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Abstract

The advent of multi-core systems has taken away the luxury of automatic speedups from legacy applications, which was
otherwise possible in the era of uni-core systems (the single core performance used to double every 18 months or so, thus
improving the performance of the application). These applications have to be explicitly re-targeted to derive benefits from the
increasing speedups of the multi-core systems. One of the key requirements of achieving better utilization of multiple available
cores is that of (further) parallelization of code. This requirement is also pertinent in the context of new task-parallel languages
(such as Cilk++, Intel Thread Building Blocks, Java Concurrency, OpenMP, Chappel, Fortress, X10, HJ and so on), where the
user may start with a partially parallelized version of the program, and then proceed to further parallelize it in an incremental
fashion.

In this paper, we demonstrate the insufficiency of traditional loop parallelization techniques for programs that contain explicit
parallelism and then present an extension to the classical loop parallelization techniques for semantic preserving parallelization
of loops in parallel programs. We present our techniques in the context of a refactoring framework which can help an application
developer to incrementally parallelize loops in explicitly parallel programs. In the process, we extend the state of the art in
two aspects: (a) Our parallelization framework depends on the May-Happen-in-Parallel (MHP) information, which needs to be
recomputed after every refactoring, and thus the complexity of MHP computation gets added to the cost of our refactoring. Owing
to the high computational complexity of the MHP algorithm of Agarwal et al [2] (O(N3H) to compute the set of all statements
that may run in parallel with a given statement, where N is the number of statements in the program and H is the height of the
program structure tree (PST)), the complexity of our proposed approach can become O(N3H). To improve the complexity of
our overall algorithm, we present a novel incremental MHP analysis, whose complexity is O(N2)), which in turn helps reduce
the complexity of our overall algorithm to O(N2). (b) To improve the opportunities for parallelization we present a scheme
of partial privatization, where we have a handle on the space overhead associated with the traditional privatization techniques.
The techniques presented in the paper are not fully automatic - may use some manual intervention to fine tune the scope and
effectiveness of the transformation, thereby bypassing some of the pitfalls of automatic parallelization techniques. We have used
our techniques on varied parallel benchmark programs and have been able to derive encouraging results.

I. INTRODUCTION

In the uni-core era legacy applications routinely enjoyed speedups derived directly from improvements in the underlying
hardware. Multi-core systems bring with them a new challenge to the application performance arena: since the multi-core
hardware speedup improvements are not resulting from spectacular improvements to the speeds of the individual cores, extending
the speedups to the applications targeted to the uni-core systems require either improved runtime (for example, operating system,
hypervisor), or improvements to the applications. The former approach can be beneficial to those legacy applications where
the source code is not available or where the runtime parameters greatly influence the performance gains, which are otherwise
not known at the source code level. One drawback of this approach is that the operating system or hypervisor may not be
able to utilize the structure of the program and the expertise of the programmer who might be able to assists with the task.
Thus, rewriting (or porting) existing application to suit the needs of multi-core systems is gaining interest. A possible target
for rewriting is code parallelization; a tool to selectively refactor parts of the code to parallelize would be a great help in
this direction. A refactoring tool transforms selected parts of a computer program without modifying its external functional
behavior. Such a tool can also be used to incrementally parallelize programs written in task parallel languages (such as Cilk,
Chappel, HJ, X10, and so on) which are being targeted for machines with multiple cores.

In this paper we first show the semantics non-preserving nature of the classical loop parallelization techniques in the
context of programs that contain explicit parallelism (such as threads), and then propose an extension for semantics preserving
loop parallelization. We present these techniques as a refactoring, in an integrated development environment like Eclipse, to
incrementally parallelize applications. Such a refactoring can be quite useful for traditional programmers who may want to start
with a sequential version of the application (or with few threads) and incrementally increase the parallelism. Another important
use of such an approach is to incrementally tune existing applications (serial or parallel), wherein the programmer starts from
the existing application (legacy or otherwise) and uses the refactoring tool to improve the performance in a trial-and-error
method.

Figure 1 presents a code snippet from the FluidAnimate application, taken from the Parsec 2.1 [6] suite1. This benchmark
computes one time-step of a liquid simulation using Smoothed Particle Hydrodynamics (SPH) method. It is a multi-threaded
benchmark written in C++ using pthreads. The main function creates multiple threads, and each thread executes the function
AdvanceFramesMT. Say, the programmer wants to parallelize the loop labeled L4 in the function AdvanceFramesMT.
The precondition to apply the Kennedy Allen [20] loop parallelization algorithm is satisfied (individual iterations of the loop
are independent), and thus we parallelize the loop. However, output of the resulting program does not match the original.
That is, this parallelization is not semantics preserving. As it is discussed later in this section, such a situation may arise only
because of the other threads that may be executing in parallel to the loop L4 (in this example, other parallel threads are created
in the main function).

1We have inlined couple of functions for the ease of presentation.



int main(int argc, char **argv){
...
for(int i = 0; i < threadnum; ++i) {

pthread_create(&thread[i], &attr,
AdvanceFramesMT, &targs[i]);

} ... }
void *AdvanceFramesMT(void *args) {
thread_args *targs=(thread_args *)args;
for(int i = 0; i < targs->frames; ++i){
...
for(int iz = grids[i].sz;

iz < grids[i].ez; ++iz)
for(int iy = grids[i].sy;

iy < grids[i].ey; ++iy)
for(int ix = grids[i].sx;

ix < grids[i].ex; ++ix){// L4
int index = (iz*ny+iy)*nx+ix;
Cell &cell = cells[index];
int np = cnumPars[index];
for(int j = 0; j < np; ++j) {
cell.density[j] = 0.f;
cell.a[j] = ...;

} } ... } }

Fig. 1. Snippet of FluidAnimate benchmark from Parsec 2.1.

final int[]A=new int[N+1];
//initialized to zero.
{

// Loop L1
for(int i:[0..N])

A[i] = i;
}
{

//correctness assertion
assert (A[1]>=A[2]-1);

}

(a)

final int[]A=new int[N+1];
//initialized to zero.
finish {
async { // X1
// Loop L2
for(int i:[0..N])

A[i] = i; }
async { // X2
//correctness assertion
assert (A[1]>=A[2]-1);}

} // finish

(b)

final int[]A=new int[N+1];
//initialized to zero.
finish {
async { // X1
// Loop L2
forall(int i:[0..N])
A[i] = i; }

async { // X2
//correctness assertion
assert (A[1]>=A[2]-1);}

} // finish

(c)

Fig. 2. Asynchrony and loop parallelization. (a) Serial program: loop parallelization is semantics preserving. (b) Equivalent parallel program. (c) Naive loop
parallelization (replacing the serial for loop by a parallel forall loop) of the parallel program may not be semantics preserving.

