

RI09008, 27 April 2009 Computer Science

IBM Research Report

A Scalable Middleware for Presence Virtualization and

Federation

Arup Acharya, Xiping Wang
IBM Research,

T. J. Watson Research Center,

Hawthorne, NY, USA.

Nilanjan Banerjee, Dipanjan Chakraborty, Koustuv Dasgupta,

Shachi Sharma
IBM Research,

India Research Lab,
New Delhi, India.

IBM Research Division

Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication

outside of IBM and will probably be copyrighted is accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of

the transfer of copyright to the outside publisher, its distribution outside of IBM prior

to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained

copies of the article (e.g., payment of royalties). Copies may be requested from IBM

T.J. Watson Research Center, Publications, P.O. Box 218, Yorktown Heights, NY
10598 USA (email: reports@us.ibm.com).. Some reports are available on the

internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Abstract. Presence is a key enabling technology for developing rich
context-aware applications. However, there is no general purpose pres-
ence infrastructure available today which is both flexible and highly scal-
able to cater to a wide range of end users (consumers) and applications.
We have introduced earlier [12], the concept of virtual presentities (log-
ical presentities created in response to applications or user queries to
presence systems) and a middleware for the life-cycle management of
the virtual presentities, that leverages the presence infrastructure in a
programmatically flexible and scalable fashion. Given the exponential
rise in the number of presence sources and the rapid emergence of so-
phisticated context-aware applications, the scalability of the middleware
is critical to its efficiency and general acceptability. In this paper, we
present the design to improve scalability further. A scalability measure,
inherent to the system design, is the representation of the presence logic
in applications and those used by end users as persistent queries on pres-
ence data, or the virtual presentities, for potential re-use among multi-
ple applications and end users with identical requirements. This reduces
the effective load on the base presence servers and thereby enabling it
to support more queries. Another scalability measure is to enhance the
life cycle management of the virtual presentities with the introduction
of hierarchical data re-utilization strategy. Besides enhancing the scal-
ability of the virtualization middleware, we have expanded its range of
operation by federating multiple presence domains and thereby enabling
applications and users making use of presence data from different het-
erogeneous, but independent presence domains. In this paper, we present
the detailed design, implementation and performance evaluation of the
enhanced middleware, highlighting the different measures adopted for
scalability and present experimental results to corroborate them.
Keywords: Presence, context, virtualization, scalability, federation

1 Introduction

Presence technology was originally developed for communicating “on-
line status” in instant messaging applications. Later, it graduated to be-
come a key enabler of Web-based content provider (e.g., Google TalkTM,
Yahoo! Messenger TMor SkypeTM), enterprise (e.g., IBM SametimeTM)
and service provider/telco (e.g., Push-to-talk) converged applications.
Indeed, presence is rapidly evolving to become the de-facto method of
representing and querying the context of an individual, both physical
(e.g., a user’s location) and virtual (e.g., the status of avatars visiting
my ‘island’ in SecondLife). Moreover, presence is used to represent the
dynamic attributes of not just individuals, but also devices (e.g., the bat-
tery level of a cellphone) and abstract entities (e.g., the number of atten-
dees in a conference call). Thus, presence may be broadly described as a
publish-subscribe system for context, that enables a variety of products
and applications (ranging from location tracking, to real-time discovery
of available experts for collaboration, to business process-enablement).
As such, presence embodies the first practical, large-scale adoption of
context-aware computing.

1.1 Presence Technology: A Background

Current presence solutions are largely based on SIMPLE [4, 7] extensions
to the base SIP signaling protocol (with Google Talk being a notable
exception that utilizes the XMPP [3] protocol). The SIP-based presence
model [4] defines a presentity, which is a combination of device, services,
and personal information that depicts a user’s presence status in the
network and is identified by a single presentity SIP URI, as follows.
This presence information is presented in the Presence Information Data
Format (PIDF) [1], which has been defined as the reference format for all
IETF presence implementation. Each PIDF document has presence data
entries consisting of one or multiple tuples that contain a basic status,
each identified by one or more attributes, and optionally an address and
other data. PIDF, being based on XML is very extensible and allows the
trivial addition of namespaces to the basic structure. Thus a wide range
of PIDF extensions have been defined to model the context information
of diverse entities [2].
The basic presence architecture consists of an application server called
the Presence Server (PS) that acts as the central repository for a specific
domain (a specific organization or application) where presence informa-
tion generated by SIP clients (via a PUBLISH message) belonging to
that domain is matched against prior subscriptions issued (via a SUB-
SCRIBE message) by “watcher” clients; the PS informs such watchers
of changes in presence states (via a NOTIFY message). In the stan-
dard SIMPLE model, subscriptions and publishes are indexed using the
SIP URI of the presentities. Consequently, subscribers can only spec-
ify an individual subscription over a single presentity (e.g., subscribe to
the URI sip:alice@us.ibm.com). The URI restriction applies, even when
group subscription mechanisms (such as the use of resource-lists [5]) are
considered. Moreover, the subscription logic over the content of individ-
ual URIs is restricted to a limited set of pre-defined “filter” operators
specified in SIP standards [7] (e.g., alerts only on specified changes in
the location value).

The problem: With the further emergence of advanced presence-
based services, individual subscriptions or simple filter based logic is
insufficient for the development of rich presence-driven context-aware
applications. Consider the following two scenarios:

– Bob wants to hang out with a bunch of friends in the evening at
a pub and wants to know which bar has the maximum number of
the his friends who are his Instant Messenger (IM) buddies on that
evening.

– Alice, an application developer is developing a smart call center ap-
plication, which routes calls based on expertise and availability of the
employees in an enterprise. For example, a call to Java Helpdesk gets
automatically routed to one of the available Java experts located at
a particular location.

