑

j

αjK(x, xj)tj (29)
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where xj is an observed sample and tj is the given label of the observed sample, and αj indicates

the contribution of the sample j in the classifier. K(x, xj) is a kernel function such as Gaussian

kernel of the form

K(x, xj) = exp(−‖x − xj‖2

2σ2
) (30)

The kernel is not necessarily restricted to Gaussian kernels. We restrict to h1(u) = h2(u) = u2

(Equation (12)) and therefore the resultant loss functional (not normalized by the number of

training samples) is given as

L =
1

2

∑

i

(
∑

j

αjK(xi, xj)tj − λti)
2 (31)

Using unrestricted parameter values, we can minimize L with respect to α using linear regression

technique and obtain one classifier for one λ. In deriving the parameter values L(α) can be

differentiated with respect to α and we obtain exactly |D| equations such that we can obtain an

exact solution for α. However, the solution for α is simply linear in λ, and therefore λ linearly

scales g(x, α). As discussed in Section 2.2, if we simply perform linear scaling of g(x, α) then the

gain in the variance reduction is completely cancelled by the increase in bias. Therefore if we use

unconstrained linear regression then for any value of λ we obtain the same classifier as obtained

by minimizing the empirical error.

In order to effectively gain in variance reduction, we constrain the parameters in 0 ≤ α ≤ 1.

Thus for a given λ, the minimization of L with respect to α is equivalent to maximization of the

functional

W (α) = λtT KD(t)α − 1

2
αT D(t)KT KD(t)α (32)

subject to the condition that 0 ≤ αi ≤ 1 for all i. The entry D(t) is a diagonal matrix whose

diagonal entries are the same as that of t. Once we maximize the functional W (.) with respect

to α we obtain certain non-zero αs which define the classifier. Since we constrain 0 ≤ α ≤ 1,

as we increase λ, maximization of the objective functional W (.) generates new non-zero vectors

which changes the nature of the distribution. The introduction of new non-zero vectors causes

an additional increase in the variance. Thus by extending this logic, we notice that decrease in

λ reduces µg causing an increase in the bias, whereas the variance in decreased further (decrease

in the number of non-zero vectors). If we decrease λ towards zero then it introduces infinite bias

and no variance, and there is no classification (all the samples are treated as same). Therefore,

for a particular classification task, there exist an optimal range of λ over which the classifier

provides an optimal performance. If two classes are completely separable then we can obtain a

wide range of λ whereas for a highly overlapped class structure, we can identify a specific narrow

range of λ over which the classifier performs optimally.

Once the pattern vectors with non-zero α values are obtained by maximizing the functional W (α)

with respect to αis (Equation 32), we classify any new sample x, i.e., assign a class label t to x

as

t =

{

1 if
∑

i αiK(x, xi)ti ≥ 0

−1 otherwise
(33)
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Multi-class Classification : We formulated the classification problem for a two-class classifi-

cation task. In the case of multi-class classification, we consider the one-against-all strategy, i.e.,

classify the patterns of each class against all other classes and obtain the model coefficients α

for each class separately. Here we mention that we take the stand-point as provided in (Rifkin

& Klautau, 2004) where the authors have shown that one-against-all classification scheme is as

accurate as any other multi-class classification approach.

Formally let there be l class labels such that the set of class labels is denoted by CL = {1, 2, · · · , l}.
Each time we consider one class label at a time. Let the class label of concern be c ∈ CL. In

that case ti ∈ CL is transformed into a vector {ti1, ti2, · · · , til} such that

tic =

{

1 if ti = c

−1 otherwise
(34)

For each class label c, we compute the coefficients separately, and assign the class label t to x as

t = argmaxc∈L{
∑

i

αicK(x, xi)tic} (35)

where αics are the coefficients obtained for class c.

3.1.1 Interpretation of the Kernel Machine

As we mentioned in Section 2.3, the objective functional for the kernel machine can be expressed

as a combination of the empirical error and the model complexity in the form

L(D|α) =
1

|D|
∑

x

(g(x, α) − t(x))2 + γΓ(α) (36)

where γ is the regularization parameter (γ = (1− λ)/λ) and Γ(α) is the model complexity given

as

Γ(α) =
1

|D|
∑

x

g2(x, α) (37)

Considering

g(x, α) =
∑

j

αjK(x, xj)tj (38)

the model complexity is given as

Γ(α) = αT D(t)KT KD(t)α (39)

In other words, we minimize a quadratic loss functional equivalent to the empirical error in

addition to a regularization function governed by the model complexity; the model complexity

being dependent on the outcome of the classifier.

