
RI10002, 22 March 2010 Computer Science

IBM Research Report

Business Insight from Collection of Unstructured Formatted
Documents with IBM Content Harvester

Biplav Srivastava
IBM Research Division

IBM Research
New Delhi - 110070. India.

Yuan-Chi Chang
IBM T. J. Watson Research Laboratory

Hawthorne, NY 10591. USA

IBM Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be
copyrighted is accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view
of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained
copies of the article (e.g., payment of royalties). Copies may be requested from IBM T.J. Watson Research Center, Publications,
P.O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at
http://domino.watson.ibm.com/library/CyberDig.nsf/home

Business Insight from Collection of Unstructured Formatted
Documents with IBM Content Harvester∗

Biplav Srivastava and Yuan-chi Chang

IBM T. J. Watson Research Laboratory
Hawthorne, NY 10591, USA

{sbiplav@in, yuanchi@us}.ibm.com

Abstract

Today’s knowledge workers need to access, apply and reuse
content created by office productivity suite such as word
processor, spreadsheet and presentation. While the produc-
tivity suite revolution in the 90’s freed individuals’ creativ-
ity to generate content, it is increasingly difficult to effec-
tively manage and harvest individuals’ creation into knowl-
edge of the whole. One cannot glean into a project docu-
ment repository, for example, to get a summary of the status
of work items. Both keyword search and social tagging fall
short of functionality required to harvest and distill content
for reuse.

In this paper, we report the development and experiments
of IBM Content Harvester (CH), a tool to analyze and re-
cover templates and content from word processor created
text documents. CH is part of a bigger effort to collect
and reuse material generated in business service engage-
ments. Specifically, it works on unstructured formatted
documents and works by extracting content, cleansing off
sensitive information, tagging it based on user-defined or
domain-defined labels, and making it available for publish-
ing in any open format and flexible querying. As a result,
one can search for specific information based on tags, ag-
gregate information regardless of document source or for-
matting peculiarities and publish the content in any format
or template. CH has been applied to a broad variety of
document collections containing hundreds of documents,
including live engagements, to promising effect.

1 Introduction
With the proliferation of office productivity tools, it has
been recognized that users need better ways to search, or-
ganize and reuse their content when appropriate. The intro-
duction of text indexing and search addressed certain chal-
lenges in finding relevant content. However, it is still very

∗A shorter version of the paper appears in 15th International Confer-
ence on Management of Data (COMAD 2009), Mysore, India.

15th International Conference on Management of Data
COMAD 2009, Mysore, India, December 9–12, 2009
c©Computer Society of India, 2009

time consuming and labor intensive to crawl through the
search results in order to identify reusable content piece by
piece. In this paper, we describe a tool developed to solve
the harvesting and reuse challenge. Specifically, we assume
the unstructured content was authored according to a tem-
plate, which helps the organization of semantically mean-
ingful content. The tool is designed to discover the tem-
plate(s) from many instance documents and then extract,
cleanse and store template-directed content. Such capabil-
ity is necessary to build knowledge assets and tools that
improve worker productivity[4].

We reference two classes of scenarios where collections
of documents are generated and the desire to harvest infor-
mation from them.

1.1 Documents in Day to Day Scenarios

We come across many types of documents in daily situ-
ations. For example, consider culinary recipes, propos-
als, resumes, evaluations. Here, there are initial templates
which provide a broad framework for recording informa-
tion. Such documents start from mandated templates but
individuals can make changes depending on the informa-
tion they are recording. Given the documents, one would
want to seek information from the document collection and
take decisions. For example, a person preparing 4 dishes
would want to look at the recipes and make a consolidated
list of ingredients to buy from the market. A recruiter
would want to look at the resumes and know the qualifi-
cation of all the applicants he has received. A manager
would want to look at the evaluations and know the the
performance of a particular person over the years or the
performance of all the reportees under him.

The currently available solution in these situations is for
a person to open each file one-by-one and then peruse, re-
member and mentally compare. Or per file, one can pe-
ruse, copy and paste content of interest in a separate new
document, and then compare manually collated content in
the new document. This is tedious, error-prone and non-
scalable.

1.2 Documents in IT business

Team-based document creation is wide-spread in Informa-
tion Technology (IT) software and services business. An
example of the former is software design documentation
and of the latter is contract scope in services engagements.
The documents are created with commercial word proces-
sors like Microsoft Word, Lotus Symphony and Open Of-
fice. The teams start from mandated templates and team
members add content. In the process, they invariably
change a document’s structure if expedient to capture some
specific information.

It is not uncommon for teams to create 100s of docu-
ments created on a IT project. Such documents are stored in
repositories (including file systems) that traditionally pro-
vide only key-word based search. Over time, we have
a large collection of documents following different tem-
plates: documents from a single client but multiple types
of documents (e.g., design, test, specification), documents
from different clients and same or multiple types of docu-
ments.