The current practice of developing such application is to embed the appli-
cation logic in vertical, independent application silos, where it’s usually
the developer’s (or end user’s) responsibility manually subscribe to the

relevant presence information available in various servers through domain
specific gateways and execute the necessary logic on them as appropri-
ate for the concerned application. For example, in the first scenario, Bob
has to set appropriate filters on his IM buddies’ and and then manually
collate them to figure out which one of the bars has the maximum num-
ber of his buddies. Obviously, this is a tedious and time-consuming job.
In the second scenario also, Alice needs to do the same thing in pulling
the relevant data from different presence servers and embed the logic of
finding online Java experts within her application and then integrate it
with the call center application. Thus the queries are built within appli-
cation silos vertically making it very difficult for other applications or
user to use them directly or indirectly. We believe that this approach of
developing presence-based application would present serious limitations
to the deployment of a large-scale, scalable presence infrastructure for
future converged applications. The limitations are characterized by the
following requirements:
Scalability: With the advances in sensing, computation and commu-
nication, it is envisioned that there will be several orders of magnitude
increase in the volume of presence data available. For example, there have
been ongoing efforts [8] in using sensors on cell phones to infer variety
of activities or events, both personal and social. Given that, presently
there are almost 3 billion cell phones around the world, it is a very
challenging task to manage and use this data efficiently in real-time.
Hence, the presence infrastructure should be scalable enough to control
both the network traffic (in terms of presence updates and notifications)
and the server processing (in terms of both subscriptions and applica-
tion based presence logic) loads. This scalability is critical for real-life
scenarios such as a telecom service provider that inject a unique set of
presence attributes into a larger federated presence eco-system (e.g., a
cellular provider supplying real-time location of an user to Yahoo, for
use in location-aware advertising).
Flexibility: The presence infrastructure should provide a flexible pro-
grammable interface to support a wide variety of presence queries re-
quired for the development of advanced presence based applications.
Federation: Furthermore, with the proliferation of presence, an individ-
ual’s contextual state is increasingly fragmented across different applica-
tions and provider domains; currently, presence-based applications oper-
ate in domain-specific silos, unaware of the individual’s presence status
in other domains. Obfuscating these traditional barriers between com-
munications service providers, enterprises and Internet content providers
will, however, enable a significantly more unified and accurate view of
an individual’s presence attributes across multiple domains. For example,
an employee’s activity status cannot be accurately derived just from the
enterprise-sanctioned Presence system (e.g., Sametime within IBM), as
this infrastructure is unable to capture the fact that she may be using her
cell-phone (from an external telco). Thus, future converged applications
require the presence status from multiple sources/domains and we call
the paradigm enabling such applications, presence federation. The cur-
rent practice to solve this problem is to build domain specific gateways
for presence federation.

1.2 Presence Virtualization and Federation

To mitigate the above issues, and effectively support more sophisticated
use of presence, we have developed a presence virtualization solution
[12] that provides a programmable abstraction by which applications can
“programmatically push” its application-specific logic, for deriving com-
posite presence state (from the presence-related attributes of multiple
individual presentities) onto the backend server infrastructure. More-
over, our virtualization solution also allows clients to expose and share
the end results of their queries with other relevant clients; in effect, vir-
tualization allows presence consumers to capture the persistent state of
external queries as virtual presentities (presentities created in response to
the queries), which become a seamless part of the presence infrastructure
and are functionally indistinguishable from the ‘raw’ presentities.
By the virtue of the virtualization middleware Bob can add the particular
query, described earlier, as a presence buddy in his IM client and can get
the answer to the query at the click of a button whenever necessary. This
approach has an additional benefit of application of user defined policies
on the virtual presentities in the same way as they are applied to the
regular presentities.
In case of the more generic queries such as the one in the second scenario,
a catalogue of all the existing queries can be maintained and a developer,
such as Alice, can manually inspect the catalogue to check whether the
query of her interest exists already. If it exists then there is no need to
create a new query and Alice can simply subscribe to the query to get the
appropriate response. In case the query does not exist in the catalogue,
the developer can find out which of the existing queries can partially
meet her requirements along with raw presence information from other
presence servers and can create a new query in the system. Of course
there is this possibility that none of the existing queries is of any use to
Alice and in that case all the required presence data needs to be pulled
in from the presence servers. But, we envision that with more and more
developers using this system an organically created interconnected set of
queries would develop and a community oriented view of presence-based
services will gradually emerge, which will enable query re-utilization at
a large scale.
A detailed account of the design and implementation of this virtual-
ization middleware has been reported in [12]. We will recapitulate the
salient design points later in Section 3. The earlier work, however, real-
ized the programmable virtualization middleware without much consid-
eration into the scalability and federation aspects, which as mentioned
earlier, are critical to the performance and wider acceptibility of the sys-
tem. In this paper, we focus on these aspects and enhance the design for
improved scalability and augment federation capability to the virtual-
ization middleware to realize a highly scalable and flexible virtualization
and federation middleware.

Key Contributions: The primary contribution of this paper is to take
the concept of presence virtualization from our previous paper [12] and
develop a middleware design that makes presence virtualization scalable.

we support scalability in three significant ways: (i) We had earlier devel-
oped ’query processing cell’ (QPC) as a logical entity to couple related
presence virtualized queries (transformation functions) and associated
presentities. In this paper, we developed a comprehensive design to dy-
namically and automatically create a multiple of such QPCs based on
end-user query loads/patterns. This ensures that the overall processing
power of the system scales up with increasing load. (ii) We designed
an hierarchical model of interconnecting QPCs so that presentity status
available in one QPC is made available for subscription to other queries
(that may be executed in a separate QPC). This reduces the subscription
load on the PS by allowing subsribed data to be re-used across multi-
ple QPC. Besides data re-use, our design allows re-use of tranformation
functions across QPCs - when a new TF is instantiated, it can not only
subscribe to presentity documents/state in other QPCs, but also to the
output of other tranformation functions. (iii) A system-level evaluation
of QPC implementation comparing multi-threaded design with single
threaded design is carried out. Further, extensive experiments on the
multiple QPCs with and without data reusability establishes the fact
that increase in the level of data reusability in the QPCs design leads to
enhanced performance of the system. We then extend the virtualization
model to allow virtualization queries to be posed not only on the presen-
tity data on the local presence server, but also on presentities that exist
in a different presence system. We design and develop a specific model
of presence federation for this purpose whereby an enterprise appears as
a user on a consumer-facing presence system such as gtalk, so that pres-
ence of enetreprise clients can be pulled into a virtual presence system
running within the enterprise.
The rest of the paper is organised as follows. Section 2 motivates the
design considerations for scalability and federation. Section 3 recapitu-
lates the presence virtualization system and presents the salient design
enhancements done to the middleware for higher scalability and presence
federation. Implementation of the system and the experimental results
to validate the design considerations are presented in section 4. Section
5 presents a survey of related works in this area. Section 6 concludes the
paper.

