
RI 11012 08 Jun 2011 Computer Science

IBM Research Report

RSCMap: Resiliency Planning in
Storage Clouds

Vimmi Jaiswal, Aritra Sen, Akshat Verma
vimmi.jaiswal@gmail.com, aritrsen@in.ibm.com,

akshatverma@in.ibm.com

IBM Research Division

IBM Research - India

4-Block C, ISID Campus, Vasant Kunj
New Delhi - 110070. India.

IBM Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo -
Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for pub-

lication outside of IBM and will probably be copyrighted is accepted for publication.

It has been issued as a Research Report for early dissemination of its contents. In

view of the transfer of copyright to the outside publisher, its distribution outside of

IBM prior to publication should be limited to peer communications and specific re-

quests. After outside publication, requests should be filled only by reprints or legally

obtained copies of the article (e.g., payment of royalties). Copies may be requested from

IBM T.J. Watson Research Center, Publications, P.O. Box 218, Yorktown Heights, NY

10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at

http://domino.watson.ibm.com/library/CyberDig.nsf/home

RSCMap: Resiliency Planning in Storage Clouds

Vimmi Jaiswal2, Aritra Sen1, and Akshat Verma1

1 IBM Research - India
2 Independent

Abstract. Storage clouds use economies of scale to host data for diverse
enterprises. However, enterprises differ in the requirements for their data.
In this work, we investigate the problem of resiliency or disaster recov-
ery (DR) planning in a storage cloud. The resiliency requirements vary
greatly between different enterprises and also between different datasets
for the same enterprise. We present in this paper Resilient Storage Cloud
Map (RSCMap), a generic cost-minimizing optimization framework for
disaster recovery planning, where the cost function may be tailored to
meet diverse objectives. We present fast algorithms that come up with
a minimum cost DR plan, while meeting all the DR requirements asso-
ciated with all the datasets hosted on the storage cloud. Our algorithms
have strong theoretical properties: 2 factor approximation for bandwidth
minimization and fixed parameter constant approximation for the gen-
eral cost minimization problem. We perform a comprehensive experimen-
tal evaluation of RSCMap using models for a wide varity of replication
solutions and show that RSCMap outperforms existing resiliency plan-
ning approaches.

1 Introduction

Infrastructure as a Service (IaaS) clouds have rapidly emerged as a popular IT
delivery model to reduce costs and improve resource utilization in data centers.
Clouds allow diverse end users to request resources on the fly and release the
resources, when the demand is met. Private clouds treat individual divisions
in a large enterprise as end users and use a cloud model to standardize and
consolidate delivery of IT infrastructure across the enterprise.

Data governance and Reliability have emerged as the key challenges in the
adoption of clouds by enterprises. The always-online 24/7 business model of en-
terprises today has led to a situation, where downtime leads to direct business
loss and customer erosion. Unforeseen events and disasters (hurricanes, earth-
quakes, terrorist attacks) may bring down the IT infrastructure of an enterprise
and one of the key differentiators between a business that survives a disaster and
one that shuts down is their ability to bring up their business processes, after a
disaster [5]. Further, enterprises must comply with many regulations that require
data governance. By moving the data into the cloud, enterprises lose the ability
to govern their own data set and rely on the service providers to guarantee the
safety of their data.

The unique selling point of cloud computing has been a low cost delivery model,
which necessitates multi-tenancy or sharing of resources between end users and
standardized offerings. Multi-tenancy implies that end users with varying data
governance or reliability needs are co-hosted on the cloud. Cloud providers would
increasingly need to provide disaster recovery support for individual customers
in line with their governance and reliability requirements.

The crux of a disaster recovery plan is data replication [7]; where application
data is replicated on same or a different site. Data replication technologies differ
in (a) the time taken to restore data (RTO) (b) the amount of updates lost before
disaster in terms of seconds or minutes (RPO) (c) the impact on application
performance due to data replication and (d) the maximum distance that they
can replicate the data. Resilient data replication technologies with quick recovery
are very expensive, and in some cases require expensive network infrastructure
as well [3, 4]. Hence, applying a common replication technology for all data in
the cloud is infeasible and a replication technology needs to be selected as per
user requirements.

The licensing models of various replication technologies are complicated; differ-
ing based on the amount of data being replicated, the amount of unique updates
being made by the applications, the number of users, and even the number of
servers. High performance storage controllers from many vendors provide syn-
chronous, asynchronous replication as well as point-in-time copy technologies
[7]. Enterprise-level databases and high performance parallel filesystems (e.g.,
GPFS) also provide replication techniques that can be used for disaster recovery
[8]. The diversity amongst the capabilities and costs of replication technologies
makes disaster recovery planning a complex problem.