A potential consumer of the document will be interested
in the content in the document but usually not the template
because the latter changes from one client setting to an-
other. For example, many teams will be interested to reuse
the design of an online checkout and international shipping
feature as implemented on a retail website, but the template
in which the information is documented is of little conse-
quence. Consider we have information about this feature
from two clients projects in the repository. Since the tech-
nology is complex, we would want to compile the full list
of features that previous teams have considered. However,
the documents available will have an inter-mix of content
and the formatting information, and it is very daunting for
a third team to sift through the complete feature documents
to compile the information they need.

A large services organization does thousands of projects
in a year. Given the scale of documents they produce, it
is practically impossible today to refer to a subset of de-
sign documents, all created in different enagements, and
potentially with different templates, and try to obtain con-
tent from them in an integrated form. The resulting content
can then be published with any template that the new client
may want.

1.3 Summary and Contributions

We present the Content Harvester framework to solve the
challenges. It works on collections of unstructured format-
ted documents and requires the user to specify the textual
segment of information they want to extract, what identi-
fiers they want to replace and what to label the extracted
content. The tool first separates the textual and non-textual
(including formatting) content1, and then uses segment
specification to extract information of interest. It maintains
basic structure of extracted content - paragraph, list and ta-
ble, and represents it in XML. Next, sensitive information

1But keeps record of what was found.

is cleansed off and then extracted content is tagged with la-
bels from the segment specification. The result is available
for publishing in any open format like WordML, HTML or
PDF by simple XML transformations, and flexible XML
queries can be done over it. As a result, one can search for
specific information based on tags, aggregate information
regardless of document source or formatting peculiarities
and publish the content in any format (Word, pdf, html) or
template. A scaled-down version of the CH tool is pub-
licly available2. In addition, methods are provided to learn
templates and segment specifications.

Our contributions in the paper are:

• A format-independent methodology to segment un-
structured formatted documents into units of text for
cross-document processing.

• An architecture to extract content with user anno-
tated format-independent landmarks for repurposing
and reuse.

• A statistical method to recommend segmentation (or
landmark) boundaries for user annotation in a cluster
of documents.

• A statistical method to analyze and identify clusters
of similar documents that are likely to stem from the
same templates, using parsed text units.

• Experimental results and pilot experience on the effi-
cacy of the approach.

Content Harvester has been applied to a broad variety
of document collections containing 100s of documents, in-
cluding live engagements, to promising effect. In the rest
of the paper, we present the problem, describe our approach
and an implementation, discuss initial empirical & pilot re-
sults, illustrate CH’s ability to bring new insights and con-
clude with a review of related work.

2 Problem
The problem setting is that we have a collection of original
documents produced with a document processor like Mi-
crosoft Word. A document can consist of headings, para-
graphs, lists, tables, images, non-textual generic objects,
and any of their combinations (e.g., lists inside tables).
The document’s content is annotated with formatting/visual
cues. A person can identify a particular content of interest
by textual markers that serve as content boundaries. Since
a marker is also part of the document, it can consist of text
and formatting styles.

More precisely, we use the following terms:

• Marker: A piece of text that a user can view in a doc-
ument, or pre-defined special positions in a document
– document start and end.

2At: http://www.alphaworks.ibm.com/tech/contentharvester

Process Definition Document (PDD)

Figure 1: The original Word file of a running example.

• Formatting instructions: bold, italics, underline, font,
list type, table, cells, section hierarchy, embedded ob-
jects, images, and so on.

• Document fragment: A contiguous fragment of orig-
inal content of a document including formatting in-
structions, demarcated by start and end markers.

• Segment or extracted content: A contiguous fragment
of content along with its demarcating start and end
markers. The formatting instructions are absent in a
segment.

• Original document: A sequence of one or more docu-
ment fragments.

• Harvested document3: A sequence of one or more
segments.

Consider the example original document shown in Fig-
ure 1. Text Process and Team are markers. The process
name between the two markers is a piece of content the
user may be interested in. The two markers and the pro-
cess name constitute a segment. Note that the three texts
are different cells of a table in the example.

3The prefix original or harvested will be dropped when the type of
document is clear from context.

The goals of harvesting content from original docu-
ments of a collection are to: (1) extract segment(s) with
content of interest (2) cleanse extracted content off any sen-
sitive context (3) tag extracted segments with a set of given
labels (including the case when the labels come from a
known model) (4) enable tag-based and content-type search
on extracted content (5) allow output to be published in any
encoding format or document type, and (6) identify docu-
ments following a common template in a pool from differ-
ent sources.

2.1 Identifying the Challenges

We have some difficult challenges dealing with inter-
mixing of formatting and text and just noisy text.

• How does one robustly demarcate a piece of text?
Even a single word, when parsed, could be a set of
fragmented nodes containing the different characters
of the word and individual formatting attributes.

• How can a user robustly specify a portion of content
as being of interest? What you see is not what you
get!: Microsoft Word has support for hidden/ vanish
text. So, it is not easy to look at a section header and
be sure that it is really what the parser will also find.