2 Motivation and Design Principles

In this section, we present the motivations behind the scalability design
and federation capability of the middleware.
Enhancing Scalability: Let the set of presentities in a PS is denoted
by P and |P | = N . Also, let there be M applications. So, there can be
|P(P)| = 2N unique combinations of the presentities that the applica-
tions can use, where P(P) is represents the power set of P . Now assuming
that each application can uniformly use a group presentity selected from
P(P), we can say that M/2N applications subscribe to each member of
P(P) on an average. Now in P(P) each of the presentities in P can occur
for atmost 2(N−1) times. Hence, the total number of notifies sent out by
the PS for each presentity in P is given by (M × 2(N−1))/2N = M/2.

Now with virtualization middleware, each of the elements in P(P) can
be reused by M/2 applications. Hence, the load on PS is automatically
reduced by a factor of M/2. With the reuse of the presence data among
the virtual presentities using a hierarchical organization, the load on PS
can be reduced further so that the total number of notifies sent out by
the PS is equal to |P | or in other words there is at most one subscription
per presentity in the PS.
Thus, a key design consideration for an efficient middleware is to push
the application logic as close to the PS as possible (not necessarily to the
PS), rather than pulling data into the application context. At the same
time, it is impractical to assume that a PS would take this responsibility.
The intermediate virtualization middleware does the trade-off and brings
the query and data together. Users’ queries are intercepted by this layer
and responded to, rather than by the PS. Flip side is that this increases
the computational load on the middleware and it requires a highly scal-
able design in terms of interdependent but independent computational
units bolstered by additonal hardware appliances dedicated for special-
ized operations. Of course, we can add more server machines to scale this
middleware as the query load increases.
In the following, we present the design principles that we adopted in
our solution for increased scalability of the middleware. The first two
corresponds to the middleware’s scalable use of the base PS, whose per-
formance is obviously critical to the overall scalability of the system and
the third one corresponds to the computational scalability of the mid-
dleware.
Re-use of Virtual Presentities: Virtual presentities do not directly reflect
physical entities like people, devices etc., but they represent a computa-
tion on state of other physical presentities or recursively on other virtual
presentities, and the computed state represents one execution of a query
on the presentities, e.g., ‘which bar has most of my friends’. This com-
puted state is sent to all subscribers of this query. If any input to the
query changes, e.g., a new friend enters a bar, the query re-executes and
the updated answer is sent to all the subscribers. A virtual presentity can
therefore be viewed as a continuously running or persistent query. Unlike
physical presentities the virtual ones are unsuitable for stable storage.
This is key to scaling since a virtual presentity’s state change could be
frequent and if they are represented as a physical presentity, their state
change would need to be reflected as an update to a corresponding pres-
ence/XMLdocument, which would not scale. Also, in case of a failure, the
virtual presentity can be re-initialized by re-installing the query on the
relevant component presentites. By creating a interconnected network of
virtual presentities we are, in effect, creating an event propagation sys-
tem, where the raw events trigger the next level virtual presentities to
be recomputed which then trigger further recomputation on higher-level
presentities - thus, the effect of an event change is propagated only as far
as it needs to. If we enable caching of query execution, then an update
no longer propagates beyond a presentity which did not get changed due
to query re-execution. The virtual presentities are in-memory presistent
queries whuch can be shared across multiple consumers. As indicated by
the PS load calculations, this has a direct implication to the PS load

as the number of subscriptions to base PS reduces with the increase in
sharing of virtual presentities.
Presence Data Re-use among Virtual Presentities: Again as shown in
the above calculations significant reduction of subscription load on base
PS can be obtained when the virtual presentities re-use the presence
data obtained from the PS among themselves. Thus, a virtual presen-
tity can procure necessary data by internally subscribing to an exisiting
virtual presentity that has already obtained the data from the PS. This
directly reduces the number of subscriptions to the base PS and adds to
the scalability of the system. The internal data re-usage can be further
improved by creating a hierarchy of virtual presentities with the higher
layer virtual presentities re-using the presence data of the lower layer
virtual presentities through internal subscriptions.
Hardware Offloading: One of the most computationally demanding op-
eration of the virtualization middleware is to evaluate the queries from
XML-based presence documents. There are several general purpose hard-
ware appliances available for processing XQuery or XSLT based queries
on XML documents. When loaded with an XML document and a cor-
responding query, these appliances return the result of the query almost
at wire speed, which is a few order of magnitude faster than any of the
available software XML query processing engine. We have made use of
one such hardware appliances to offload the large number of query com-
putations that we envision for our middleware, thereby increasing the
scalability of the overall system.
Presence Federation: Physical presentities may be stored in several
different domains and the virtualization middleware needs to interface
with these domains in order to execute a query that involves presentities
from heterogeneous domains. This requires presence federation among
multiple heterogeneous domains. Presence federation is achieved today
either by building isolated domain specific gateways or embedding the
federation logic within application logic. These approaches are clearly
not flexible enough to support the application paradigm described be-
fore. Thus, there is clearly a need of a general purpose gateway, integrated
with the virtualization middleware, that can federate multiple presence
domains and seamlessly interface with them, so that virtualization could
be oblivious to the heterogeneity of the underlying presence infrastruc-
ture.

3 Design

In this section, we review our basic design of the virtualization middle-
ware followed by a detailed account of the design for enhanced scalability
and presence federation.

Presence Virtualization Architecture - A Recap: We devel-
oped our system on the basic presence framework defined in SIMPLE
[4] and SIP as the common message passing protocol between different
components of our system. Although, any generic publish-subscribe sys-
tem could have been used for our purpose, SIP and SIMPLE provided

the following ready advantages: a) SIP is widely available at the commu-
nication end-points today, be it on cell phones or on desktops through
different IM/voip clients. SIP has also been accepted as the standard
signaling protocol for IMS, which is going to the key component in the
next generation converged network systems; b) SIMPLE is already used
to publish raw events. Therefore it makes sense to re-use the same inter-
action model to express queries in our system c) SIP has the flexibility
to carry XML based payloads thus making it ideal for expressing general
purpose queries.