As we impose the constraints on the priors α, the loss can be reformulated as

L =
λ2

2

∑

i

(
∑

j

αj

λ
K(xi, xj)tj − ti)

2 (40)
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which is equivalent to minimizing a functional

L =
1

2

∑

i

(
∑

j

K(xi, xj)α̂jtj − ti)
2 (41)

subject to the constraints 0 ≤ α̂i ≤ 1
λ
. From the Equation (41) and the respective constraints,

we observe the kernel machine employs a uniform prior over the coefficients α. The uniform prior

can be better observed if we replace α̂iti by βi then we obtain the quadratic loss

L =
1

2

∑

i

(
∑

j

K(xi, xj)βj − ti)
2 (42)

subject to the constraint that 0 ≤ |βi| ≤ 1
λ
, and sign(βi) = ti where ti is a binary observation

in {−1, 1}. In other words, we minimize a quadratic loss functional equivalent to the empirical

error subject to the box constraints on the model coefficients; the size of the box depends on the

parameter λ (the margin according to the principle).

Alternatively combining Equations (36) and (42), we can express

L = ‖t − Kβ‖2 + γ‖Kβ‖2 (43)

With normalization,

L =
1

|D| (t − Kβ)T (t − Kβ) +
γ̂

2
βT KT Kβ (44)

where β ∈ [−1, 1] and βiti ≥ 0 and γ̂ = 2(1−λ)
|D|λ . Thus the coefficients have uniform prior

over [0,±1] depending on the class label of the observed sample and regularized by the model

complexity with a regularization parameter γ or γ̂. We express the objective functional in this

form in order to show the similarity with other existing kernel machines in the next section.

3.1.2 Relationship with Other Kernel Machines

The effects of αs are similar to that used in the SVM where αs define the support vectors. However

the quadratic function to be maximized in SVM is derived on the basis of margin maximization

with respect to optimal separating hyperplane in some higher dimensional space φ(.) such that K

is expressible as a inner product, K(x, xi) = φ(x)φ(xi), and αs are the Lagrangians. In our case,

we do not explicitly consider the margin maximization with respect to separating hyperplane in

the space of φ(.), rather we minimize the outcome for a given parameter λ.

This leads to a difference in the quadratic term KT K in our formulation in Equation (32) from

that in the SVM. Apart from the quadratic term, we also observe the difference with SVM in the

linear term. In SVM, due to margin maximization all αis contribute equally in the linear term

as in

Wsvm(α) = 1T α − 1

2C
αT D(t)KD(t)α (45)

with an additional constraint that αT t = 0 and αi ≥ 0 for all i. In the modified framework of

soft margin SVM (Shawe-Taylor & Cristianini, 2000; Bie, Lanckriet, & Cristianini, 2003), the
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funcitonal is expressed as

Wsoftsvm(α) = 1T α − 1

2
αT D(t)(K +

1

C
I)D(t)α (46)

where I is the identity matrix with the same constraint i.e., αT t = 0. We do not require this

constraint (Equation (32)) since different αis contribute differently in the linear term depending

on the kernel function and the distribution of the patterns.

In the sequel, we refer to our method of classification as ‘B’ machine as opposed to SV machine

which we consider as ‘A’ machine. The non-zero αs determine the ‘B’ vectors as opposed to the

support vectors which we consider as the ‘A’ vectors. Since in the formulation of the kernel based

classifier, we do not use the principle of margin maximization, we do not claim this as a variant

of SVM.

As we view the expanded quadratic loss in Equation (32), we observe the similarity of B-machine

with ν-SVM (Chen, Lin, & Schölkopf, 2005), where the optimization functional is given as

L = −1

2
αT D(t)KD(t)α (47)

subject to 0 ≤ αi ≤ 1
λ
, λ being a regularization parameter λ > 0, and αT t = 0,

∑

αi ≥ ν. In

ν-SVM the quadratic optimization in ν-SVM does not contain any linear term as in standard

SVM. The performance of ν-SVM (Chen et al., 2005) depends on two parameters namely ν

and λ. ν-SVM uses a principle of regularizing the margin of separation between the classes

(with an additional regularization factor) where the parameter ν controls the penalization due to

separation of the classes in the primal formulation of the loss functional. The separation between

the classes is governed by the separation margin ρ and a regularization functional −νρ is added to

the primal formulation. The minimization of the loss functional is subjected to the maximization

of the separation margin ρ and the effect of ρ depends on the parameter ν. In this respect,

B-machine also uses a parameter λ to control the separation between the classes in terms of the

outcome of the classifier. However, the primal formulation of ν-SVM is derived from the margin

maximization principle as in the SVM whereas in B-machine, we do not explicitly consider the

margin maximization as a primal formulation; however, we consider the minimization of the loss

functional with a given margin (regularization parameter) directly in its dual form.