• How does the tool extract a piece of content robustly
regardless of the formatting seen in a file? The same
method has to find content between text boundaries,
table cells, formatted headers, etc.

• How to handle noisy documents? Headers and cells of
a table can be empty.

There are also practical challenges since we want the
tool to be available to non-technical users (i.e., users not
aware of information extraction methods): how to pack-
age all the capabilities desired in a useful manner, how to
represent extracted content, how to do tagging of content,
what query mechanisms to support and what guidance to
give about when not to try content extraction with our ap-
proach.

3 Solution for Harvesting Documents follow-
ing a Common Template

The pseudo-code for Content Harvester (CH) is shown
in Figure 2 and the architecture of a prototype system is
shown in Figure 3. CH works on collections of unstruc-
tured formatted documents (D) and requires the user to
specify the textual segment of information they want to ex-
tract and what to label the extracted content with (L), and
what sensitive identifiers they want to replace (Rc). We
now explain the main steps in subsequent subsections.

Algorithm: HarvestContentFromSimilarDocs
Inputs: A set of documents D following a common template,

Landmark specification of what to extract, L
Rules expressing what phrases to cleanse and the

new phrase, Rc

Flag for output format
Output: A set of cleansed documents, Dc

Cleansing report, R

Pre-processing:
1. For each document di

2. Convert Di to XML representation
Main Steps for each document
1. For each document di

2. Parse di

3. Group characters along word boundaries
4. Group words along paragraph (formatting) boundaries
5. Record paragraphs with basic source

formatting information
6. Remove non-textual and non-formatting content
7. Uselandmarks L on textual paragraphs
8. Use markers to identify segments
9. Use formatting information to identify basic

content structure
10. Use heuristics to overcome noisy/ missing text
11. Apply Rc on extracted content
12. Use labels from L to tag extracted content
13. Publish Dc

i in XML
14. Record statistics about di for reporting
15. Publish final R with overall and per-file statistics

Figure 2: Pseudo-code of Content Harvester.

3.1 Parsing Word Documents

In recent years, modern word processing software began to
adopt XML as a supported file format, which allows easier
access to text content stored in the files. While XML is self-
describing, these XML file formats primarily focus on the
presentation and rendering styles of the text content, such
as character formatting, paragraph spacing, lists, tables and
figures, etc. There is a lack of provision for user-annotated
constructs to describe the content. Hence a tool like ours is
still required to analyze and identify bodies of semantically
similar content.

We use two commonly applied standards as examples to
describe our approach to segment text content for further
analysis, i.e. Office Open XML (OOXML) and OpenDoc-
ument Format (ODF). Microsoft Office suite software sup-
ports OOXML while Star Office, Google Docs and IBM
Lotus Symphony support ODF. In this paper, we will focus
on word processing section of the above standards but our
approach may be more generally applicable to other sec-
tions such as spreadsheet and presentation.

Our approach to extract the raw text content (steps 2-6 in
Figure 2) is to identify paragraph boundaries and reassem-
ble texts falling within the same paragraph boundary as a
single text block for subsequent analysis. If one views a
text file as a sequence of character streams, we find para-
graphs to be the basic and natural segmenting markers to
group together characters semantically. This view is fairly
different from say, indexing a text document for text search,
where the natural segmentation will be at the word level.

In the WordProcessing ML section of the OOXML,
paragraphs are identified the <w:p> tags, where w is the
namespace declaration of WordML. Under each <w:p>
tag, there may be styling information about the paragraph
such as headings, bulleted lists or numbered lists. The para-
graph may also contain one or more character formatting
instructions under the <w:r> tags, which define styling in-
formation such as bold, italic, underline or color for the
associated characters under the <w:t> tags. An example
of key tags used by our parser is shown in Figure 4.

In contrast to OOXML, the OpenDocument Format has
different tags from headings, such as <text:h>, as well as
paragraphs, such as <text:p>. The attribute name style-
name is used to describe the text styling applied to the con-
tent of the XML node. As shown in 5, the example simi-
larly has a subsection heading named Section 1: Definition.
However, its XML node is at a much higher level and not
deeply buried in the nesting. Such document tree layout
aids XML parsing and transformation greatly with simpler
logic.

In ODF, the full styling information is separated from
text content and declared in a styles.xml file. An example is
shown in Figure 6, where the two styles used in Figure 5 are
declared. XML node attributes are applied freely to declare
various styling properties. Again we observe the design of
the XML tree structure to be aimed at easier parsing and
transformation.

Landmark

Specifications

Cleansing

Rules

MS Word Parser

Landmark based Extraction

Rule based Cleansing

HTML

generator

Harvested

Content

Tags (model) Content Tagging

Queries on Tag

& Content

Inputs

Documents

Main Steps
Secondary

Steps

HTML

Documents for

User

Content

Consuming

Application

Outputs
(Select Possibilities)

Figure 3: Architecture of Content Harvester.