Fig. 1. VPS Architecture

A Virtualized Presence Server (VPS) embodies the virtualization and
federation middleware, which is responsible for accepting complex pres-
ence queries from clients and responding with the appropriate virtual
presentity status. The basic design of the VPS is presented in [12]. Here
we would review the salient design concepts and then describe the var-
ious scalability measures adopted to improve the overall performance.
The two fundamental, and closely-coupled, aspects of virtualization are
(i) the expression (i.e., in what structure and language) of the individual
virtualization queries and (ii) the basic computational unit of presence
virtualization.

Since the presence documents are expressed in XML (PIDF), the manip-
ulation logic is expressed in the queries using an XML manipulation lan-

guages viz. XSLT. To promote query expressiveness with efficient query
reuse capabilities, each query is composed of two distinct parts:

– A Membership Set (MS) part identifies the set of underlying presen-
tities (either as an explicit list of individual pre-existing SIP URIs
or via a group URI corresponding to a resource list [5]) whose pres-
ence state is utilized to define different attributes of the virtualized
presentity. For example, in case of the second scenario described in
Section 2, the MS will consist of the indexes (SIP URI) to all the
presentities corresponding to all the Java experts in the enterprise.

– A Transformation Function (TF) specifies a transformation (a se-
quence of operators) expressed in XSLT that is applied to the set
of PIDF documents of the MS members to generate the response to
the virtualization query. Thus, the query posed by the call center
application will have an XSLT which will return the list of all the
available Java experts at a particular location.

Each virtualized presence query issued by a client is thus uniquely iden-
tified by the tuple (MS, TF). Figure 1 illustrates the details of an XSLT–
based query (and the response) corresponding to the virtualized query
discussed in the example above.

To implement a scalable virtualization platform that can simultaneously
support a large number of virtualization queries, we have developed the
notion of a Query Processing Cell (QPC) as the fundamental unit of
presence virtualization. A QPC is a software object that effectively rep-
resents a virtual presentity (with a dynamically assigned URI) defined by
a specific membership set (MS) such that its presence status is an aggre-
gation of the presence data of individual members. Multiple queries with
identical MS, but distinct TF, specifications are mapped to the same
QPC. Each of the TF components of queries mapped to a single QPC
are then viewed as subscriber-specific filters over this presence document.
As illustrated in Figure 1, a VPS can then be viewed as a collection of
QPCs, whose creation, termination and inter-QPC coordination are or-
chestrated by the QPC Factory.

By appropriate use of standard SIP URI qualifiers and session redirec-
tion, the VPS allows different clients to interact with it in three different
ways, without requiring any modifications to the client-side SIP stack.

Figure 2 (i.e. steps 1, 2, an 3 therein) shows the SIP-based interaction
between a query client and the QPC (QPC Factory):

– A query client can issue its query (a SIP SUBSCRIBE with a (MS,
TF) tuple in the body of the message) addressed to the QPC Factory
URI. If a QPC corresponding to the MS exists, the client will be
redirected to the QPC URI; else, a new QPC object will be created
on-demand by the QPC Factory (with a dynamically allocated URI
from the URI space managed by the QPC Factory), and the query
client will be redirected to this new URI.

– The (MS,TF) query is then routed by the query router to the Query
Receiver module of the QPC. To promote reuse, each TF being cur-
rently supported by the client is identified by a “query component”
label (a “?id” suffix appended to the URI for the QPC). As be-
fore, if the TF exists, the query client is again redirected to the

Fig. 2. Internals of QPC with the interactions between a query client and QPC/QPC
Factory

“sip:qpcURI?TFid” URI; else, the QPC Controller installs the cor-
responding TF transformation logic on the XML processing Engine,
generates a new “TFid” and then redirects the client to this URI.

– The (MS,TF) query addressed to a “sip:qpcURI?TFid” URI is then
managed by the Query Receiver module of the QPC.

The Query Catalog entries expose the existing (MS, TF, qpcURI, TFid)
bindings to the external world; accordingly, virtualization clients are able
to reuse existing components on the VPS by directing their query to
different URIs (e.g., if there is an existing query with identical MS and
TF components, the client can simply send its subscribe directly to the
corresponding “sip:qpcURI?TFid” URI). Whenever the computed result
of a query changes, each QPC uses SIP NOTIFYs to inform the end
clients of a new response to their query.

During the initialization of a QPC, the QPC Factory sets up a dynamic
resource list URI (containing all the URIs in the MS) on a Group List
Management Server (GLMS). A QPC uses this GLMS URI to efficiently
retrieve the raw presence data from the PS (rather than create per-URI
subscriptions).

Internally, each QPC consists of the following components (Fig. 2):

– A Presence Fetcher that interacts with the Presence Server to setup
subscriptions on the underlying Presence Server and obtain the pres-
ence documents of each of the members of the MS.

– A Controller that takes the different TF requests from all clients
mapped to the same QPC, and interfaces with the XML process-
ing appliance to efficiently apply the XSLT transformations to the
aggregated presence data of the MS.

– A Query Receiver that manages the external subscriptions issued by
the virtualization query clients – this consists of handling the SIP-
based requests (SUBSCRIBEs) from the clients of this QPC, and
for issuing NOTIFYs (containing the results of XSLT transforms) to
the QPC’s clients.

3.1 Multi-QPC Scenario and Data Re-use

QPCs are the basic computational unit in VPS design. Each QPC has its
own MS on which it operates. In this subsection, we discuss the scenarios
when and how these basic units can be re-used when there are multiple
QPC running in the VPS. There are three possible cases:
1. If an incoming new query has all members of its MS same as that of

existing QPC’s MS i.e. the incoming MS is equivalent to an existing
MS.

2. If an incoming new query has all members of its MS in an existing
QPC’s MS i.e. the incoming MS is subset of existing MS.

3. If an incoming new query has all or some members of its MS present
in more than one QPCs i.e. the incoming MS has some members
present in existing QPCs but it is neither a equivalent set nor a
subset of existing MS.