In the ridge regression framework (Marquardt, 1970), the least square regression includes a

regularization factor such that

L = ‖t − wT x‖2 + a‖w‖2 (48)

where a is a Lagrangian. The ridge regression framework introduces priors over the coefficients

w for a smooth regression function estimation, the priors being subjected to a spherical Gaus-

sian prior distribution. In adaptive ridge regression (Saunders, Gammerman, & Vovk, 1998),

automatic relevance determination is performed in such a way that each variable is penalized

by the method of automatic balancing while keeping the average penalty constant. In RLSC

(Rifkin, Yeo, & Poggio, 2003), the objective functional is derived as a simple square-loss function

and regularized using the Tikhonov regularization (Tikhonov & Arsenin, 1977) with a quadratic

term in α vectors. In RLSC reproducing Hilbert kernels are considered such that the objective
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functional takes a form

L =
1

N
(t − Kα)T (t − Kα) +

γ

2
αT Kα (49)

where N is the number of samples, γ is a regularization parameter, and α are the coefficients

(the notation of α is same throughout this article). This convex optimization problem is then

transformed into a set of linear equations (similar to least square regression) by equating the

first order derivative to zero based on the assumption that the underlying noise is generated by a

Gaussian model. The coefficients are then derived from the resulting set of linear equations such

that

(K + γNI)α = t (50)

In least-square support vector machine (LSSVM) (Suykens & Vandewalle, 1999; Van Gestel

et al., 2004), a squared error term is considered in addition to a regularization term wT w where

w represents the directionality of the separating hyperplane. The convex optimization functional

is then transformed into a set of linear equations by equating the first derivative to zero using

unconstrained priors α.

We observe that the B-machine as expressed in Equations (43) and (44) is similar to the adaptive

ridge regression (AdR) and RLSC. However, in AdR, RLSC, and LSSVM, the form of model

complexity that has been used to regularize the model parameters is different from that in the

B-machine. Therefore minimization of L with unconstrained priors (α) in such models does not

yield simple scaling of the outcome g(x, α). In the B-machine on the other hand, unconstrained

minimization results into simple scaling and we constrain the the parameters α. Moreover, RLSC

and other related family of kernel machines are restricted to Hilbert kernels subjected to Mercer

condition which is relaxed in the B-machine. The B-machine is not limited only to Hilbert kernels

since the quadratic term in Equation (32) is always positive semi-definite.

Constrained priors have been used in LASSO (least absolute shrinkage and selection operator)

(Tibshirani, 1996b; Osborne, Presnell, & Turlach, 2000), and generalized LASSO (Roth, 2004;

Hosmer & Lemeshow, 2000). In LASSO, the loss functional considered is given as

L = ‖t − Kα‖2
2 (51)

subject to ‖α‖1 < λ where λ is a constant which determines the approximation accuracy. The

LASSO model is very similar to the B-machine as interpreted in Equation (42) except that the

constraints over the priors are different. Considering the exponential hyperpriors, the LASSO

model can be expressed in the form

L = ‖t − Kα‖2
2 + b‖α‖1 (52)

where b is a Lagrange parameter determined by the exponential hyperpriors. The generalized

LASSO uses a very similar form of loss functional as in Equation (52) except that it uses a more

robust form of Huber loss (Smola & Schölkopf, 1998) which is quadratic for smaller deviation and

linear for larger deviations. Subsequently iteratively reweighted least square (IRLS) technique is

used to optimize the functional. The constraints that we use in the B-machine (Equation (43))

are different from the constraints used in LASSO and generalized LASSO.
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In relevance vector machines (Tipping, 2001), empirical error is defined based on the logistic re-

gression model where the outcome is given as g(x) = 1/(1+exp(−wT φ(x)). In a Bayesian frame-

work zero-mean Gaussian priors are defined over the parameter vectors w such that p(w|α) =
∏

i N (0, 1/αi) where N represents the Gaussian distribution. In this framework, an iterative

method is employed. It starts with a current estimate of α vectors, and based on this esti-

mate the most probable hyperprior (prior variance) parameters are chosen. The prior variance

parameters are then used in the posterior to get new estimates of α. Thus relevance vector ma-

chine explicitly regularizes the model parameters w within a Bayesian framework with respect

to the priors α and iteratively estimates the priors. In the B-machine, we do not use the logis-

tic regression model for classification for measuring the empirical error and instead of Gaussian

hyperpriors, we use uniform priors over the parameters α.

3.2 A Modified k-Nearest Neighbor Algorithm

As we discussed in Section 2.1 (Equation (7)) that the outcome for a test samples can also be

expressed as a soft indicator function, we apply the proposed principle to design a modified k-

nearest neighbor classifier using the soft indicator function. In the case of k-NN classifier, the

model parameter is k or the number of nearest neighbors being considered. Therefore according

to this principle, we decide the value of k for every test sample with a given value of λ. On the

contrary, in the standard k-NN classifier, all test samples are classified for a given k (the value

of k can be decided by cross-validation). First, we scale the outcome of the classifier for a test

sample in [0, 1] for l different class labels. We assign a function g(x, k) such that

g(x, k) =
lNt(x) − k

k(l − 1)
(53)

where Nt(x) > Ni(x) for all i 6= t and i, t ∈ CL. Ni(x) is the number of training samples with a

class label i in the k nearest neighboring training samples of x and CL = {1, 2, · · · , l} is the set of

class labels. We scale the outcome for a test samples in [0, 1] so that the value of λ can be chosen

in the range [0, 1] irrespective of the number of class labels. We then compute the outcome for

the test sample x for a large range of k and choose that particular k for which g(x, k) is closest to

λ and assign the respective class label to x. Formally, the algorithm is presented in Figure 1. In

this algorithm, we do not use any kernel function to implement the k-nearest neighbor algorithm.