To help explain the relevance of other parallel threads in loop parallelization, we present a toy example written in X10 (the
language that we will be using as the reference language in this paper) in Figure 2. [ In X10, async S creates a new child
activity (thread) to execute the statement S, and finish S is a barrier statement that waits for all the child activities created
in S to terminate. We use a forall loop2 as a parallel for-loop. A brief background to the X10 language can be found in
Section II. ]

Figure 2(a) shows a piece of serial code that first creates an array A (and initializes all elements to zero). Later it updates
the array in a for loop. Finally it asserts on a predicate enforcing the dataflow semantics. Figure 2(b) shows an equivalent
parallel program that executes the for loop and the correctness assertion in two different activities. It can be easily seen
that in both these program snippets the assertion would never fail. The traditional loop parallelization techniques would allow
the parallelization of the loop L1 and would lead to a semantically correct translation for the code snippet in Figure 2(a).
However, for the code snippet Figure 2(b) such a parallelization (the for loop L2 being turned into a parallel forall loop-
as shown Figure 2(c)) is not semantics preserving. To realize the same, consider a trace of execution of the program shown in

2A forall (int i:[0..N]) loop creates N+1 number of activities and waits for all the activities to terminate; each activity executes the body of the
loop in parallel for a different value of i. In the context of X10 it can be seen as a syntactic sugar for finish foreach (int i: [0..N])



Figure 2(c):
1) Activity X1 starts and N+1 number of parallel iterations are forked in loop L2.
2) The third iteration of the forall loop finished execution first (assigns A[2] = 2).
3) Activity X2 (which may run in parallel with X1 and the different iterations of the forall loop) starts and the correctness

assertion is tested (A[1]>=A[2]-1), which fails because A[1]= 0.
Thus, a naive parallelization of the for loop in Figure 2(b) may violate the program semantics, because of the interaction
between the parallel activities of the newly created forall loop and the existing parallel activities. While it is relatively
easier to infer (and remove) such dependencies manually in a toy program like the one shown in Figure 2(b), it can be fairly
non-trivial to infer (and remove) such dependencies for a complex program like the one shown in Figure 1. Here, because of
the interaction between the different threads created in main and the iterations of the loop L4, independently parallelizing the
loop L4 in is not semantics preserving. Thus, it is important for a loop parallelizer to be aware of the possible asynchrony in
the program. In this paper, we present a scheme to parallelize loops in parallel programs in a semantics preserving way.

We present the loop parallelization techniques in the context of a refactoring tool. The developer identifies a loop to be
parallelized and invokes our tool. The main challenge of our tool is to identify if the loop parallelization is semantics preserving.
Traditional loop parallelization techniques parallelize a loop if the re-ordering of the loop iterations does not change the behavior
of that particular loop. In this paper, we go beyond that and reason about the correctness of loop parallelization by considering
the impact of re-ordering of the loop iterations on the other activities executing in parallel. We define a notion of destructive
interference of a loop with the rest of the program to help infer the impact. Intuitively, a loop destructively interferes with a
program, if the iteration order of the loop impacts the program output. We summarize our observation as a safety theorem to
establish that a loop can be safely parallelized if there is no destructive interference between the loop and the program.
Contributions: Our contributions are summarized below:
• We present a framework to safely parallelize loops present in parallel programs. For a loop that destructively interferes
with the program we use data privatization to eliminate destructive interference and parallelize the selected loop in a semantic
preserving way. Considering the associated large memory overhead of traditional privatization techniques, we present partial
privatization – an extension to the traditional techniques to reduce the associated large memory overhead.
• Our refactoring framework depends on the May-Happen-in-Parallel (MHP) analysis to identify other activities that may run
in parallel with the loop under consideration. This requires recomputation of the MHP information before each transformation,
resulting in high computational cost. To improve the speed of the refactoring tool, we present a fast incremental MHP analysis.
In this approach given a program and its current MHP information, if a loop is parallelized then the MHP information is
updated incrementally by analyzing the transformed code. Compared to the complexity of O(N3H) that results from using
the algorithm of Agarwal et al [2] to compute the set of all statements that may run in parallel with the loop where N is the
program size and H is the height of the program structure tree [2], our algorithm has an cost of O(N2).
• We have applied our parallelization techniques on a varied set of benchmarks taken from Parsec [6] (written in C/C++),
HPC Challenge [30], and NewJavaGrande [18] suites (written in X10) and have derived encouraging results.

A. Related Work

Parallelization: Traditional automatic parallelization techniques have been well studied in both research and academic
communities [5], [7], [15], [16], [17], [20], [31], and some of these techniques have been extended to introduce parallelism
as a refactoring [19], [9], [10], [21], [24]. Sundar et al [32] and Asuncion [3] present techniques to parallelize programs in
an incremental fashion. All of these studies concern parallelization in the context of serial code. In this paper, we present a
framework to further parallelize already parallel programs. Markstrum et al [25] present a refactoring tool based approach to
introduce parallel tasks in X10 programs. Chakraborty and Nandivada [8] present a refactoring scheme to automatically infer
distributions for data and computation. In this paper, we present a framework for semantically correct loop parallelization.
Such a tool can be used for incremental parallelization of code in steps – the programmer may parallelize some parts of the
code first (for instance, by a tool similar to that of Markstrum et al [25]), and then proceed to parallelize loops. Ideally this
will be an iterative process.
Privatization: Traditionally privatization techniques [20], [23] have been applied to help improve parallelization of code. One
main drawback of these algorithms is that they can incur large memory overhead. We present an extension to the traditional
privatization algorithm based on loop tiling [20], called partial privatization, where the developer has a handle on the associated
space overhead. To further reduce the memory overhead we can use the techniques presented by Gupta [14] to privatize only
relevant portions of arrays.
MHP Analysis: Traditionally May-Happen-in-Parallel (MHP) analysis has been explored in the context of several parallel
programming languages [4], [22], [11], [26], [27], [28]. Taylor [33] shows that the hardness of MHP analysis for all pairs
of statements in a program is undecidable in general, and is NP-complete for programs that use low level synchronization
primitives like Ada rendezvous. Agarwal et al [2] extend the traditional MHP analysis to a subset of X10 that does not have
low level synchronization primitives. Owing to the high computational costs, these analyses that deal with the whole program