QPCFactory on receiving a new request determines through catalogue
lookup if there exists a QPC having MS equals to (case 1 above) or
superset of incoming MS (case 2 above). If it finds such a QPC then
QPCFactory redirects client to existing QPC. This design also facilitates
to re-use an installed the TF inside QPC. On receiving a request, QPC
checks if the same TF is already installed into it or not. If the TF exists
in QPC, it simply redirects client to TF URI. Hence, the QPC design
permits clients to re-use both the data and transformation logic and thus
helping in providing scalability into the VPS.
The QPC also supports identity transformation. If a client sends a re-
quest with identity transformation, the QPC returns the aggregated pres-
ence document of all members of its MS. This feature of QPC design is
useful for supporting case 3 which we discuss in next sub section.

3.2 Hierarchical Model of QPCs

Fig. 3. QPC hierarchy

With multiple QPCs using common presence data, it is possible for
the QPCs to internally share the presence data by building a hierar-
chy of QPCs in the VPS. Let there be N presentities publishing to

PS. Let {P = P1, P2, . . . PN} be the set of all presentities. At any
point of time, there are M QPCs running inside VPS such that Q =
{QPC1, QPC2, . . . QPCM} is the set of all running QPCs and for each
QPCi ∈ Q, there exists a MSi ⊆ P and a transformation function
TFi. The members of Q are organized in a hierarchy so that a QPC
either gathers its presence data from one or more QPCs or from PS di-
rectly or from both QPCs and PS. This is depicted in Figure 3 where
QPC at level n − 1 fetches presence information of its members from
QPC at level n and from PS. Let a new query comes to VPS with
membership set MS0 and transformation function TF0. The problem at
hand then is to place the corresponding new QPC, viz. QPC0 in the
hierarchy H in the VPS. As shown on Table 1, there are 4 possibili-
ties. The first row is all about reusing the existing QPCs while for the
second row QPCFactory determines the list of membership sets from
which MS0 can be composed from. Let QPCn have membership set
MSn = {P1, P2, . . . PK} and some members of M̂S0 belongs to MSn,
where M̂S0 ⊆ MS0, then QPC0 sends SUBSCRIBE to QPCn for M̂S0

where M̂S0 = {P1, P2, . . . PK1}, K1 < K, with an identity transforma-
tion function and QPCn sends back aggregated presence document com-
posed of the members of M̂S0 in NOTIFY message to QPC0.

Table 1. Cases for QPC and TF re-utilization

TF0 = TFn TF0 6= TFn

MS0 = MSn QPC re-utlization QPC re-utlization
with TF installation

MS0 6= MSn Creation of QPC0 Creation of QPC0

and installation of TF and installation of TF

Creating Optimal Hierarchies The VPS generates two types of load:
(i)Load on presence server: Each QPC inside VPS subscribes to presence
server (one or more) for presentities in its membership set (either through
separate URI for each presentity or through group list URI). This gener-
ates SUBSCRIBE-NOTIFY load between VPS and presence server. (ii)
Load on QPC: In hierarchical design of QPCs, a QPC may subscribe to
one or more other QPCs for presence data of all or some members of
its membership set. QPC load comprises of this internal subscribe-notify
load and external notifys QPC receives from presence server and sends
out to its clients.
The load on presence server and the load on QPCs due to internal sub-
scriptions are complementary to each other. The load on presence server
is more expensive as it corresponds to signaling load in the SIP network.
The main consideration in building optimal hierarchy is to balance these
two loads.
Greedy Set Cover Algorithm (GSC): The objective of greedy algo-
rithm is to use minimal number of QPC for internal subscription, thus
subscribing to QPCs with maximally matching MS, which in turn boils

down to the problem of finding minimal cardinality set cover over a
given set. GSC, however, results in skewed subscription load distribution
within H, where a few QPC handles the majority of internal subscrip-
tions. To distribute the load efficiently, we propose a weighted set cover
approach as follows.

Weighted Set Cover Algorithm (WSC): We define weight or flow
of a query processing cell as sum of its inflow and outflow, i.e., flow =
Inflow + Outflow, where the inflow of a QPC is defined as the total
number of NOTIFYs it receives for all its presentities (i.e. its mem-
bership set members) and the outflow of a QPC is sum of number of
NOTIFYs it sends to other QPCs. Thus, Inflow =

∑
n

i=1
Ui, where n

is the cardinality of MS of QPC and Ui is the updates for presentity Pi

and Outflow =
∑

n

i=1
SiUi, where Si is the count of SUBSCRIBEs QPC

receives for a presentity Pi and Ui is the updates for presentity Pi. The
algorithm is depicted in Figure 1.

Input: Q, MS0

Output: C, MSout

0

C = φ; MS0 = φ;
Sort Q in ascending order of weight of each element;
while Q 6= φorMS0 6= φ do

Remove first element Qi of Q;
Extract MSi of Qi;
if MS0 contains some elements of MSi then

Add Qi to C;
MS0 = MS0 MSi;

end

end

if Q = φ and MS0 6= φ then

MSout

0
= MS0;

end

Algorithm 1: The Weighted Set Cover Algorithm

The new QPC0 sends SUBSCRIBE to all members of C generated by
WSC and to PS for members of MSout

0 . The QPC0 is inserted into
hierarchy H.

Table 2. Standard deviation of load on QPCs

Number of Requests 50 100 1000 10000
GSC 2435.864117 2766.630256 12230.03768 34805.36056
WSC 1378.266869 1878.277492 7529.176063 24713.21174

Extensive simulation experiments have shown that the WSC performs
better than GSC in terms of load distribution among QPCs with in-
creasing number of queries submitted to the system. Table 3.4 shows the
standard deviation of the load across all QPCs with increasing number of
query requests for the two algorithms, where load on a QPC is measured
in terms of the total flow through it. The results are for Pareto publish
rate and when the MS for each QPC is selected from a universe of pre-
sentities following Pareto distribution. The reason for choosing Pareto
distribution is based on the fact that some of the presentities are much

more familiar and hence will be used more frequently compared to oth-
ers. As the results show the difference in standard deviation of QPC load
gets amplified with the increase in the number of query requests. Fig-
ure 3.4 illustrates this fact for 10000 query requests and for Pareto scale
parameter = 1.5.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Percentile (number of QPCs)

C
um

ul
at

iv
e

W
ei

gh
t (

%
)