Rather the model parameter k is decided from the outcome of the classifier for a given margin λ.

Since the performance of this classifier is solely dependent on the parameter λ, we refer to this

classifier as λ-kNN classifier in the sequel. Interestingly, we note that the value of k in λ-kNN

can differ for different test samples. If the classifier performs best of k = 1 for all test samples

(i.e., 1-nearest neighbor classifier) then the value of optimal λ will be unity.
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Input: Training dataset (D); Test dataset;

Output: class label t(x) for every test sample x;

Input Variable: λ;

begin
for every test samples x do
begin

for k := 1 to kmax do
begin

Compute the class label f(x, k) = t if Nt(x) > Ni(x) for all i 6= t, i, t ∈ CL

Compute the outcome g(x, k) = lNt(x)−k

k(l−1)

end
Find kopt = argmink|g(x, k) − λ|
Assign class label to x such that t(x) = f(x, kopt)

end
end

Figure 1: Modified k-nearest neighbor classifier (λ-kNN).

4 Experimental Results

4.1 Nature of the B-Machine

We first illustrate the B-vectors generated by B-machine for two-dimensional Gaussian parity

problem. We select the Gaussian kernel of different sizes. First, in Figure 2, we illustrate the B-

vectors for 2σ2 = 1. The B-vectors are marked by ‘o’, and the samples from two different classes

are marked by ‘x’ and ‘.’ respectively. We observe that even though we do not perform margin

maximization as performed in SVM, the B-vectors concentrate towards the boundary between

opposite classes. However, this behavior of the B-vectors is specific to the choice of kernel. In

the next figure, we observe a different behavior of the B-vectors as we change the kernel width.

Figure 3 illustrates the change in the B-vectors as we change σ of Gaussian kernel as 0.2, 0.5,

1 and 2. We observe that for a low σ, the B-vectors are not necessarily concentrated near the

opposite classes. This is due to the fact that B-machine does not use the principle of margin

maximization, rather it finds B-vectors such that existence of other points becomes interpretable

subject to a given margin. As we increase σ, the B-vectors starts getting concentrated towards

the opposite class samples. This is due to higher interaction between samples from other classes

due to larger width of the kernel function.

We now illustrate the effect of λ on the number of B-vectors. If we lower the margin λ then we

observe that the number of B-vectors decreases and it increases with the increase in λ. This is

due to the fact that if we reduce the margin, we require less number of B-vectors to support the

existence of other samples from the same class subject to the margin. Figure 4 illustrates the

B-vectors for the same Gaussian parity problem with λ = 0.1, 0.2, 0.5, and 1 respectively for

σ = 1.
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Figure 2: B-vectors obtained by the B-machine for a two-dimensional Gaussian parity problem.

The two classes are represented by ‘x’ and ‘.’ respectively. The B-vectors are marked by ‘o’. The

Gaussian kernel of the B-machine is chosen such that 2σ2 = 1.
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Figure 3: B-vectors obtained by B-machine for the same two-dimensional Gaussian parity problem

as in Figure 2 with different kernel sizes. (a), (b), (c), and (d) illustrate the B-vectors for σ = 0.2,

σ = 0.5, σ = 1.0 and σ = 2.0 respectively.
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Figure 4: B-vectors obtained by B-machine for the same two-dimensional Gaussian parity problem

as in Figure 2 for different margins (λ) with a fixed size of Gaussian kernel σ = 1. (a), (b), (c),

and (d) illustrate the B-vectors for λ = 0.1, λ = 0.2, λ = 0.5, and λ = 1.0 respectively.
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4.2 Data Sets

We demonstrate the effectiveness of our classifier on certain real-life data sets. We have considered

the data sets available in the UCI machine learning repository (Blake & Merz, 1998). Table 1

summarizes the data set description. We considered the data sets from UCI machine learning

repository (Blake & Merz, 1998) mostly based on the fact that the data should not contain any

missing variable and consist of only numeric attributes. Note that, the ‘Iris’ dataset that we used

is the ‘BezdekIris’ data in the UCI repository. We modified the ‘Ecoli’ data originally used in

(Nakai & Kanehisa, 1991) and later in (Horton & Nakai, 1996) for predicting protein localization

sites. The original dataset consists of eight different classes out of which three classes namely,

outer membrane lipoprotein, inner membrane lipoprotein, and inner membrane cleavable signal

sequence have only five, two, and two instances respectively. Since we report the 10-fold cross-

validation score, we omitted samples from these three classes and report the results for the rest

five different classes. Note that, in the original work (Nakai & Kanehisa, 1991) also, the results

are not cross-validated. We normalize all input patterns such that any component of x lies in

the range [−1, +1].