Function Parallelize(L1, L2, success)1

Input: Loop L1

Output: Loop L2, boolean success
begin2

Matrix M = Direction matrix for the loop L1;3

success = false ;4

if M has all ’=’ entries then5

success = true ;6

L2 = parallelized loop for L1, obtained by replacing the header of L1 by forall loop, and appropriate7

transformations to the body;
else8

L2 = L1; // No change.9

end10

Fig. 3. Adapted Loop Parallelization algorithm of Kennedy and Allen.

are not suitable for a refactoring framework, that incrementally parallelizes programs, as the MHP information needs to be
computed after each transformation. For any given program, we start with the MHP information (as computed by Agarwal et
al [2]) and as the developer parallelizes different parts of the program, we incrementally update the MHP information (without
having to recompute the MHP information for the whole program) using a fast algorithm.

Rest of the paper is organized as follows: We first present a quick introduction to X10 language and traditional parallelization
techniques in Section II. We discuss our parallelization techniques in Section III. We present out extensions to the MHP analysis
in Section IV. We discuss our evaluation of the presented techniques in Section VI. Finally, we conclude in Section VII, along
with a discussion on the future work.

II. BACKGROUND

X10 Background: In this section we present a brief background to some of the relevant features of X10 for this paper
by summarizing three constructs: async, finish, and foreach. Details about standard X10 v0.41 can be found in the
X10 reference manual [12]. Other X10 constructs like points, regions, places and clocks are not central to the paper and are
omitted. In this paper, we assume a simplified syntax: every statement has an unique associated label.

Async is the X10 construct for creating (forking) a new asynchronous activity (thread). The statement, async S, causes
the parent activity to create a new child activity to execute S. Execution of the async statement returns immediately i.e., the
parent activity can proceed immediately.
finish S is a structured barrier statement, wherein the body S is executed with a surrounding barrier such that all activities

created inside S have to terminate before the activity executing the barrier can proceed. At runtime, each instructions executed
in an X10 program has an unique associated activity and which in turn has an unique immediately enclosing finish (IEF)
barrier. Any exception thrown by an activity is propagated to its IEF instance. The IEF catches all the exceptions thrown in the
body, bundles them into a single exception of type MultiException, and throws the bundled exception as a new exception.

The statement foreach (int p : [m..n]) S supports parallel iterations over all the points in the region of indices
[m..n], by launching each iteration as a separate async. The statement foreach (int p : [m..n]) S is equivalent
to for (int p : [m..n]) async {S}. Similarly, forall (int p:[m..n]) S is used as an abbreviation for
finish foreach (int p: [m..n]) S.

A. Loop parallelization algorithm

In this section, we briefly present the loop parallelization techniques of Kennedy and Allen [20] in the context of serial X10
programs. Figure 3 presents the algorithm to parallelize an input loop L1. The output variable L2 contains the transformed
loop, and the status is reflected in the output variable success. Since we are only parallelizing a particular loop, the direction
matrix [20] M is a column matrix. The algorithm first checks that the loop is parallelizable. If the elements in M are all ‘=’
then the loop carries no dependencies, and it is considered parallelizable. If the loop is parallelizable then it parallelizes the
loop by modifying the loop header, and possibly the body (line 7). The modifications to the loop body may involve privatization
of scalars, scalar vectorization, loop distribution, code replication, statement reordering, insertion of atomic sections, and other
standard helper transformations. The discussions about these helper functions is beyond the scope of this manuscript. Interested
reader may refer to [20].



B. May Happen in Parallel Analysis

May-Happen-in-Parallel (MHP) analysis determines if dynamic instance of two statements (or the same statement) may run
in parallel. We now briefly describe the intra procedural MHP analysis technique proposed by Agarwal et al [2], that works
on the subset of X10 described above.

The MHP algorithm of Agarwal et al takes as input two statements s1, s2, and the program structure tree for the procedure
in which the two statements occur, and updates two output variables: (a) a boolean variable to reflect if s1 and s2 may run
in parallel, and (b) a condition vector under which they may run in parallel. A program structure tree (PST), is a program
representation that compresses an abstract syntax tree to consider only nodes of the following types root, statement,
loop, async, finish and isolated. The root type corresponds to the start of the procedure, and the statement
type corresponds all other statements except loop, async, finish and isolated.

The parallelization framework presented in this paper needs to identify all the activities that may run in parallel with a given
loop. Figure 4 shows a simple extension to the MHP algorithm of Agarwal et al to achieve the same; it invokes the algorithm
of Agarwal et al (AgarwalMHP) repeatedly for each activity in the procedure. This algorithm updates the map MHP for the
statement s1, and CS map remembers the corresponding condition vector.

Function computeMHP(s1)1

Input: Loop s1

Say pst is the PST of the procedure under consideration;2

foreach activity s2 in the Program do3

AgarwalMHP(s1, s2, pst, mhp, CS);4

if mhp then5

MHP(s1) = MHP(s1) ∪ {s2};6

CS(s1, s2) = CS;7

Fig. 4. All statements running in parallel.

The complexity of the algorithm AgarwalMHP is O(N2H), where N is the number of the statements in the program, and
H is the height of the PST. Thus the overall complexity of the function computeMHP is O(N3H); in the worst case quartic
in the program size.