Greedy Set Cover
Weighted Set Cover

Fig. 4. Simulation Results: Distribution of QPC Load for Hierarchical Algorithms

3.3 Interaction between QPC and XML processing

appliance:

To implement a high-performance virtualization solution, our VPS of-
floads the bulk of the XML transformation and processing logic to a
“wire-speed” XML processing appliance (referred to as XML engine).
The QPC interfaces to the XML processor through a Web-services based
interface. The XML processing appliance works in loopback mode. In the
lookback model, a new firewall service is created for every new XSLT for
XML transform processing and the transform result is directly sent back
to the client through an HTTP response.
Recall that, the Presence Fetcher is initialized to receive an aggregated
presence document as part of a NOTIFY, each time the presence infor-
mation of any MS member changes. On receiving the NOTIFY, the QPC
ships the merged XML document to the XML engine and receives a re-
sponse (as a transformed PIDF document) from the firewall policy. The
Query Receiver then transmits this transformed PIDF (corresponding to
the output of the corresponding TF filter applied to the virtual presen-
tity) via NOTIFY messages to the client. Figures 2 illustrate the specific
interactions between the QPC and the XML processing appliance.

3.4 Presence Federation

Presence federation is mostly an engineering problem which often reduces
to an administrative one. Different types of federation models have been

Fig. 5. Presence Federation

proposed depending on the constituent domains. There could be server-
to-server federation or there could be domain specific gateways between
two heterogeneous domains, exchanging presence information. The for-
mer model is subject to a lot of issues such as business relationship,
administrative policies, protocol heterogeneity, etc., while the latter, al-
though easier to implement has limited applicability. Here we propose a
general purpose model where an application specific federation gateway
is integrated with the virtualization middleware, thereby increasing the
scope of the applications developed over the virtualization and federation
middleware.

In our model, the federation gateway creates a proxy account in the
foreign domain and adds the presentities of interest in that domain as
trusted members. This enables the gateway to procure the presence in-
formation of the presentities and seamlessly make them available to the
virtualization and federation middleware. Some commercial IM service
providers, such as GoogleTM, provides APIs to programmatically sub-
scribe to the presence status of a buddy. We leverage this feature to im-
plement the gateway that federates the VPS domain and the GoogleTMdomain.
Thus the federation gateway creates an user account with GoogleTMand
adds the users whose presence status is relevant to the VPS. Of course,
the user also needs to add the federation gateway user as a buddy.
This model is very useful for developing applications such as the one
for a courier company who wants to deliver package only after ensuring
customers availability at home. The application can add the customers
as buddies in any commercially available IM application and check on
their availability through the virtualization and federation middleware.
The customers are also motivated to add the application as their buddy
simply because they can expect better service from the courier service
provider.

The mode of interaction between the VPS and the federation gateway
is the same as it is between two QPCs in the hierarchical QPC model.
The gateway essentially implements a lighter version of QPC (QPC-

lite), which on the front-end accepts SUBSCRIBE and sends NOTIFYs
like the Query Receiver and in the back-end interfaces with the foreign
domain in a domain specific way. The proposed model of presence feder-
ation is depicted in Figure 5. A SUBSCRIBE to a foreign domain from
the Presence Fetcher of a QPC is re-directed to the federation gateway,
which then handles the seamless translation of SUBSCRIBE and NOTI-
FYs between the host and the foreign domain.

4 Implementation and Results

The first version of VPS implementation was described in [12]. Since
then, several enhancements were done to the system for improvement in
overall performance including scalability. The VPS is still implemented
with IBM Java Version 5.0, but all the SIP based interaction have been
implemented using the product grade SIP Stack instead of the open
source JAIN SIP. A major change in the implementation of QPC has been
the development of all internal components as independent threads. This
enables more efficient handling of the asynchronous events that comes
to the VPS for processing and thereby improves the overall performance
of VPS. The interaction of VPS with the XML processing appliance
is also changed to support the loopback mode of the appliance with an
objective of leveraging maximum performance benefit from the hardware
appliance. The rest of the components like GLMS, PS are vendor specific
implementations of open standards.
We deployed a single VPS on a server with Intel(R) Xeon(TM) CPU
3.40GHz with 5GB of memory, running Red Hat Enterprise Linux AS
release 4 and IBM Java 5.0. The PS was also deployment on a separated
server with a similar configuration, but with enhanced system memory
of 7GB. To simulate the creation of QPCs and subsequent installation of
the TFs, we have implemented a query client that generates queries to
execute the three-step subscription procedure with the VPS illustrated in
Figure 2. For test purpose a single query is used, which yields the list of
currently available buddies at a particular location. The query client can
be configured to create multiple QPCs and install multiple TFs within a
QPC. The query client forms MS by selecting presentities from a universe
of presentities following Pareto distribution. Also, it is possible for the
query client to include buddies from different domains such as gmail.com
in the MS of the query through the middleware. The federation gateway
in the middleware for interfacing with GoogleTMis implemented using
Smack APIs1, an Open Source XMPP (Jabber) client library in Java for
instant messaging and presence. In addition to the query client, we have
also developed a publish load generator that randomly (with a specified
frequency) changes the presence state of the presentities constituting
the MSes. Both the query client and the publish load generator have
been implemented using IBM SIP Stack and are deployed on different
machines, but on the same local network as the VPS, PS and the XML
processing appliance.