The easy way out that enterprises take today is to select one replication tech-
nology to mirror all its data in an ad-hoc manner, independent of its criticality.
Such an approach is infeasible in a cloud, which has the goal to provide IT
services at a low price point. Hence, a formal approach to resiliency planning
is a necessity for emerging clouds. We address the Plan Composition problem;
which is to design the most cost-efficient disaster recovery plan for an enterprise
with differentiated data (in terms of DR requirements) using realistic replica-
tion technology models. The input to the Plan Composition problem is (i) a set
of data containers, each with its own DR requirements and a list of candidate
replication solutions that can meet its requirements, (ii) a model of replication
technologies and their cost models; the output is a matching of a data container
to exactly one of its candidate replication solutions.

1.1 Contribtution

The contribution of our work is two-fold. First, we present a formal framework to
study the DR plan composition problem, using realistic models for high perfor-
mance replication technologies and their costs. Our cost-minimization framework
is general enough to capture other optimization objectives (e.g, bandwidth mini-
mization, vendor preference etc) typically employed in DR planning. To the best
of our knowledge, this is the first attempt to rigorously study the DR plan com-
position problem. Secondly, we present an efficient algorithm for the DR plan

composition problem that provides a constant factor approximation for an im-
portant sub-class of the problem. Further, we present extensions of the algorithm
for the general case with an approximation guarantee bounded by the number
of parameters in the cost function, which is typically a constant. Our model and
algorithms have been developed in the context of existing DR Planning tools
[10, 6, 13, 17].

1.2 Related Work

Disaster Recovery planning has attracted a lot of attention in recent times with
work on improved replication mechanisms [2, 9], modeling dependability of a sys-
tem [12], planning papers [10, 6, 13, 1], plan deployment papers [13] and recovery
papers [11, 17]. Recovery modeling has seen a lot of attention recently [11, 17]
with Verma et al. presenting a rigorous analysis of recovery time and algorithms
for fast recovery in a CDP environment in [17].

DR planning, on the other hand, is usually based on hand-coded practises and
conservative estimates, that lead to expensive DR plans. Nayak et al. present
an end-to-end disaster recovery planning and deployment tool whose focus is
on the match-making phase and plan deployment [13]; our work is geared to-
wards providing the optimization engine for the plan composition phase. Keeton
et al. [10] tackle the problem of creating a cost-effective disaster recovery plan
for a single application site and extend it in [6] to include shared applications.
However, both these studies focus on finding cost functions for various tech-
nologies and present cost functions that are (a) linear and (b) depend only on
the replication technology type (synchronous or asynchronous) and not on the
actual replication technology (Global Mirror (GM) vs XRC [7]). Further, the
linear nature of the cost model does not take into account price-bundling, which
makes the cost functions incapable of capturing many typical planning scenarios.
Moreover, [10] do not propose any optimization algorithms and suggests using
off-the-shelf algorithms whereas the optimization algorithms used (including the
new one in [6]) are based on mixed-integer programming and expensive, making
them unsuitable for use in highly interactive disaster recovery planning tools like
Ganesha [13]. Hence, earlier planning work [10, 13, 6] only provide a framework
for DR planning without efficient algorithms, and this is exactly the deficiency
that we address. In this way, our work complements earlier work; by using the
match-making methodologies of [13] and the cost-functions proposed in [10, 6] for
the optimization framework. Our proposed algorithms provide the last missing
piece required in the integrated planning and deployment framework.

2 Model and Problem Formulation

We now present the model for the Plan Composition Problem. We start with
some definitions.

Definition 1 Disaster Recovery Service Class (DRSC): A Disaster Recovery
Service Class denotes a specific class of service in terms of meeting Disaster
Recovery requirements. The DRSCs are named as Gold, Silver, Bronze where

the classification is based on attributes like RTO, RPO, Application Impact,
distance etc.

Definition 2 Data Container: A Data Container Di is any set of logically
grouped data that has identical DR requirements. One can think of a data con-
tainer to correspond to all files of a particular user (/home/akshat etc) or of a
particular type (temp files, mpeg files) that have the same criticality. For a data
container Di, si denotes the space (in terms of GBytes) and wi denotes the write
workload seen by the data container.

Definition 3 Failure Type: Failure type denotes the kind of failure Fk that a
Disaster Recovery Service Class should cater to. The failure types we consider
include Virus corruption, Device failure, Site failure, Subsystem failure, and LSS
failure.

Definition 4 DR Profile: A DR Profile matches a DR Service Class and a
Failure type to a data container, i.e., A DRProfile captures the DR needs for
any given data container.