III. PARALLEL PROGRAMS AND LOOP PARALLELIZATION

Traditional auto-parallelization techniques have mostly restricted themselves to parallelization of loops in the context of
serial programs. As discussed in Section I, parallelization of loops in parallel programs is more involved; we needs to take into
consideration any other activities that might be running in parallel and accessing shared data. The data accessed by variables
visible across multiple threads is considered shared and such variables are called shared variables.

We first present a few definitions in Figure 5 that will be used in this paper. The set of program labels is given by L. Our
internal representation of the program has only simple expressions and hence, each expression has an unique label associated
with it. The set of abstract activities [1] is given by A. For each activity x, there exists a set MHP(x) of activities that
may run in parallel with x; P(X) denotes the power set of the set X. To start with, we compute the MHP map using the
techniques discussed by Agarwal et al [2], and later present an novel incremental algorithm to update the MHP information
(see Section IV) in an efficient way. Loops gives the set of labels of all the loops present in the program. Each loop belongs
to exactly one abstract activity; we call it as the container activity of the loop. We use the map C to return the container
activity for any loop. We use a helper map M to return the set of activities that may run in parallel with the container activity
of the input loop. We compute this map by: M(Lx) = MHP(C(Lx)). Besides these maps, we identify a subset of all the
program variables called output variables.

Definition 3.1 (output-variable): A variable whose value is part of the observable behavior of a program is an output variable
for the program.

L: Set of labels MHP: A → P(A)
A: Set of abstract activities C: Loops → A

Loops⊆ L : Set of labels of the loops
M:Loops → P(A)

Fig. 5. Basic definitions used in the paper.



final int[]B=new int[2];//initialized to zero
final int[]C=new int[2];//initialized to zero
for (i=0;i<2;++i) B[i] = i;
finish {
/* A0 */ async { for (j=0;j<2;++j)

B[j] = ...; }
/* A1 */ async { C[0] = B[0]; ... }
/* A2 */ async { C[1] = B[1]; ... }

}
System.out.println (C[0]);
System.out.println (C[1]);

Fig. 6. Example of non-destructive interference.

From an application developer perspective (who uses our refactoring framework) the observable behavior of a program consists
of only the program output. Thus the argument to System.out.println is an output variable3. We now define destructive
interference that is central to our parallelization algorithm presented later in this section.

Definition 3.2 (Destructive interference): Given a program P and a loop L therein, if the value of any output-variable in P
depends on the iteration order of L then L is said to destructively interfere with P.
An example of destructive interference can be seen in Figure 2(b), where the loop L2 destructively interferes with the program:
the value of the output-variable (argument to assert) depends on the order in which the iteration of the loop are executed.

Figure 6 presents a skeleton of a program in bounded buffer producer consumer paradigm, where the producer activity A0,
and the two consumer activities A1 and A2 are all running in parallel. The producer (A0) updates the array B, and consumers
(A1 and A2) consume the data and write to a shared variable C. This program has no destructive interference since the value
output by the program does not depend on the order in which B[0] and B[1] are updated (each being updated in a different
iteration). And we observe that it is safe to parallelize the loop in the first async block. We first present the definition of
safety, and then summarize our key finding as a theorem.

Definition 3.3 (Safety): Say P is a program and P’ is the transformed program obtained by applying a transformation F on
P. The transformation F is considered safe, if the set of observable behaviors of P and P’ are identical.

Note that, we are considering the equivalence of the original and the transformed programs only in terms of the observable
behavior; this is sufficient from the perspective of the developer using the refactoring tool. Another point to note is that, an
asynchronous program P can have more than one correct observable behavior (for instance, because of multiple write statement
executing in parallel). Hence, we base our notion of safety on the comparison of the set of observable behaviors of P and
P’ – that is every observable behavior of P’ is also shown by P and vice versa. Such an equivalence is also dependent on
the underlying memory model. Even using a stricter memory model like sequential consistency, prior research [33], [13] has
shown the problem to be NP-complete (thus it is applicable to weaker memory models as well). We now summarize our central
theorem.

Theorem 3.4: Given a program P and a loop L therein, if L can be parallelized by the algorithm presented in Figure 3, the
parallelization transformation is safe if and only if there is no destructive interference between L and P.

Proof: (Sketch)
// By the definition of destructive interference
(L destructive interferes with P ⇔ iteration order of L has to be preserved)
⇔
// Applying the rule (p ⇔ q) ⇔ (¬p ⇔ ¬q)
(¬(L destructive interferes with P) ⇔ ¬ (iteration order of L has to be preserved))
⇔
// Simplifying the negation expressions
(L does not destructive interfere with P ⇔ iteration in L can be executed in any order)
⇔
// By the definition of Safety
(L does not destructive interfere with P ⇔ it is safe to parallelize L)

Hence the proof.
It may be noted that our notion of destructive interference is stricter than that of the “data race” [29]. For instance, the

example in Figure 6 has data-race, but the loop can still be parallelized, because of the absence of destructive interference.

3Our internal representation is in three address format, and thus System.out.println will take only one argument. Further, assertions and uncaught
exceptions are also observable and are treated similarly.



Thus, using data-race instead of destructive interference would lead to parallelization of fewer programs. Further, the notion
of parallelism-inhibiting edges described for loop fusion [20] is stronger than our notion of destructive interference and is
insufficient.

Considering the Theorem 3.4 and the complexity of establishing the safety of parallelization (NP-complete), the hardness
of establishing destructive interference is readily understood. To make the problem tractable, we now present a conservative
definition of destructive interference based on the following observation and lemma:
Observation: A conservative over-approximation of the set of output-variables is given by the set of pseudo-output-variables.
A pseudo-output-variable (POV) can be an argument to a function call, or be an argument to a return statement, or be stored in
a shared variable, or be the argument of an output statement. It may be noted that, we may omit the arguments to a function
call from the set of pseudo-output-variables, if source code for the function is available.

Lemma 3.5: The value of a POV in an activity, depends on the iteration order of a loop, only if the POV depends on at least
two of the shared elements updated in the loop body.