Data Set No. of Instances No. of Features No. of Classes

Indian diabetes 768 8 2

(Pima)

Diagnostic Breast 569 30 2

Cancer (Wdbc)

Prognostic Breat 198 32 2

Cancer (Wpbc)

Liver Disease 345 6 2

(Bupa)

Flower (Iris) 150 4 3

Bacteria (Ecoli) 326 7 5

Table 1: Description of the pattern classification datasets obtained from the UCI machine learning

repository.

4.3 Performance of the B-Machine

4.3.1 Choice of the Kernel Functions

The kernel functions of the B-machine is not necessarily subjected to Mercer condition (Hilbert

kernels) since the quadratic term in the objective functional of B-machine (Equation (32)) is

always positive semi-definite. Apart from Gaussian kernels, we select two other kernel functions

which are centrally peaked with longer tails in nature, such that the distant B-vectors have greater
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interaction between. The first one is given as

K1(x, µ) =
1

1 +
(

‖x−µ‖
σ

)2 (54)

The kernel in Equation (54) is derived from the Cauchy distribution which has a long tail, and

we call this kernel function as Cauchy kernel. Note that, Cauchy kernel has also been applied

in the formation of sparse codes for natural scenes leading to a complete family of localized,

oriented, bandpass receptive fields (Olshausen & Field, 1996). Cauchy kernel is continuous and

it is differentiable except at the point x = µ.

The second form of kernel is a mixture of Guassian and exponential kernel such that for smaller

deviation it is squared loss and for larger deviation the loss is linear. In the second kernel

function, we use Gaussian kernel near the center of the kernel (the logarithm of Gaussian is

essentially squared deviation) and exponential decay away from the center (the logarithm of

exponential represents linear deviation). The second kernel function is given as

K2(x, µ) =







exp
(

−‖x−µ‖2

2σ2

)

for ‖x − µ‖ ≤ ε

exp
(

−‖x−µ‖√
2σ

)

otherwise
(55)

Note that, K2 is continuous only for ε =
√

2σ and we choose the same value although in the

framework of B-machine it is not necessary that the kernel function needs to be continuous. We

refer to the kernel K2 as the Gaussian + Exponential kernel which is not differentiable on the

hyperplane ‖x − µ‖ =
√

2σ. In the next section, we demonstrate the performance of B-machine

with Cauchy kernel and Gaussian + Exponential kernel in addition to Gaussian kernel.

4.3.2 Results

We report the 10-fold cross-validation performance of B-machine for Gaussian kernel, Cauchy

kernel, and Gaussian+Exponential kernel respectively. In computing the 10-fold cross-validation

scores, we randomly partitioned the data into 10 disjoint groups, and used 90% (i.e., 9 disjoint

groups) samples as the training sample and the rest 10% samples as the test samples, and iterated

this procedure using each group in the partition as the test set and the rest as the training

set. We used 10 such trials of random partitioning the data. For each trial, we compute the

mean and variance of the classification score over the ten different test sets, and then compute

the overall mean and variance scores over the ten different trials. We performed this random

partitioning of the dataset and averaged over ten different trials in order to reduce any inherent

bias generated due to sample ordering present in the data set. We also compare the performance

of B-machine with that of SVM using Gaussian kernel and third degree polynomial kernels. In

addition we compare the performance with the LSSVM using Gaussian kernels. In comparing the

performance, we use the same training set and the test set for each trial and each fold throughout

for all these classifiers.

Table 2 summarizes the 10-fold cross-validation score of B-machine on the datasets in Table 1

for Gaussian kernels, Cauchy kernels, and Gaussian+Exponential kernels. We report the mean
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accuracy as well as the standard deviation in the accuracy as the indicator of significance. As a

comparison, we also provide the same scores of SVM for Gaussian kernel and polynomial kernel,

and LSSVM with Gaussian kernel in Table 2. For implementing SVM, we used the publicly avail-

able code in (Canu, Grandvalet, Guigue, & Rakotomamonjy, 2005). We implemented LSSVM

using the Matlab code available in (Pelckmans et al., 2003). In implementing LSSVM for mul-

ticlass classification (such as ‘Iris’ and ‘Ecoli’), we used ‘minimum output coding’ (Pelckmans

et al., 2003) which provided the best performance for the LSSVM. In Table 2, we report the best

performances of all the classifiers namely, SVM, LSSVM, and B-machine and the corresponding

parameter values. We observed that all these three classifiers are able to obtain similar scores

over a significantly large range of parameter values, and we report one candidate set of values

in Table 2. As we observe from Table 2, B-machine outperforms SVM and LSSVM in terms

of 10-fold cross-validation score on several datasets. For the ‘Pima’, ‘Bupa’, ‘Wpbc’, ‘Iris’ and

‘Ecoli’ datasets, B-machine outperforms SVM and LSSVM, particularly when we observe the

performance of B-machine with Cauchy kernel. For ‘Wdbc’ dataset, the best performance of

SVM is marginally better than that of B-machine although LSSVM is much worse than the other

two. Interestingly, we observe that the performance of B-machine often improves significantly

with long-tailed kernels such as Cauchy kernel.