Definition 5 Replication Solution: A Replication Solution Rj is any technol-
ogy that can provides a specific DR Protection for a given failure. Hence, any
Replication Solution has tuples of failure class and DRSC parameters. To take
an example, the IBM Global Mirror solution provides an RTO of 30 mins and
an RPO of 3 seconds for site failure.

Disaster recovery planning essentially consists of two phases [13]. The first phase
is what we term as the matching phase. In the matching phase, we match the
requirements of a data container to replication solutions. Hence, for each data
container Di, we create a set of solutions RSi that meet the DR requirements of
Di. In the second phase called the plan composition phase, we select one replica-
tion solution for each data container such that the overall cost of deploying the
solutions is minimized. This is followed by actual deployment of the computed
plan. The cost-minimizing plan composition is the focus of this work. For more
details on the matching problem and the plan deployment problem, the reader
is referred to [13].

2.1 The DR Cost Minimization Framework

Consider the problem of designing a storage provision plan for a set of data
containers, each of which has certain service requirements. Every data container
belongs to a storage service class (SSC), where each SSC has performance,
availability and 1 or more Disaster Recovery (DR) Profiles associated with it.
We focus only on the Disaster Recovery Service Classes associated with the DR
Profiles as we restrict ourselves only to creating a DR Plan. Every data container
is associated with multiple replication solutions that meet its DR requirements
(as a result of the matching step) and its workload information (space si, read
throughput ri and write throughput wi). Each replication solution may specify

a storage controller with its configuration, network support (local and remote),
and replication support (technology and licenses). Every replication solution also
has an associated cost metric, which is a function of the space of data protected
by the replication solution and its characteristics (write rate, read rate, users
etc). We use the terms si, ri, wi to denote the space, read throughput and write
throughput of data container Di and the terms sj , rj , wj to denote the total
space, read throughput and write throughput of all data containers protected by
replication solution Rj . Further, each replication solution transforms the traffic
of the data containers protected by it and this is captured using a bandwidth
transformation factor Bi,j .

Hence, the input to the Plan Composition problem is a set, where each entry
in the set specifies a data container, a list of eligible solutions that would meet
all the DR requirements of the data container and the predicted workload for
the data container. The output of the problem is a detailed provisioning plan,
which maps a data container to exactly one of its eligible solution, and strives
to minimize the cost of the overall solution. Formally, we have:
Given (i) N Data Containers Di with solution sets RSi, Space si, Read rate ri,
Write rate wi,
(ii) A set of M replication solutions Rj = ∪(RS1, ..., RSN) with cost functions
CostRj

= Costj = C(sj , wj , ...) and a set of Bandwidth transformation functions
Bi,j , find a mapping xi,j from Data Container Di to Replication Solution Rj to

minimize CP where

CP =
∑

∃is.t.xi,j=1

Cj(sj , wj) xi,j = 1 if Di uses Rj (1)

s.t.∀i, j, xi,j = 1 ⇒ Rj ∈ RSi, ∀i,

M
∑

j=1

xi,j = 1 and (2)

∀j, wj =
N

∑

i=1

xi,jBi,j(wi) rj =
N

∑

i=1

xi,jri (3)

It is easy to see that the Plan Composition Problem is NP-hard even for the
simple case where cost is a step function (bin-packing can be reduced to it).
Further, cost functions in many cases are non-differentiable and hence even LP-
rounding techniques are not feasible. Further, Disaster Recovery Planning tools
are highly interactive [13] and require fast algorithms for what-if analysis, making
LP-based solutions too expensive to be useful. We thus restrict ourselves to
finding fast approximation algorithms for the problem.

2.2 Disaster Recovery Service Class (DRSC) Model

The Disaster Recovery Service Class notion captures the important attributes
of disaster recovery. DRSC is used both to denote the DR requirements of a
data container as well as the DR capabilities of a replication solution. A DRSC
consists of the following attributes

– Recovery Time Objective (RTO): Recovery Time Objective denotes the
downtime after a disaster has occurred and is defined as the maximum time
that will be taken to recover data after a disaster.

– Recovery Point Objective (RPO): The Recovery Point objective indicates
the staleness of recovered data. It is expressed in seconds and denotes the
amount of time by which the recovered data lags behind the lost data.

– Application Impact:Application Impact denotes the latency impact that oc-
curs as a result of deploying the replication solution.

– Resource Impact:A replication solution takes away system resources (CPU
cycles, Disk bandwidth) and resource impact captures this aspect of a repli-
cation solution.