Proof: (Sketch) Proof by contradiction: Say the value of a POV x (accessed in an activity A) depends on a single shared
variable v updated in Loop L that runs in parallel with A, and reordering the iterations in L may result in a new value for x
that was otherwise not possible. But this is a contradiction: since A and L are running in parallel, x can be computed based on
the value of v computed in any iteration of L or the original value of v, and hence reordering iterations of the loop L would
not lead to any new value for x. Hence the proof.
Conservative destructive interference: For a given loop L and an activity A ∈ M(L), L destructively interferes with A if
any POV in A depends on the updates of two or more shared variables in L.

A loop L destructively interferes with a program P iff ∃A ∈ M(L), such that L destructively interferes with A. We use
CDI(L, A) to say that there is conservative destructive interference between L and activity A. Similarly, we use CDI(L,
P) to say that there is conservative destructive interference between L and program P. We now present the modified theorem
based on the conservative destructive interference.

Theorem 3.6: Given a program P and a loop L therein, if L can be parallelized by the algorithm presented in Figure 3, the
parallelization transformation is safe if there is no conservative destructive interference between L and P.

Proof: (Sketch)
// From the definition of conservative destructive interferences
(∃A ∈M(L): a POV in A depends on the updates of two or more shared variables in L ⇒ CDI(L, A))
⇒
// From Lemma 1
(iteration order of L has to be preserved ⇒ ∃A ∈M(L): CDI(L, A))
⇔
// Applying the rule (p ⇒ q) ⇔ (¬q ⇒ ¬p)
(¬(∃A ∈M(L): CDI(L, A)) ⇒ ¬ (iteration order of L has to be preserved))
⇔
// Definition of CDI(L,P), and simplifying negation expression
(¬CDI(L,P) ⇒ iteration order of L need not be preserved)
⇔
// By the definition of Safety
(¬CDI(L,P) ⇒ it is safe to parallelize L)

Hence the proof.
We now revisit the code snippet shown in Figure 6. The POV C[0] in activity A1 depends only on one shared variable

(B[0]) in the loop. Similarly, the POV C[1] in activity A2 depends only on one shared variable (B[1]) in the loop. Hence,
the loop does not destructively interfere with any activities executing in parallel and is safe to parallelize.

It may be noted that conservative destructive interference is a sufficient condition and not a necessary one for loop
parallelization. Figure 7 shows an example program with destructive interference, where it is safe to parallelize the loop.
The loop L1 updates the variable x, and based on the iteration order, the value of x[0] will be 1 and the value of x[1] will
be 2, or vice versa. Which in turn, impacts the POVs y[0] and y[1]. Thus, the iteration order in which the shared variables
(x[0] and x[1]) in Loop L1 are updated affects the values of the output variables y[0] and y[1]. In other words, L1
destructively interferes with A2. However, it is still safe to parallelize L1 (the output is one of 0, 1, 2 or 3 irrespective of
if the loop is parallelized or not).

A. Loop parallelization algorithm

Traditional loop parallelization techniques discussed in Section II-A process each of the loops in an independent fashion -
the decision to parallelize the loop and the resulting parallelized code depended only on the loop, and not on any other parts



Stack stk = new Stack();
stk.push(1); stk.push(2);
final int[]x=new int[2]; //initialized to zero
final int[]y=new int[2]; //initialized to zero
finish {
async { // A1

for (i=0;i<2;++i) { // L1
x[i] = stk.pop();

}
}
async { // A2

y[0] = x[0];
y[1] = x[1];

}
}
System.out.println(y[0] + y[1]);

Fig. 7. Destructive non-interference is not necessary for safe parallelization.

of the program. As explained in Section I, we cannot parallelize loops in asynchronous programs in a standalone mode. Both
the decision to parallelize and the generated code depends on other interfering activities.

It can be easily seen that the traditional loop parallelization algorithms defined for serial programs can also be directly
applied to all those loops that do not destructively interfere with the program (with other activities). A naive approach to
parallelize loops in asynchronous programs is to first check if the given loop destructively interferes with any other activity
that may run in parallel and parallelize only if it does not.

The all-or-none approach of the naive approach is overly conservative. A straight forward way to eliminate destructive
interference would be to privatize all the shared variable accesses (present between the loop and the activities running in
parallel), and use copy-back [7] operations to reflect the modifications at different activities. These copy-back operations
can be fairly expensive as they may incur significant memory operations cost (multiple writes to the same memory location
need to be identified, and a private copy of the variable is required for each parallel write), and may further require some
synchronization operations or runtime evaluation to identify the last-writes [34]. In this section we present our scheme that
avoids the use of copy-back operations altogether in the interfering activities. Unlike the prior research work on privatization,
where the goal is to help make the loop parallelizable by removing the loop carried dependences, our attempts at privatization
is directed at removing the dependence across multiple activities.

Before we present our algorithm, we first present a categorization of loops: For any loop Li, say V be the set of variables
updated in Li and are also accessed (read and/or written) in the activities contained in the set M(Li). Loop Li is categorized
as read only, if the variables present in V are only read in Li. Loop Li is categorized as read & write, if the variables
present in V may be both read and written in Li. We present our loop parallelization algorithm in Figure 8. We address the
problem of parallelizing the input loop Li based on its categorization.
case I: Li is read only with respect to V; no destructive interference possible. We can parallelize Li using the algorithm
discussed in Figure 3 (if the algorithm permits parallelization).
case II: Li is read & write with respect to V. The algorithm presented in Figure 3 will parallelize a loop, only if
different iterations of the loop are independent. Thus, if the algorithm parallelizes a read & write loop, it will be a valid
transformation in isolation. However, if the activities in the set M(Li) read two or more of the shared variables that are written
in Li (from the set V), then parallelizing Li may have an impact on their semantics. As discussed earlier in this section, it
depends if Li interferes with the activities in the set M(Li) in a destructive way. We use the function ChkCDI to compute
conservative destructive interference. It takes as input a loop L and an activity A that may run in parallel with L. It updates
two output parameters: (i) boolean variable interferes is set if L destructively interferes with A, and (ii) V ′ is updated with
the set of variables that contribute to the destructive interference.