Classifier Pima Bupa Wdbc Wpbc Iris Ecoli

SVM 76.88 69.39 98.03 80.78 96.13 88.17

(Gaussian) (±4.74) (±6.53) (±1.80) (±6.15) (±4.87) (±4.53)

(σ, C) (1, 2) (0.3, 1) (2, 20) (1, 2) (1, 1) (0.5, 1)

SVM 75.58 71.72 96.20 74.39 96.13 87.25

(Polynomial) (±4.74) (±6.40) (±2.26) (±8.72) (±5.06) (±4.88)

(C) (1) (5) (1) (1) (5) (3)

LSSVM 76.28 68.87 93.78 78.13 84.53 77.40

(Gaussian) (±5.18) (±7.21) (±2.93) (±3.93) (±7.90) (±5.54)

(σ2 , γ) (5, 0.1) (1, 2) (4, 0.3) (5, 4) (0.2, 15) (1, 10)

BM 77.51 72.42 97.68 81.05 95.87 87.93

(Gaussian) (±5.41) (±6.37) (±1.65) (±7.11) (±5.02) (±4.79)

(σ, λ) (5, 0.2) (2, 0.2) (1.5, 1) (5, 0.6) (1, 0.4) (1, 0.5)

BM 76.28 73.17 97.61 80.83 97.07 88.77

(Gauss+Expo) (±4.78) (±6.59) (±1.76) (±6.35) (±4.70) (±4.56)

(σ, λ) (2, 0.2) (2, 0.6) (0.2, 0.2) (3, 1) (1, 0.6) (2, 0.4)

BM 77.10 72.77 97.81 82.33 97.60 89.16

(Cauchy) (±5.40) (±6.55) (±1.65) (±6.51) (±4.21) (±4.37)

(σ, λ) (5, 0.2) (3, 0.4) (2, 0.7) (3, 0.5) (2, 0.3) (3, 0.8)

Table 2: Classification performance in terms of the 10-fold cross-validation scores on the datasets

described in Table 1. Classification performance summarizes the best mean classification accuracy

and the corresponding standard deviation of the accuracies as a significance check. Correspond-

ing to each classifier model, the candidate parameter values for which the best performance is

obtained, are shown.

In order to establish the comparison between these classifiers in a more quantitative way, we

performed resampled paired t-test as provided in (Dietterich, 1998). As described in (Dietterich,

1998), we randomly divided the dataset such that two-thrid of the dataset constituted a training

set, and the rest one-third constituted a test set. We then used the same training set and test
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set for all the variants of the three classifiers. We then computed the rate of misclassification on

the test set. We repeated this experiment for 30 different trials, where in every trial we randomly

partitioned the data and computed the rate of misclassification by each classifier. For every trial,

we computed the difference in the rate of misclassification. For example, if c1 and c2 are two

different classifiers with rates of misclassification p
(i)
1 and p

(i)
2 respectively for trial i, then the

difference in misclassification is p(i) = p
(i)
1 − p

(i)
2 , and the statistic is obtained as

t =
p̄.
√

N
√

∑

N

i=1
(p(i)−p̄)2

N−1

(56)

where N(= 30) is the number of trials, and p̄ = 1
N

∑N
i=1 p(i) is the average difference in the

misclassification rate. Evidently, if t < 0 then classifier c1 is better than the classifier c2 and vice-

versa. The significance to which the two classifiers are different is obtained from the measure

t. As provided in (Dietterich, 1998) (as obtained from the Student’s cumulative t-distribution

function with N − 1(= 29) degrees of freedom), if |t| > 2.0452 then the classifiers are different

from each other with a confidence level of 97.5%, and the classifiers are different with a 95%

confidence level if |t| > 1.6991. Table 3 summarizes the t-statistic as obtained by the resampled

paired t-test. In ‘Wdbc’ dataset, the best variant of B-machine (Gaussian kernel) is worse than

the best SVM (Gaussian kernel) with a confidence 58.24% (t = 0.21), however, the B-machine

performs significantly better (with a probability very close to unity) than LSSVM. In all other

datasets, we observe that the best variant of B-machine significantly outperforms the best variant

of SVM and LSSVM.