3.2 Landmark Based Extraction

The previous section described how textual and non-textual
(including formatting) content is separated. Now, textual
content of interest in the document has to be identified. For
this, segment specification called landmark is used to ex-
tract information of interest. We differentiate landmarks
from the conventional notion of segments in image and
text extraction literature because there markers, or segment
boundaries, are seen in the input’s bit stream. In our case,
the characters in the markers may be fragmented.

We define landmark as a specification of a segment
whose start pattern is known and its end pattern is optional.
If the end pattern is missing, the end of the segment is
marked by start pattern of any known landmark specifica-
tion. It is easy to see that:

• If end is known, the segment becomes neighborhood
dependent.

• If end is unknown, the segment is neighborhood inde-
pendent.

We assume that the user will look at a sample of the
documents and create landmark specifications. Consider
documents from a Pharmaceutical engagement describing
business process descriptions. Figure 1 shows one of the
documents (slightly masked). Suppose we want to get the

process name and steps from these documents. Process
name is contained within a cell of a table and its prede-
cessor cell has text marker, Process, and successor cell has
text marker, Team. Figure 8 shows an example specifica-
tion of the landmark. Here, startMarker is specified and
isStartMarkerSep notes that the content is separated from
the marker by non-textual separator. The end marker is op-
tional. The field modelReferenceTo specifies the label to
assign the extracted content and isRepeating flags absence
of tabular content.

For tables, isRepeating is set to ’yes’ and headers are
specified for each column of the table. An example for
steps is in Figure 9. Note that the first column of the ta-
ble has an empty value in the header. The output of the
extracted content in shown in Figure 7.

The extraction of content is described in steps 7-10. CH
maintains basic structure of extracted content - consecutive
text, list and table. It also uses rules on formatting infor-
mation from parsing phase (step 10) to handle noise. Some
rules are:

• Ignore empty white spaces that are not part of any seg-
ments.

• If an empty white space is within a cell, consider it as
valid content.

Client

Reference

Removed

(Source marker), Model Tag, Extracted content

Running Text

List

Table

Figure 7: Extracted output in the example.

• If an item is part of a list and is empty, ignore it.

In Figure 7, the middle rule was used on Steps table so
that the first column header (empty) is recognized. Note
that the basic structure of Process that it is a piece of con-
tinuous text, and of Steps, that it has tabular description, is
preserved in extracted content.

3.3 Post-processing Extracted Content

In Step 11, a regular expression rule processor applies Rc

on extracted content to remove references that are either
non-relevant in a new context (e.g., version number) or
privacy-related (e.g., client name). Then extracted content
is tagged with labels from L (step 12) and then published
in a XML representation (step 13).

The result is available for publishing in any open format
like WordML, HTML or PDF by simple XML transforma-
tions, and flexible XML queries can be done over it. As
a result, one can search for specific information based on
tags, aggregate information regardless of document source
or formatting peculiarities and publish the content in any
format (Word, PDF, HTML) or template.

4 Solution for Harvesting Documents from a
Mixed Pool

In the previous section, we assumed the documents to be-
long to a common template. However, the most common
case is that the user has a collection of documents whose
provenance and templates they are unsure of. In this case,
we propose automatic methods to work with these docu-
ments and extend CH’s applicability. First we look at how
to recommend markers (landmark boundaries) for user an-
notation in a cluster of documents. Next, we consider how
to identify a subset of documents that share a common tem-
plate.

4.1 Proposing Markers in a Mixed Pool

Figure 10 gives the method we use to find the potential
markers in a pool of documents following mixed templates.
The method first parses the documents to identify demar-
cating text fragments (pre-processing, lines 1-3) and then
looks at their statistical significance to determine if a frag-
ment is a potential marker (lines 1-3).

This pre-processing step has at least two potential us-
age: (a) it is used by the method in next section to find
document clusters, and (b) in the scenario that a user sees a
new dataset, the output markers of the method can serve as
a starting reference while defining landmark specifications.

...
<w:p wsp:rsidR=”00000000” wsp:rsidRDefault=”0033549C”>

<w:pPr>
<w:pStyle w:val=”Heading2”/>

</w:pPr>
<w:r>

<w:rPr>
<w:rFonts w:ascii=”Arial” w:fareast=”MS PGothic”

w:h-ansi=”Arial” w:cs=”Arial”/>
<wx:font wx:val=”Arial”/>
<w:color w:val=”000000”/>
<w:b/>
<w:sz w:val=”20”/>
<w:sz-cs w:val=”14”/>

</w:rPr>
<w:t>Section 1: Definition</w:t>

</w:r>
</w:p>
<w:p>
...

Figure 4: An example showing the relationship between
<w:p>, <w:r>, <w:t> tags and their associated style
tags.

...
<office:text>
...

<text:h text:style-name=”Heading 20 2” text:outline-level=”2”>
Section 1: Definition

</text:h>
<text:p text:style-name=”Text 20 Body 20 Single”>

This is the beginning of section 1.
</text:p>

...
</office:text>
...

Figure 5: In ODF, <text:h> and <text:p> are used to tag
content of the same style, which is referenced by the style-
name attribute.