For all the activities destructively interfering with the input loop, we identify all the variables contributing to the destructive
interference and introduce privatization code before the invocation of the first of the interfering activities. The rest of the reads
of the shared variables are replaced with reads to the privatized copies. Thus, both the decision to parallelize a loop and the
generated code depend on the of the other interfering activities (privatized variables are updated in the activities that may run
in parallel).

Figure 9 presents an algorithm to insert privatization code for a shared variable v, for all the destructively interfering activities
of the input activity A. It uses a helper function Slice(L2, L1, v) that returns the set of labels of statements part of the backward
slice for the variable v from L2 to L1. We first identify all the interfering activities, and identify the point where we can
introduce the privatization code; this point is the last program point at which the variable is updated before the invocation



Function ParallelizeNew(Li, Lo, success)1

Input: Loop Li

Output: Loop Lo, boolean success
begin2

V = set of variables shared between Li and M(Li);3

switch (category of loop Li) do4

case read only:5

Parallelize(Li, Lo, success)6

case read & write:7

Parallelize(Li, Lo, success);8

if V is empty OR ¬ success then9

return;10

foreach At ∈M(Li) do11

boolean interferes;12

ChkCDI(L,At, interferes, V ′);13

if interferes EQ true then14

privatize(V ′, At);15

end16

Fig. 8. Algorithm to parallelize a loop in an asynchronous program

Function privatize(V,A)1

Input: Variables V , Activity A
begin2

Let L1 be the label of the statement creating the activity A;3

V ′ = V ∩ set of variables accessed in A;4

foreach v ∈ V ′ do5

Insert privatization code (privatev = v;) before L1;6

foreach statement s present in the activity A do7

v = the variable defined in the statement s;8

if v ∈ V ′ then9

Insert code privatizev = v; after s;10

v1, v2 = variables used in the statement s;11

if v1 ∈ V ′ then12

Replace v1 with privatizev1 in s;13

if v2 ∈ V ′ then14

Replace v2 with privatizev2 in s;15

end16

Fig. 9. Privatization algorithm

of any of the interfering activities. We insert the privatization code in line 5. After each of the write statements reaching the
interfering activities, and present in the interfering activities, we add privatization code (line 10); privatization code for an
array would involve inserting a loop to initialize the privatized copy. All the reads to the variable v in the interfering activities
are replaced by reads to the variable privatizev (line 14). Figure 10 shows the privatization required for parallelizing the
for-loop in Figure 2(b).

The paralleliztaion algorithm shown in Figure 8 requires up-to-date may-happen-in parallel (MHP) information (to compute
the M map in Line 3). And we invoke the computeMHP algorithm discussed in Section II, everytime we require the MHP
information.

It may be noted that the case I mentioned above is a special case of the case II. We separate these, so as to avoid privatization



final int[]A=new int[N+1];
final int AT[1] = A[1];
final int AT[2] = A[2];
async {// Loop

for (int i:[0..N])
A[i] = i;

}
async {

assert(AT[1]>=AT[2]-1);
}

Fig. 10. Privatization required for Figure 2(b)

Input Loop
L: for (i=0;i<n;i++){

A[i] = i;
}

Transformed loop
Step 1: Tiling
L1:for(int j=0;j<n/B;j++){
L2:for(i=j;(i<j+B && i<n);i++){

A[i] = i ; } }

Step 2: Parallelize
L1:for(j=0;j<n/B;j++){

parallelize( L2, success)
}

Fig. 11. An example illustrating partial privatization via tiling.

in some cases.
Complexity: The complexity of each of the functions Parallelize, ChkCDI, and privatize is O(N), where N is

the number of statements in the program. Thus the cost of the switch statement is O(N2). The cost to compute the M map is
O(N3H), where H is the height of the PST, and in the worst case it becomes O(N4). Thus, because of the expensive MHP
function, the overall complexity of our ParallelizeNew algorithm is O(N4). In the Section IV we present extensions to
the MHP analysis to improve upon this complexity.

B. Partial Privatization via Loop Tiling

Traditionally array privatization has been applied as a means to improve the chances of parallelization. This involves creating
a copy of the input array and using the privatized copy at program points requiring private access. But creating a copy of a
large sized array can be expensive and restrictive in terms of memory space. In this section, we extend the traditional notions
of loop tiling to help reduce the memory space overhead that is otherwise traditionally associated with privatization. This
scheme can be especially useful for privatizing large sized arrays.

We use a technique that uses the classical array privatization algorithm of Li [23], and loop tiling [20] techniques as black
boxes to privatize a given array A, accessed within a loop L. We illustrate our idea using an example shown in Figure 11.
Say the input loop is to be parallelized after the array A has been partially privatized. Our proposed technique would first tile
the loop (say, using a user specified blocking faction B), and then invoke the parallelization algorithm on the inner loop, such
that the sub-array accessed within the inner loop is fully privatized. This partial privatization scheme is can overcome some
possible memory overhead issues, by reducing the memory requirement (at the cost of reduction in parallelism).

C. Exception handling

Exception semantics of the underlying language plays an important role in loop parallelization. For instance, as per X10
semantics an exception thrown inside an iteration of a parallel loop (foreach) does not terminate the execution of other
parallel iterations of the loop. Such exceptions are only caught by the surrounding finish, after all the activities forked in
the finish have terminated. In our loop parallelization algorithm presented in Figure 3, we replace the header of the loop
to be parallelized by a forall (finish foreach) loop. Thus exceptions thrown in any one parallel iteration are caught
(by the finish surrounding the foreach) only after all the other parallel iterations have terminated. This is counter to the
original semantics of the program.

Another issue that is specific to X10 is that a finish catches all the exceptions thrown in the body, bundles them into a
single exception of type MultiException and throws the bundled exception as a new exception. Thus the existing exception
handlers around the transformed loop have to be rewritten to catch MultiException, as the new parallel loop would only
throw an exception of type MultiException.

Our refactoring tool informs the programmer of the exception semantics and let the programmer make explicit code changes.
For instance, the programmer may choose the rewrite the code to catch MultiException and based on the exception thrown
it may execute appropriate code. A trivial extension to our framework can highlight the impacted catch blocks in the program
editor. A rigorous study of parallelization in the presence of exceptions is left as a future work.