1
Smack API - http://www.igniterealtime.org/projects/smack/index.jsp

Table 3. Comparison of Presence Server Subscription Load

Number of Requests Without data Reuse With partial data reuse With Hierarchy
10 67 58 18
50 288 188 34
100 576 357 45

4.1 Experimental Results

In this section, we present several experimental results to substantiate
the design decisions taken to improve the scalability of the system. For
all the experiments the load offered to the system is expressed as the
number of PUBLISH messages generated per second by the publish load
generator. Each presentity publishes two different types of dynamic pres-
ence information, viz. Yahoo! IM status and location. The publish load
generator keeps on toggling between these presence attributes, resulted
in cascaded responses from the relevant ‘downstream’ TFs. The queries
submitted to the system are also generated at an uniform rate. The re-
sults are categorized into four stages of development of the system as
follows.
Single-threaded QPC: Figure 6 (a) and (b) present the CDF of the VPS
latency for the |MS| = 5, 40. The number of TF is increased from 1 to
10. The publish rate or load to the system is 10 publications/second and
a total of 3000 publishes are sent. For equivalent values of the critical
parameters such as |MS| and load, the VPS delay is found to be much
lower than what was reported in [12]. Figure 6(c) shows the rate at
which the NOTIFYs are received at by the VPS (input rate) and the
rate at which the NOTIFYs (corresponding to virtualization responses)
are sent out by the VPS to the query clients (output rate). We observed
significant performance improvement in terms of throughput over the
results reported in [12]. In this case, we could sustain much higher values
for MS (upto 20) and TF (upto 10). For even higher values of MS(= 40)
the throughput starts dropping.
Multi-threaded QPC: We carried out the same experiments as above with
the multi-threaded implementation of the QPC and the corresponding
results are shown in Figure 6 (c), (d) and (e). Here we observed similar
performance for throughput, but significant improvement in terms of
VPS latency, particularly for higher |MS|(40) and number of TF (10)
values.
Multiple QPC Experiments: The next set of experiments was done with
multiple QPC scenario, which forms the basis of data and query re-
utilization within VPS, which is a key factor for overall scalability. These
experiments were carried out with the following parameters: cardinality
of the presentity universe was fixed to 100; publish rate was 10 publica-
tions/sec; total number of 3000 publishes were sent; the query generation
rate was 12 requests/min and the Pareto scale parameter for selecting
presentities in MS in query client was fixed to 1.5. The three experimental
scenarios were: (i) Without data re-utlization or set matching between
MSets – QPCFactory simply creates a new QPC for every incoming re-

0 20 40 60 80 100
0

0.5

1

1.5

Percentile

V
P

S
 R

es
po

ns
e

T
im

e
(s

ec
on

ds
)

MSet = 5

TF=1
TF=5
TF=10

0 20 40 60 80 100
0

0.5

1

1.5

Percentile

V
P

S
 R

es
po

ns
e

T
im

e
(s

ec
on

ds
)

MSet = 40

TF=1
TF=5
TF=10

(a) (b)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Number of TFs

N
ot

ify
 R

at
e

(m
es

sa
ge

s/
se

co
nd

)

Input Rate for M = 5
Input Rate for M = 10
Input Rate for M = 20
Input Rate for M = 40
Output Rate for M = 5
Output Rate for M = 10
Output Rate for M = 20
Output Rate for M = =40

0 20 40 60 80 100
0

0.5

1

1.5

Percentile

V
P

S
 R

es
po

ns
e

T
im

e
(s

ec
on

ds
)

MSet = 5

TF=1
TF=5
TF=10

(c) (d)

0 20 40 60 80 100
0

0.5

1

1.5

Percentile

V
P

S
 R

es
po

ns
e

T
im

e
(s

ec
on

ds
)

MSet = 40

TF=1
TF=5
TF=10

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

Number of TFs

N
ot

ify
 R

at
e

(m
es

sa
ge

s/
se

co
nd

)

Input Rate for M = 5
Input Rate for M = 10
Input Rate for M = 20
Input Rate for M = 40
Output Rate for M = 5
Output Rate for M = 10
Output Rate for M = 20
Output Rate for M = =40

(e) (f)

Fig. 6. Single threaded QPC: [VPS Latency for (a)(|MS| = 5) (b) (|MS| = 40) and (c)
Throughput]; [Multithreaded QPC: VPS Latency for (c)(|MS| = 5) (d) (|MS| = 40)
and (e) Throughput];

quest; (ii) With partial data re-utilization – QPCFactory on receipt of
a request checks whether the incoming MS or its superset exists in the

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

Percentile

V
P

S
 R

es
po

ns
e

T
im

e
(s

ec
on

ds
)

Without Set Matching for 10 requests
Without Set Matching for 100 requests
With Set Matching for 10 requests
With Set Matching for 100 requests
GSC for 10 requests
GSC for 100 requests

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Number of Requests/TFs

N
ot

ify
 R

at
e

(m
es

sa
ge

s/
se

co
nd

)

Throughput with Multiple QPC

Input Rate Without MSet Matching
Input Rate With MSet Matching
Input Rate for GSC
Output Rate Without MSet Matching
Output Rate With MSet Matching
Output Rate for GSC

(a) (b)

10 20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

Percentile (number of QPCs)

C
um

ul
at

iv
e

W
ei

gh
t (

%
)

Greedy Set Cover
Weighted Set Cover

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentile

V
P

S
 R

es
po

ns
e

T
im

e
(s

ec
on

ds
)

GSC for 10 requests
GSC for 50 requests
GSC for 100 requests
WSC for 10 requests
WSC for 50 requests
WSC for 100 requests

(c) (d)

Fig. 7. Multi QPC: [(a) VPS Latency (b) Throughput]; (c) Experimental Results:
Distribution of QPC Load for Hierarchical Algorithms; (d) Experimental Results: VPS
Latency with GSC and WSC;

system and if QPCFactory finds such a QPC, it redirects the client to
that existing QPC; (iii) With full data re-utilization – QPCFactory on
receiving a new request runs set cover algorithm to find the collection of
QPCs which contains all or some member presentities of the incoming
MS. In this case, we have chosen GSC algorithm as described in Sec-
tion 3.2 to build QPC hierarchy with internal subscriptions between the
QPCs.
Figure 7 (a) shows the processing delay in VPS in aforementioned cases.
The delay is found to be consistently decrease with the increase in data
re-utilization. Thus the delay was observed to be the lowest for GSC
and maximum for the case without data re-utlization. This is because
data re-utilization saves the PS access time for each QPC resulting in an
overall
Figure 7 (b) compares the notify rate in the above mentioned three
cases. The most interesting observation from the results is that the ra-
tio of output to input rate increase drastically with the increase in data

Table 4. Comparison of GSC and WSC

Algorithm Number of Number of Hierarchy Presentities QPC-QPC Edges
Requests QPCs Created Height Used Edges

GSC 10 8 3 18 15
WSC 10 8 4 18 15
GSC 50 24 4 34 56
WSC 50 24 6 34 47
GSC 100 45 4 45 119
WSC 100 45 7 45 144

re-utilization. This is because, with the increase in data re-utilization,
the input notification rate decreases and at the same time, because of
ready data availability larger number of queries gets evaluated resulting
in higher output rate.
Table 3 shows the subscription load on PS in the above three cases. As
expected, the maximum load on the PS is when there is no data re-
utilization. Maximum re-utilization of data with hierarchy corresponds
to the minimum number of subscriptions to the PS.