4.2 Discovering Documents in a Common Template
From a Mixed Pool

Figure 11 gives the pseudo-code of a statistical method to
analyze and identify clusters of similar documents that are
likely to stem from the same templates using parsed text
units. It uses the potential markers output from FindLikely-
Markers on each document to identify segments in the doc-
ument (pre-processing, lines 1-3). Then the method builds
a profile of each document using the segments present in it
(lines 1-6) and calls a clustering method to identify set of
documents with similar profiles (lines 7-8).

5 Experiment
We now discuss how the presented methods perform in
practice. For content extraction (Section 3), we did an eval-
uation on a diverse dataset as well as verified the method in
the field by undertaking a pilot study wherein the tool was
released to a team within IBM that cleanses and harvest
design documents, and measured their performance. For
harvesting documents from mixed pool (Section 4), we did

<style:style style:name=”Text 20 Body 20 Single”
style:display-name=”Text Body Single” style:family=”paragraph”
style:parent-style-name=”Default 20 Text” style:class=”text”>

<style:paragraph-properties fo:margin-top=”0in”
fo:margin-bottom=”0.0835in”/>

</style:style>
<style:style style:name=”Heading 20 2”

style:display-name=”Heading 2” style:family=”paragraph”
style:parent-style-name=”Heading”
style:next-style-name=”Text 20 Body 20 Single”>

<style:text-properties fo:font-size=”14pt” fo:font-style=”italic”
fo:font-weight=”bold” style:font-size-asian=”14pt”
style:font-style-asian=”italic” style:font-weight-asian=”bold”
style:font-size-complex=”14pt” style:font-style-complex=”italic”
style:font-weight-complex=”bold”/>

</style:style>

Figure 6: In ODF, text styling is declared in a separate
styles.xml file. This examples shows the declaration of
Text 20 Body 20 Single and Heading 20 2.

<landmark
landmarkId=”P1”
isRepeating=”no”
isOptional=”no”
startMarker=”Process”
isStartMarkerSep=”yes”
modelReferenceTo=”processTitle”
isEndMarkerSep=”yes”>

</landmark>

Figure 8: An example of specification of a basic landmark.

a controlled evaluation using two different datasets.

5.1 Extracting Content from Documents

Here, we investigate how HarvestContentFromSimilar-
Docs() performs across different data sets with diverse
characteristics: documents from day-to-day activities to
software/IT business, average page lengths from very small
(even 1) to large (≈60-70), different scale in number of
documents in a dataset (ranging from a couple to 242), dif-
fering fidelity to their common template, and the scale of
number of tags of interest (3-24). In the analysis that fol-
lows, we consider 5 data-sets corresponding to process de-
sign in SAP projects in different industries, 1 from detailed
process design in an Oracle project, 1 dataset of personnel
evaluations and another on recipes for cooking dishes. Note
that the tool has been released publicly and we are aware
that it has been downloaded uniquely � 60 times. Further-
more, we are aware of CH being tried on � 50 different
datasets. The analysis presented is only for a controlled set
spanning diverse dataset characteristics.

Table 1 presents a preliminary evaluation. The columns
represent average size of documents, # docs for the exper-
iments, the ratio of the number of landmark specs created
for each tag, the avg. % of document’s content extracted
and retained, the average number of tags applied, avg.
processing time and finally a review of whether the data-
set is amenable to content extraction cost-effectively. All
columns are self-explanatory except the fourth one which

Algorithm: FindDocumentClusters
Inputs: A set of documents D following unknown templates
Output: A partition of D, i.e., set of nonempty subsets of D

(clusters representing a template) such that every di is in
exactly one of these subsets.

Pre-processing:
1. LM = Use FindLikelyMarkers on D to find markers.
2. For each document di

3. Parse Di to create an ordered list of fixed text segments using LM
Main Steps:
1. Create a co-occurrence matrix to record the ≺doc, segment� pair
2. Calculate the frequency of each segment across the document repository
3. Apply thresholds to disqualify segments that are rare or too frequent
4. Create a feature vector out of filtered segments
5. Each document corresponds to a row
6. Mark presence of a segment by 1 and absence by 0
7. Perform clustering on the feature vector set to determine the number of clusters
8. Documents following common templates are in same cluster (have similar
feature vectors); Prepare output

Figure 11: Pseudo-code of a method to find documents following a common template.

<landmark
landmarkId=”RC1”
isRepeating=”yes”
isOptional=”yes”
startMarker=”Steps”
isStartMarkerSep=”yes”
modelReferenceTo=”OtherSection/title”
isEndMarkerSep=”yes”>
<headers>

<header name=”” order=”0”>
</header>

<header name=”Action” order=”1”>
</header>

<header name=”By Whom” order=”2”>
</header>

<header name=”Manual or System”
order=”3”> </header>

</headers>
</landmark>

Figure 9: An example of specification of a tabular land-
mark.

we call variability ratio. The ratio measures how many
landmarks are needed on an average to extract content for
each tag in the dataset. Hence, the value conveys how dis-
parate documents in a dataset are. If the ratio is 1, a sin-
gle landmark is sufficient to get content for a tag from the
whole dataset. Hence, the dataset indeed follows the un-
derlying template consistently. The higher the value from
1, the more likely are the documents in the dataset to vary
from a common template. We note that 5 of the 8 datasets
in the experiment were conforming to a common template
with their variability ratio (fourth column) in [1, 2] and an-
other at 2.6. In fact, Pharma-1 has 242 documents and yet
has the ratio at 1.04. In contrast, the two data sets of High
Tech have significant variability in their documents.