IV. INCREMENTAL MAY-HAPPEN-IN-PARALLEL(MHP)

The parallelization algorithm discussed in section III, depends on the MHP analysis for safe parallelization of loops. As
discussed at the end of Section III the complexity of the MHP analysis presented by Agarwal et al [2] is the chief contributor
to complexity of our parallelization algorithm. In this section we present a novel incremental MHP analysis that reduces the
complexity of MHP analysis and thereby improving the complexity of our loop parallelization algorithm. We ensure that there
is no loss of precision compared to the MHP result achieved from reanalyzing the whole program.

Say, a loop L, contained inside an activity Ax, is parallelized and the resulting activities created by the parallel loop are
represented by a single activity AL. Our incremental MHP algorithm is based on the following observations: (a) For the
activities created in Ax that are created after the termination of AL, they do not run in parallel with AL. (b) AL runs in
parallel with the M(L).

Figure 12 presents our incremental MHP algorithm. It takes as input a loop L and the new abstract activity AL corresponding
the parallel iterations of the transformed loop. It updates the MHP and CS maps, based on the two observations presented
above.

Function incrementalMHP(L,AL)1

Input: Loop L, A AL

begin2

A = C(L);3

m = M(L);4

foreach s ∈ AsyncsIn(A) do5

if L predominates s then6

m = m− {s};7

CS(AL, s) = φ;8

MHP(AL) = m;9

foreach a ∈ MHP(A) do10

MHP(a) = MHP(a) ∪ {AL};11

CS(AL, a) = CS(a,A);12

end13

Fig. 12. Incremental MHP Analysis

The incremental MHP in Figure 12 works as follows
• If loop L predominates any async statement s in any of the activities in A (given by AsyncsIn) then we exclude s

from MHP(AL).
• foreach activity a ∈ MHP (A), add AL to MHP(a).

Since the lifetime of AL does not exceed that of A this local analysis suffices and is as precise as complete (re)analysis of
MHP sets (achieved by invoking computeMHP, Figure 4).

We invoke the incrementalMHP algorithm after each successful transformation in the function parallelizeNew
shown in Figure 8. The complexity of computing incremental MHP in each invocation is O(N2), and this leads to an overall
complexity of O(N2) for the parallelization algorithm. Note that, in this new approach the computaion of M(Li) in line 3 of
Figure 8 needs just a table look up and does not need to recompute the MHP sets, which is otherwise required in the absence
of the call to incrementalMHP.

V. OVERALL VIEW AND DISCUSSION

The overall block diagram for our proposed parallelization framework is given in Figure 13. Our proposed parallelization
techniques are targeted as a refactoring tool in an integrated development environment like Eclipse. We compute the complete
MHP information once (by invoking computeMHP) (we can do it when Eclipse opens this particular file), and then for each
loop parallelization refactoring, we invoke ParallelizeNew, or Parallelize depending on if the program contains other
parallel activities or not. After that we invoke incrementalMHP to set the MHP information up-to-date. By ignoring the one
time cost of invoking the computeMHP (can be ignored for a sufficiently large number of invocations of the parallelization
algorithm), each individual parallelization refactoring has an overall complexity of O(N2).
• Our incremental MHP algorithm achieves the improvements in the complexity by (a) distributing the work across each
invocation of the parallelization algorithm, (b) focussing on only one type of parallel constructs (namely the parallel loops).
We are currently working on designing a full fledged incremental MHP algorithm that can incrementally update the MHP



ParallelizeNew(L, L’, success)

Parallelize(L, L’, success)

if (success)

IncrementalMHP()

Program has 
other parallel
regions?

N

User Inpiut

Parallelize L

Session
starts

CompiuteMHP
Y

Fig. 13. Block diagram illustrating a typical invocation of our parallelization framework

information for each type of program update (such as introduction of finish, async and so on) possible in an development
environment. Owing to the complex issues involved, that problem needs to be handled in a standalone fashion and is beyond
the scope of this paper.
• In this paper, our incremental MHP analysis does not take into consideration multiple places of the activities. While this
remains an interesting exercise, there is limited use of such an analysis in our current set up.
• The usefulness of the proposed incremental MHP analysis goes beyond just loop parallelization. It can be deployed in many
integrated development environments where the underlying tool need to maintain up-to-date MHP information.
• Even though we present our techniques in the context of X10, these can be applied to other task parallel languages like HJ,
UPC and languages that support parallel loops and threads (such as C++ with pthreads).
• The underlying memory model plays an important role in guaranteeing the correctness of parallelization. We have discussed
the hardness of establishing program equivalence even under strict models like sequential consistency in Section III. We use
properties of conservative destructive interference (Theorem 3.6) to establish the correctness.
• The techniques presented in the paper are not fully automatic and may need some manual intervention to fine tune the scope
and effectiveness of the transformation. Two such instances are: (a) identifying a blocking factor for partial privatization, and
(b) modifying the code for semantics preserving exception handling.

VI. EVALUATION

In this section, we discuss our experience in applying the techniques presented in this paper onto real world examples. We
show the applicability of our techniques, by presenting our experience with diverse benchmarks. Our evaluation re-establishes
the insufficiency of traditional loop parallelization algorithms in the context of parallel programs and shows how proposed
techniques perform semantics preserving transformations. We have picked the examples from three different benchmark suites
(NewJavaGrande Benchmark suite [18], HPC Challenge benchmark suite [30], and Parsec suite [6]), so as to establish the
applicability of our techniques.