Classifier Pair Pima Bupa Wdbc Wpbc Iris Ecoli

BM (Gauss) -3.94 -7.33 0.21 -3.33 -3.26 2.37

SVM (Gauss)

BM (Gauss) -7.0 -3.81 -6.93 -9.59 -2.72 -2.19

SVM (Poly)

BM (Gauss) -4.27 -8.10 -14.73 -4.75 -17.83 -12.10

LSSVM

BM (GaussExpo) 1.73 -8.00 1.48 -0.41 -5.43 -2.54

SVM (Gauss)

BM (GaussExpo) -2.03 -4.61 -4.91 -6.41 -4.63 -8.53

SVM (Poly)

BM (GaussExpo) 1.52 -8.56 -14.11 -2.29 -17.81 -13.34

LSSVM

BM (Cauchy) -4.84 -6.97 1.09 -2.71 -4.82 -3.25

SVM (Gauss)

BM (Cauchy) -7.4 -3.49 -5.38 -7.45 -4.85 -6.56

SVM (Poly)

BM (Cauchy) -4.9 -7.91 -14.68 -3.90 -17.94 -13.79

LSSVM

Table 3: Resampled paired t-test scores in terms of t-statistic comparing the three variants of

B-machine with the two variants of SVM and LSSVM on the datasets described in Table 1.
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4.3.3 Adult and Web Datasets

In Platt (Platt, 1998), two different datasets namely ‘adult’ and ‘web’ datasets were used. In

the adult dataset, the task is to classify households whether having annual income greater than

USD 50K or not based on the 14 different census fields including eight categorical variables.

The data is transformed into 123 sparse binary attributes where six continuous variables are

quantized into quantiles. In the web dataset, the task is to predict whether a web page belongs

to particular category or not based on the presence of 300 different keywords. Thus the web

dataset also has 300 sparse binary attributes. The original ‘adult’ and ‘web’ datasets consist

of 32562 and 49749 training samples. Since we used Matlab quadratic programming library to

directly optimize the objective functional of the B-machine, the large number of samples could not

be accommodated due to the limitation of the virtual memory. Originally Platt (Platt, 1998) used

sequential minimal optimization for the larger datasets, however, we have not used any equivalent

implementation of the B-machine. Platt (Platt, 1998) used nested sets of training samples for

both the ‘adult’ and the ‘web’ datasets. We used the first two subsets of the ‘adult’ dataset and

the first subset of the ‘web’ dataset. In Table 4, we show the respective details of the ‘adult’

and ‘web’ datasets that we used for the experimentation. These datasets are highly unbalanced

(samples from one class largely dominate the dataset) and SVM is able to perform classification

with high accuracy even for these unbalanced datasets. We compare the performance of the

B-machine with that of SVM and LSSVM for different types of kernels. In Table 5 we report

the results over the test samples for all classifiers with the best parameter settings. Here also we

observe that the B-machine performs better than the SVM and LSSVM although the differences

in performance scores are not so significant. However this shows that the B-machine is able to

perform well even for the unbalanced datasets such as adult and web datasets.

Dataset number of attributes number of training samples number of test samples

Adult1 123 1605 30956

Adult2 123 2265 30296

Web1 300 2477 47272

Table 4: Description of the nested subsets of the ‘adult’ and ‘web’ datasets.

Classifier SVM SVM SVM LSSVM BM BM BM

(Gaussian) (Cubic) (Linear) (Gaussian) (Gaussian) (Gauss+Expo) (Cauchy)

(σ2 , C) (C) (C) (σ2 , γ) (σ, λ) (σ, λ) (σ, λ)

Adult1 84.22 80.15 84.26 82.1 84.14 84.14 84.28

(10,1) (0.01) (0.05) (20,20) (10,0.8) (10,0.8) (10,0.8)

Adult2 84.33 79.18 84.44 81.42 84.55 84.55 84.69

(10,1) (0.01) (0.05) (20,20) (10,0.8) (10,0.8) (10,0.8)

Web1 97.96 97.72 97.74 97.98 98.1 97.88 98.1

(10,5) (0.01) (1) (100,5) (5,0.2) (7,0.2) (5,0.2)

Table 5: Best classification performance on the ‘adult’ and ‘web’ test datasets for SVM, LSSVM

and B-machine. Corresponding best parametric settings of each classifier is also reported.
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4.4 Peformance of the λ-kNN Classifier

We report the 10-fold cross-validation results of the λ-kNN classifier as proposed in Section 3.2

for the datasets in Table 1. We computed the CV scores in the same way (random sampling) as

described in Section 4.3.2. As a comparison we provide the corresponding scores of the standard k-

nearest neighbor algorithm. We report the best scores obtained for both the algorithms and show

the value of optimal λ for the λ-kNN and the value of optimal k for the standard kNN classifier.

Table 6 summarizes the performance scores. We observe that λ-kNN is able to outperform the

standard kNN algorithm in terms of mean accuracies on the ‘Bupa’, ‘Wdbc’, ‘Wpbc’, and ‘Ecoli’

datasets. The scores are same for the ‘Iris’ datset whereas for the ‘Pima’ datset, standard kNN

performs better than the λ-kNN.