The results are very encouraging and show that the users
could easily harvest content for a large proportion of tags
of interest (� 70% and even 100%) across the range of
datasets. The content corresponding to these tags could
be very specific and low (e.g., 8% of total content in High

Algorithm: FindLikelyMarkers
Inputs: A set of documents D following unknown templates
Output: A set of markers, M

Pre-processing:
1. For each document di

2. Convert Di to XML representation
3. Identify possible markers using Steps 2-6 of Figure 2

Main Steps on document pool
1. Build a list of markers in the pool and their frequency
2. Establish thresholds to establish segments that are neither rare

(lower limit) nor overly abundant (upper limit)
3. Filter and return markers that are within the thresholds

Figure 10: Pseudo-code of a method to find markers in a
mixed pool of documents.

Tech) or as high as 93% in Pharma-1. The time to process a
document varies with page length but it is about a minute/
document for a typical 10-page document. The extensive
runs on large datasets of Pharma and High Tech indicate
that the CH method is robust.

The experience of Oil&Gas-1 dataset is peculiarly inter-
esting. Although the Word documents here were template-
wise consistent, they were hard to work with due to hid-
den/vanish feature of Microsoft Word whereby invisible
text is included in a document. The user would look at
an original document to determine markers and content of
interest but the tool may or may not encounter the same
marker pattern and content. So, either extraction would
fail or different content than what the user expected would
come. We had to provide a separate tool to the users to
expose hidden text and this solved both the problems.

5.2 Pilot Study of Content Harvester on Design Docu-
ments

We conducted a pilot study of Content Harvester to under-
stand how feasible the tool’s approach is in harvesting and
cleansing large document collections in practice. The pilot
ran for 5 weeks and involved a user group within IBM that

Dataset Name Doc Size # Docs Ratio (Raw #s): Parsed & Tags Avg. Proc. Comments
(in pages) Processed # Landmarks/ Retained Found time per

Tags Content(%) (%) doc (secs)
Pharma-1 4-10 242 1.04 (25/24) 93 86 40 Good
Pharma-2 6-10 27 2.6 (18/7) 84 83 81 Good
Oil&Gas-1 10-12 8 1 (10/10) 29 ≈80 103 Good (difficult

due to hidden text)
High Tech-1 35-60 21 4.3 (13/3) 8 ≈70 520 Bad (variability)
High Tech-2 35-60 63 4.3 (13/3) 8 ≈70 329 Bad (variability)
Oracle-Des 15-20 2 1.7 (5/3) 16 84 360 Good
Misc-1 4-7 3 1 (6/6) 81 100 44 Good
Misc-2 1 3 1 (5/5) 75 87 3 Good

Table 1: Evaluation of Content Harvester on Different Datasets.

Figure 12: Benefit-Quadrant for Content Harvester in a Pi-
lot Study.
manually cleansed design documents and formatted them
to a standard form. The pilot’s version of the tool was
an enhancement of Content Harvester presented here – the
tool was aware of design tags and hence could enforce con-
sistency checks, and could generate output in more formats.
The pilot was designed to find where most time would be
spent using the Content Harvester tool and for what types
of documents this method would be cost-effective. The
complexity of a document set was measured in terms of the
number of documents and their average number of pages.
The similarity of the documents were in terms of the num-
ber of common segments/ landmarks (estimated by approx-
imate number of sections, tables, etc). 6 datasets of equal
sizes but different characteristics (#pages, formatting and
template consistency) were used.

We found that writing landmark specifications was the
most time-consuming part of using the tool. However, this
was a one-time cost and would be amortized if the num-
ber of documents to be processed was not very small and
the documents followed a basic level of similarity. Fig-
ure 12 shows the result of where the tool would be useful
to the target users. For documents of about 10 pages and
moderate similarity, which is common for software design,
the tool would be more cost-effective than manual cleans-

ing and re-formatting. CH has the added benefit of tag-
ging the harvested content and allowing it to be published
in any open format using style-sheets. This makes the out-
put seamlessly usable by other software tools.

5.3 Finding Documents in a Common Template From
a Mixed Pool

For this experiment, we used a controlled scenario of 2
datasets. We had a repository with 20 documents: 11 from
SAP project at Client-1 and 9 from SAP project at Client-
2. The templates at the two clients were fairly different
even though all were documenting SAP process descrip-
tions (PDDs).