Figure 14 summarizes the benchmark characteristics in the first five columns. All of these benchmarks have serial loops
present in parallel code, and in six out of the nine benchmarks the loops destructively interfere with the benchmark programs.
We found that our definition of conservative destructive interference captured all of these cases. The sixth column in Figure 14
presents the result of applying the parallelization algorithm of Kennedy and Allen [20]. It shows that the first three benchmarks
where the loops under consideration did not destructively interfere with the programs, the algorithm of Kennedy and Allen [20]
resulted in semantically correct translation. We establish the semantic correctness by comparing the output of the translated
program with that of the original program. For the rest of the benchmarks it resulted in incorrect translation (generates incorrect
results). The last column in Figure 14 shows the result of applying our parallelization algorithm described in Figure 8; for
all the benchmark programs our parallelization algorithm resulted in semantically correct translation. We now present a few
details from this study.
Parallelizing in the absence of destructive interference (BlackScholes, Swaptions and RandomAccess): BlackScholes is from
the Parsec [6] benchmark suite. This benchmark uses Black-Scholes Partial Differential Equation (PDE) to do option pricing.
This benchmark, along with Swaptions and FluidAnimate, is a multi-threaded benchmark written in C++ using pthreads.
Figure 15(a) shows the snippet of the BlackScholes benchmark ported to X10. The goal here is to parallelize the middle for-
loop (j loop). Our algorithm identifies that the for-loop may run in parallel with other activities forked from the iterations of
the outer loop. However, it finds that there is no destructive interference and thus parallelizes the loop (Figure 15(b)), without
any need for privatization. We have observed similar patterns in the Swaptions benchmark of the Parsec suite, and in the
RandomAccess benchmark from the HPC Challenge benchmark suite [30].



Benchmark No of loops present in destructive conservative destructive Semantically correct parallelization ?
Lines parallel code? interference? interference? by Kennedy Allen [20] by Figure 8

BlackScholes 1661 Y N N Y Y
Swaptions 1615 Y N N Y Y
RandomAccess 270 Y N N Y Y
Moldyn 635 Y Y Y N Y
Series 483 Y Y Y N Y
Sor 176 Y Y Y N Y
Sparsemult 260 Y Y Y N Y
LU 243 Y Y Y N Y
FluidAnimate 3492 Y Y Y N Y

Fig. 14. Characteristics and Scope of Parallelization in Parallel Programs: A Comparative Study

for(int k = 0; k < threadnum; ++k){
...
async {
...
for (j=0; j<NUM_RUNS; j++) {
...
for (i=start; i<end; i++) {
price[i] += BlkSchlsEqEuroNoDiv(

sptprice[i],strike[i],
rate[i],volatility[i],
otime[i], otype[i],0);

} } }

(a)

for(int k = 0; k < threadnum; ++k){
...
async {
...
finish foreach(j=0; j<NUM_RUNS; j++) {
...
for (i=start;i<end;i++){

price[i] += BlkSchlsEqEuroNoDiv(
sptprice[i],strike[i],
rate[i],volatility[i],
otime[i], otype[i],0);

} } }

(b)

Fig. 15. (a) Parallel BlackScholes, (b) Further parallelized BlackScholes. Modifications shown in bold.

Parallelizing in the presence of destructive interference (Moldyn, Series, Sor, Sparsemult, LU, FluidAnimate): Moldyn is
part of the NewJavaGrande [18] benchmark suite ported to X10. Figure 16(a) shows the parallel version of a part of the Moldyn
benchmark. The goal is to further parallelize the program by parallelizing the inner (broadcast) loop. Figure 16(b) shows the
transformation as realized by our algorithm. Our parallelization algorithm identifies that due to the shared variable P, the loop
destructively interferes with the activity (created by the outermost foreach loop). The algorithm privatizes the variable P before
the outer most foreach loop, and parallelizes the broadcast loop; it also uses the privatized copy PP in the reduction loop.
We have identified similar opportunities in Series, Sor and Sparsemult benchmarks of the NewJavaGrande suite, in the LU
benchmark of the HPC Challenge benchmark suite, and in the FluidAnimate benchmark from the Parsec suite.

void run() {
...
finish foreach (...) {
...
// sum reduction
for (point [j]: R) {
t.vir += P[j].vir;
t.epot += P[j].epot;
...

}
// broadcast
for (point [j]: R) {

P[j].vir = t.vir;
P[j].epot = t.epot;
...

}
}
}

(a)

void run() {
...
for (point [j]: R) // privatization

PP[j] = P[j];
finish foreach (...) {
...
// sum reduction
for (point [j]: R) {
t.vir += PP[j].vir;
t.epot += PP[j].epot;
...

}
// broadcast
finish foreach (point [j]: R) {

P[j].vir = t.vir;
P[j].epot = t.epot;
...

} } }

(b)

Fig. 16. (a) Parallel Moldyn, (b) Further parallelized Moldyn. Modifications shown in bold.



An interesting point to note in both the examples shown in Figure 15 and Figure 16 is that the actual transformation may look
fairly simple and can be done manually. However, the key challenge lies in identifying if there exists destructive interference
and, if so, introducing the relevant privatization code at an appropriate program point so as to preserve the original program
semantics.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a framework for helping application developer to incrementally parallelize loops in parallel programs.
We show that the decision to parallelize a loop and the generated code depend not only depend on the particular loop, but
also on the other activities that may be running in parallel with the loop. We present an extension to the traditional loop
parallelization algorithm to safely parallelize loops in the presence of other parallel activities. To help improve the efficiency
of the generated code, we introduce an extension to the traditional privatization techniques to reduce the associated memory
overhead. In the process, we identify that the complexity of using the traditional MHP algorithm to determine all the statements
that may run in parallel with the loop (quartic in the program size) is a bottleneck for the parallelization algorithm; we present
a new efficient incremental MHP analysis (complexity - quadratic in the program size) to improve the efficiency. Such a fast
incremental algorithm is particularly suitable for Eclipse type of programming environments, where the application developer is
likely to continuously modify the code by writing new parallel loops or parallelizing existing loops. We show the applicability
of the presented techniques over benchmarks spanning three different benchmark suites. In this paper, we use X10v1.4 as
the basis language for discussing the techniques on parallelizations and distributions. However, as shown in section VI the
techniques discussed here are general enough and can be applied to other language frameworks as well.

During our study of many asynchronous programs we have identified new refactoring patterns that involve parallelization
of loops guarded by synchronizations such as clocks [12]. Identifying further refactoring patterns and possible optimizations
in the generated code would be an interesting area to explore. Implementing the framework in Eclipse type of environment is
an involved exercise in itself and is left as future work.
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