Classifier Pima Bupa Wdbc Wpbc Iris Ecoli

λ-kNN 75.86 68.18 97.44 79.75 97.33 87.51

(±4.12) (±8.46) (±2.13) (±7.11) (±4.44) (±5.40)

(λ) (0.13) (0.37) (0.67) (0.7) (0.48) (0.57)

kNN 76.01 65.41 97.36 78.89 97.33 87.38

(±3.71) (±7.08) (±2.13) (±6.93) (±4.44) (±4.68)

(k) (15) (15) (15) (6) (30) (14)

Table 6: 10-fold cross-validation scores (with random sampling) of kNN and λ-kNN over the

datasets in Table 1. Scores summarize the mean accuracies and corresponding standard devia-

tions. Corresponding best parametric settings are also reported for each classifier.

We also compare the performance of the λ-kNN classifier with the standard kNN classifier using

the ‘adult’ and ‘web’ datasets in Table 7. Since the adult and web datasets contains sparse vectors

of zeros and ones, we used two different similarity measures to obtain the nearest neighbors. We

used the standard Euclidian distance and also used normalized cosine similarity. Normalized co-

sine similarity is often used to measure the similarities between text documents. We observe that

for the ‘adult1’ dataset, the standard kNN classifier performs better than the λ-kNN classifier

when we compute neighbors based on the Euclidian distance; however, λ-kNN outperforms stan-

dard kNN classifier using cosine similarity. For the ‘adult2’ and ‘web1’ datasets, λ-kNN classifier

performs better than the standard kNN with both Euclidian distance and cosine similarity.

Classifier Adult1 Adult2 Web1

Euclidian Cosine Euclidian Cosine Euclidian Cosine

λ-kNN 83.02 83.25 83.40 83.43 97.49 97.93

(λ) (0.26) (0.26) (0.24) (0.26) (0.92) (0.98)

kNN 83.12 83.21 83.37 83.29 97.41 97.89

(k) (36) (42) (42) (41) (5) (3)

Table 7: Classification performance of λ-kNN and standard kNN classifiers on ‘adult’ and ‘web’

datasets using Euclidian distance and cosine similarity. The best parametric setting correspond-

ing to each classifier is shown.
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5 Summary and Conclusions

We presented an interpretation of the principle of parsimony in the context of pattern classifica-

tion where we minimize the superfluity in the outcome of a classifier with a given margin. We

described the meaning of the outcome in the context of different types of classifiers. We then

provided an explanation of this principle from the bias-variance perspective where we have shown

that the margin of the superfluity determines the boundary bias of the classifier. As the margin

increases, the bias decreases and the variance increases. Similarly the bias increases with the

decrease in the margin. In the limiting condition, as the margin goes to zero, it imposes infinite

bias on the classifier. We also explained the connection of this principle with the regularization

techniques using model complexity. The Lagrangian multiplier of the regularization functional

increases with a decrease of the margin of superfluity in the outcome. This principle is different

from the margin maximization principle used in the SVM classifier where margin denotes how

far the samples are separated from the separating hyperplane. In our context, the margin acts

as a threshold for the superfluity in the outcome of a classifier. Note that, we do not claim this

principle as a new principle. This principle has been used in decision tree pruning where the leaf

nodes of a tree are pruned till the impurity reaches a certain threshold. In context of decision

tree growing, a leaf node is not further split if the impurity reaches that threshold. The threshold

in impurity is exactly the same as the margin in our principle. However, this mechanism has not

been explicitly used to design other classifiers. We explicitly state this practice in the form of

a principle and use this principle to design two different classifiers namely B-machine (which is

kernel based classifier) and λ-kNN (which is based on k-nearest neighbor classifier). We show that

for certain values of λ, B-machine is able to outperform the standard SVM on several datasets.

We also observed that λ-kNN is able to outperform standard kNN classifier for several datasets.

We also discussed the relationship of the B-machine with certain other kernel based classifiers.

We interpreted B-machine as a least square kernel machine with box constraint where it uses

uniform priors instead of Gaussian priors. From the regularization perspective, B-machine has

similarity with certain other kernel machines although the regularization functional is different in

the B-machine. We mentioned that ν-SVM also uses a similar principle of regularizing the margin

of separation between the classes (with an additional regularization factor) where the parameter

ν controls the penalization due to separation of the classes in the loss functional. However, ν-

SVM also uses the basic principle of margin maximization between the classes as used in SVM

whereas the basic principle in B-machine is different. We mentioned that B-machine is flexible

to accommodate non-Mercer kernels unlike the SVM and related kernel machines. We observed

that use of centrally peaked long-tailed kernels can enhance the performance of the B-machine.

In addition to Gaussian kernel, we used two other kernel functions namely, Cauchy kernel and a

hybrid of Gaussian and exponential kernels. We observed that these long-tailed kernel functions

provide better performance on several real-life datasets as compared to simple Gaussian kernel

due to the long-range interaction between the B-vectors.

One disadvantage of the B-machine is that it produces relatively non-sparse solution as compared

to SVM and other least square kernel machines using Hilbert kernels. This leads to relatively

slower training processes for B-machine. In this respect, further investigation can be performed
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towards obtaining better variants of the B-machine. With respect to the run-time memory re-

quirements, sequential minimal optimization of B-machine objective functional for larger datasets

can also be investigated as a scope of future study.
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