Some statistics of the data-set were:

• Total # of text segments in the documents = 1146

• Min frequency = 1, Max frequency = 20

• (Min,Max) Threshold = ± 60% of #docs = (8,32)

• After applying thresholds, # text segments left reduces
from 1146 to 70

The experiment was run with FindDocumentClusters
along with Weka3.2’s k-Means clustering algorithm4. Fig-
ure 13 shows the result. In the upper part of the Figure, a
fragment of the feature profile of each document is shown
consisting of absence or presence of segments in them (in-
dicated by 0 or 1, respectively). In the lower part, the
centroids of the clusters found by k-Means is shown. The
two datasets consisting of 11 and 9 documents are correctly
grouped in the two clusters.

The results indicate that the technique is promising.
However, the performance is expected to be sensitive to the
minimum number of documents in each data set and the
number of datasets in the repository. Future evaluation will
investigate this aspect further.

6 Business Insight with CH
We now illustrate the kind of business insight possible with
CH. Recall the original document shown in Figure 1. It is

4See Weka at http://www.cs.waikato.ac.nz/ ml/weka/.

Document Clustering by Segment Feature Vectors

Legend M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19

F1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 1

F2 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1

F3 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1

F4 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1

F5 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1

F6 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1

F7 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1

F8 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1

F9 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1

F10 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0

F11 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

F12 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0

F13 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0

F14 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F15 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0

F16 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0

F17 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0

F18 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0

F19 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0

F20 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0

Experiment using kMeans

Cluster centroids:

Cluster 0
F10 0.0 0.0 0.0 0.0 1.0 0.8181818181818182 0.0 0.8181818181818182 0.0 0.0 0.0 0.0 0.0 0.0

0.8181818181818182 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 1.0 0.0 0.0 0.9090909090909091 0.0 0.9090909090909091 0.0 0.0 0.9090909090909091 0.0 0.0
0.8181818181818182 0.9090909090909091 0.0 0.0 0.0 1.0 0.0 0.0 0.8181818181818182 0.0 0.0 0.0 0.0 0.0 1.0 0.0
0.8181818181818182
Cluster 1

F1 0.8888888888888888 1.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0 1.0 1.0 0.8888888888888888 1.0 1.0 0.0 1.0 1.0
1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0 0.0 0.8888888888888888 1.0 0.8888888888888888 1.0 1.0 0.0 1.0 1.0 1.0
0.0 0.8888888888888888 1.0 0.8888888888888888 0.0 1.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0
1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0

Clustered Instances
0 11 (55%)
1 9 (45%)

Segments were filtered down to only keep those with frequency +- 60% of #docs in repository

Figure 13: Using k-means to identify the correct document clusters.

Figure 14: Selecting content based on tags.

available as part of the Design dataset available from CH
website. In the released tool, the user can use tags to se-
lect harvested content of documents in a dataset and post
XML queries. In Figure 14, the user is looking for content
available based on all the tags declared in the dataset5. She
selects the tag TAG PROCESSSTEP.

In Figure 15, the content associated with the tag is

5The tool manual gives the details of how this can be done.

shown for all the files. The documents in the dataset were
differing in common structure as the two tables have differ-
ent first column; hence multiple landmarks were needed.
But once extracted and tagged with CH, the content can
be searched across the dataset and new insights be found.
Note that besides content, the tabular structure of the pro-
cess steps is retained during extraction and this can be ma-
nipulated by applications.

7 Discussion
CH is effective in extracting content from collections of
Word files that follow a template and also in identifying
documents that may follow a common template. An im-
portant side-benefit of the approach is that harvested con-
tent is now available in easy-to-consume XML format to
support tag-based querying (available in the released tool)
or integration with other tools (see [7] for an example).

However the tool can be limiting in some situations.

7.1 Limitations

User has to know about the documents at some level and
specify the landmarks in terms of low level information.
She has to select a subset of documents and identify charac-
teristics of the segment whose content they want. The user

Figure 15: Example of an application enabled by CH. The result for XML query for tag TAG PROCESSSTEP is shown
across documents.

has to identify the begin marker, optionally the end marker,
whether the content is separated from markers, whether the
landmark is mandatory, if the landmark covers a table, and
if so, then its headers. The user may be looking at a pe-
culiar document to decide landmarks and this may lead
to a number of iterations before satisfactory content is ex-
tracted from the collection. The method FindLikelyMark-
ers is helpful but not sufficient.

The landmark specification is context-independent. If
the document has a similar segment at multiple locations
in the file, it is difficult to specify that only a particular in-
stance has to be extracted. Currently, the landmarks are
treated independent of context and the tool can extract the
first (or alternatively all) matching content. The lack of
context specificity may theoretically be an issue but we en-
countered it very rarely in practice.

We see the limitations as avenues for future work.