Hierarchy Experiments: We compare the performance of GSC and
WSC algorithms with respect to the following performance metrices:
(i) distribution of load on QPCs inside VPS, and (ii) delay in processing
Notifys (which is a function of publish rate of presentity and height of the
hierarchy). All these measurements are taken with following set of pa-
rameters: presentity universe consists of 100 presentities; publish rate is
constant to 2 publications/sec; total number of publishes 2000 publishes
are sent; query generation rate is fixed to 12 requests/min and total of
100 requests are submitted to the VPS. In these experiments, both the
publish load generator and query client ran simultaneously. This is an
essential requirement for WSC algorithm as it is dependent on the load
on QPCs which depends on number of notifys handled by it.
The distribution of load on QPCs for GSC and WSC is shown in Fig-
ure 7(c). With GSC, 10% of QPCs are contributes to almost 50% of
the VPS load, whereas with WSC, 10% of QPCs contribute to approxi-
mately 35% of the VPS load. This implies WSC results in more uniform
distribution of load when compared to GSC. However, WSC may result
in longer hierarchy as opposed to GSC (refer to Table 4). Despite this, as
shown in Figure 7(d) the VPS processing delay was found to be almost
similar for the two algorithms. Thus, WSC is preferrable when a better
distribution of load is required among the

5 Related Work

It may be tempting at times to find paralles of presence virtualization in
the areas of context-aware queries for pervasive and ubiquitous systems,
presence aggregation systems or event processing systems. However, as
discussed earlier [12], when compared with the existing body of work

(references in [12]), presence virtualization and federation middleware
presents several differentials from the above mentioned existing research
work. None of these works provides a comprehensive, scalable middleware
framework for answering persistent contextual queries over presence data
through a flexible programming interface. Individual comparisons with
the existing works in these areas can be found in [12].
Recently there have been some work on “Invisible or Deep Web” [13]
where the key problem has been identified in the processing of dynamic
user-generated queries on large volume of real-time information such as
stock quotes, weather information, flight information etc. Even the very
advanced search engines available today for the regular Web are inca-
pable of answering such queries primarily because the web crawlers are
usually designed to handle static or semi-static web pages and are not
equipped to handle very dynamic real-time information. There are cur-
rently technolgies available to subscribe to real-time information in the
Web (e.g., RSS), but they do not allow subscription to user-generated
queries. Our virtualization and federation layer essentially solves these
problems and thus can provide a middleware based solution for enabling
user-specified scalable searching in the Invisible Web.
Several models for presence federation have been proposed. The models
can be categorized into the following two broad categories viz. (i) Single
protocol system and (ii) Multi-protocol system. Each of these two cate-
gories can be further classified into (i) intra-domain federation and (ii)
inter-domain federation. Intra-domain federation with single protocol is
more of an administrative problem than anything else [10]. Inter-domain
federation with single protocol has been studied mostly for XMPP and
various flavors of server-to-server federation have been proposed [11].
However, the server-to-server federation works for pair-wise relations be-
tween the servers and the connections between them also are established
on an one-to-one basis. In the multi-protocol scenario, a protocol transla-
tion function in addition to the server-to-server federation functionality
is required.

6 Conclusions

In this paper we presented the scalability design the presence virtualiza-
tion middleware proposed earlier and validated the design with extensive
experimental results. We also added presence federation capability to the
middleware, expanding its scope of operations across heterogenous pres-
ence domains. Some of issues that we would like to explore in the future
are as follows. Privacy and security of sensitive presence information is
very critical to the success of any presence based application and we
would like to integrate these functionalities with the virtualization and
federation middleware. Fault tolerence of the middleware is another is-
sue of our research interest. The base PS is another bottleneck in the
system and we are weighing the possibility of scaling PS through a farm
of PSs. Similarly, scaling the hardware offloading functionality in our
architecture with multiple federated hardware appliances is also in our
consideration. Finally, we want to explore the possibility of smarter pres-
ence updates from the source for overall scalability of the middleware.

References

1. H. Sugano, et al, “Presence Information Data Format (PIDF)”, In RFC 3863,
August 2004.

2. H. Schulzrinne, “RPIDS Rich Presence Information Data Format for Pres-
ence Based on the Session Initiation Protocol (SIP)”, Internet-Draft – draft-

schulzrinne-simple-rpids-02.ps, Columbia U., February 2003.
3. P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP): Instant

Messaging and Presence”, In RFC 3921, IETF, October 2004.
4. A. Roach, “Session Initiation Protocol (SIP)-Specific Event Notification”,In RFC

3265, IETF, June 2002.
5. A. Roach, B. Campbell and J. Rosenberg, “A Session Initiation Protocol (SIP)

Event Notification Extension for Resource Lists”, In RFC 4662, IETF, August
2006.

6. J. Rosenberg, et al, “SIP: Session Initiation Protocol”, In RFC 3261, IETF,
June 2002.

7. J. Rosenberg, “A presence event package for the session initiation protocol
(SIP)”, In RFC 3856, IETF, August 2004.

8. A. T. Campbell, et. al, ”The Rise of People-Centric Sensing”, IEEE Internet

Computing, Page(s) 12-21, 2008.
9. J. Rosenberg, “A Data Model for Presence,” In RFC 4479, July 2006.
10. J. Rosenberg, et. al., “Models for Intra-Domain Presence and Instant Messaging

(IM) Bridging”, draft-ietf-simple-intradomain-federation-02, November, 2008.
11. “The XMPP Cloud: Building a Presence-Enabled Infrastructure for Real-Time

Communication,” Jabber White Paper, Jabber Inc.
12. A. Acharya, et. al. “Programmable Presence Virtualization for Next-Generation

Context-Based Applications”, Percom, March 2009.
13. M. K. Bergman, “The deep web: Surfacing hidden value.” Technical report,

BrightPlanet LLC, Dec. 2000.