7.2 Related Work

In the past decade, there was significant amount of re-
search in the domains of information extraction[6], re-
trieval, data mining and XML that touched upon the chal-
lenges of extracting content or analyzing document struc-
ture. The seminal paper by Abiteboul defined key aspects
of semi-structured data as well as its models and query lan-
guages [1]. Specifically, in our problem setting we encoun-
tered what Abiteboul defined as the aspects of irregular-
ity, implicity, and blurring boundary between schema and
data. The framework of thinking set forth in the paper sug-
gests the missing theory of semi-structured data, which the
academia is still seeking since. A related paper by Nestorov
presented ways to extract object-graph like schema from
semistructured data[5].The emphasis however is to assign
approximate data types and relationships in a collection of
semistructured data. The schema extracted thus has less
use in our problem context.

Wang and Liu first expanded the traditional set-based

data mining problem into mining hierarchical tree structure
and subtree mining[8]. In contrast to the IR research which
typically focuses on extracting the structure of a single doc-
ument, their work was formulated on requiring a minimum
number of occurrences of subtrees. The formulation al-
lows multiple common subtrees to be identified as long as
their occurrences exceed the specified minimum. In[9, 10],
a variation of the problem was introduced to discover fre-
quent subtrees within a single large hierarchy and the au-
thors introduced space efficient data encoding for mining
performance. Similar work with improved mining algo-
rithms can be found in[2]and [3].

We have found the main challenge in applying the fre-
quent tree mining techniques lies with the document struc-
ture recorded in these word processing XML standards.
The frequent text markers identified using our approach
are not text styling tags used to represent the documents.
Therefore while there are lots of frequent subtrees due to
text style reuse, these frequent subtrees are independent
from the content landmarks we wish to identify. Further-
more, we have seen user-defined templates simply signal-
ing a section heading with an extra blank line immediately
after. Human readers can infer the context and meaning
of the section heading but it does not show up in special
XML tags or as a separate node in the document hierarchy.
In these cases, a tree-based analysis algorithm will fail to
identify the new section.

8 Conclusion
Content Harvester (CH) tackles a pressing hurdle in asset
reuse which is how to get information from documents and
improve consumption. CH allows harvesting of unstruc-
tured, formatted documents by extracting content, cleans-
ing off sensitive information, tagging based on user-defined
names and making it available for publishing in any open
format and flexible querying. The current version works on
MS Word but the approach extends to Open Doc standard
also as explained. CH has been applied to 100s of doc-
uments from a broad variety of sources, including live en-
gagements, to promising effect. We presented experimental
results on document harvesting’s effectiveness, pilot expe-
rience of the tool’s feasibility, and statistical methods to
work with unorganized documents to find subsets of simi-
lar documents on which the tool can work effectively. The
approach is a stepping stone to gain business insights into
collections of unstructured documents, and to that end, the
released tool supports tag-based querying while integration
of the harvested content with other analytical tools is shown
in [7].

8.1 Acknowledgements

We thank Swaroop Chalasani and Sridhar Maradugu for
their contributions to the implementation of the Con-
tent Harvester tool, Kathy Byrnes for pilot guidance, and
Richard Goodwin, Juhnyoung Lee, Debdoot Mukherjee
and Vibha Sinha for useful discussions.

References
[1] S. Abiteboul. Querying semi-structured data. In Intl. Conf.

Database Theory, pages 1–18, 1997.
[2] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto,

and S. Arikawa. Efficient substructure discovery from large
semi-structured data. In R. L. Grossman, J. Han, V. Kumar,
H. Mannila, and R. Motwani, editors, SDM. SIAM, 2002.

[3] T. Miyahara, Y. Suzuki, T. Shoudai, T. Uchida, K. Taka-
hashi, and H. Ueda. Discovery of frequent tag tree patterns
in semistructured web documents. In PAKDD ’02: Pro-
ceedings of the 6th Pacific-Asia Conference on Advances
in Knowledge Discovery and Data Mining, pages 341–355,
London, UK, 2002. Springer-Verlag.

[4] R. Mohan, B. Srivastava, P. Mazzoleni, and R. Goodwin.
Challenges in moving from documents to information web
for services. In In 7th Information Integration on the Web
(IIWeb-09) workshop at IJCAI, Pasadena, USA, 2009.

[5] S. Nestorov, S. Abiteboul, and R. Motwani. Extract-
ing schema from semistructured data. SIGMOD Rec.,
27(2):295–306, 1998.

[6] S. Sarawagi. Information extaction. In Foundations and
Trends in Databases, Vol. 1, No. 3, Pg. 261 to 377, 2007.

[7] B. Srivastava and D. Mukherjee. Organizing documented
processes. In In IEEE Services Computing Conference,
Bangalore, India, 2009.

[8] K. Wang and H. Liu. Discovering structural association
of semistructured data. IEEE Trans. Knowl. Data Eng.,
12(3):353–371, 2000.

[9] M. J. Zaki. Efficiently mining frequent trees in a forest.
ACM SIGKDD Conf., pages 71–80, 2002.

[10] M. J. Zaki. Efficiently mining frequent trees in a forest: Al-
gorithms and applications. In IEEE Transaction on Knowl-
edge and Data Engineering, pages 1021–1035, 2005.