– Distance:This represents the maximum supported distance between the copies
of a replication solution.

2.3 Replication Solution Model

Slope

C
O

ST

C
O

ST

SPACE Write Bandwidth

(a) (b)

Controller Cost

License Cost
Slope

Least SlopeMax

Fig. 1. Cost functions for IBM Flashcopy and DB2 HADR Technology

A Disaster Recovery requirement is met by deploying a replication technol-
ogy along with its relevant configuration parameters. We use the notion of a
replication solution to capture a replication technology along with its config-
uration. To take an example, the IBM DS8000 controller supports Flashcopy
technology where we can configure the Flashcopy as either a Full Flashcopy
or an Incremental Flashcopy. We create one replication solution each for both
these configuration options as the RTO, RPO and other DRSC values for Flash-
copy differ based on whether we are taking a full Flashcopy or an incremental
Flashcopy.

Further, replication technologies transform the replication traffic generated and
this is captured using the bandwidth transformation function. To take an exam-
ple, asynchronous replication technologies like IBM Global Copy use techniques
like write-coalescing to reduce the number of writes that reduces the network
cost for the solution. The Bandwidth transformation function Bi,j is used to

capture this reduction in bandwidth. Hence, if a data container Di with write
throughput wi is protected using the replication solution Sj , then the write
bandwidth is given by Bi,j(wi).

Finally, the cost of using a replication solution depends on various parameters
like the amount of data being protected (licensing costs are based on space) or
the amount of write bandwidth (network cost depends on inter-site bandwidth).
These are captured using a cost function, that is specific to each replication
solution. These dependencies are not linear for many technologies. To take an
example, the cost for an IBM Flashcopy for protecting X TB of data would first
require one to buy an IBM storage controller that supports Flashcopy and then
buy Flashcopy licenses for X TB of data. Hence, as shown in Fig. 1 there is a
huge starting cost to protect even a small amount of data, and the incremental
cost is low, till we hit the capacity of the controller. Once the capacity of the
controller is exceeded, one may have the option of adding expansion slots, which
also incur significant cost. Once all the expansion slots are taken, one has no
choice but to buy another controller. On the other hand, protecting data using
DB2 replication may require a more smooth cost function, as cost is primarily
dependent on the size of the transaction logs, which is related to the write
bandwidth.

2.4 Modeling Various Objectives in the Cost Formulation

The Cost Minimization framework for the Plan Composition problem naturally
covers the Disaster Recovery Planning setting where the objective of the plan is
to provide the required level of disaster recovery to each of the data containers
at the minimum possible cost. However, in many practical scenarios, cost may
not be the optimizing criterion for planning.

A key restriction that disaster recovery consultants face, is in adding new sites
for the purpose of disaster recovery. In most cases, one has to work with existing
sites and existing network links. In these scenarios, setting up more sites or more
links between the sites is not an option. The objective of the planning process in
such a scenario is to provide a DR plan that minimizes the inter-site bandwidth.
Also, in many cases, enterprises have bias towards specific vendors. These biases
could be a result of trust with the vendor or familiarity. Similarly, enterprises
may be biased towards specific replication technologies because of reliability
or ease of management. In order for the optimization framework to find wide
acceptance, it should be rich enough to capture all these diverse objectives.

Our proposed Cost Minimization framework is flexible enough to capture all
these settings. The bandwidth minimization problem is captured by using the
bandwidth transformation function Bj for a replication solution Rj , in place of
the cost function Cj . To capture vendor preferences, the cost functions for tech-
nologies are weighted by a preference function and the same framework proposes
solutions, while taking vendor preferences into account. A similar approach is
used to capture technology preferences (e.g., DB-level replication is preferred
over Block-level replication). Hence, our generic cost minimization framework is
rich enough to capture most optimization criteria used in practice.

3 Model Assumptions

We now use insights from the practical setting of the Plan Composition problem
to simplify the problem. The reader may observe that all the restricted versions
of the problem we consider that take into account the practical constraints of the
problem are also NP-hard. We first make the simplifying assumption that the
amount of data to be protected by any DR Service Class is more than the space
taken by a single instance of any replication solution. One may observe that this
is true for any enterprise that requires DR protection. Further, one can take
very large-sized replication technologies into account separately by listing them
and comparing the best solution for a service class obtained using small-sized
technologies with the cheapest of the large-sized technologies.

We now investigate more intricate properties about the replication solution
sets RSi that are typically true in real deployments.

3.1 Pure Subset Replication Set Property

In order to solve the Plan Composition problem, the first observation we use
is that a replication solution that can meet the Gold service class for a given
failure type Fk would also meet Silver or Bronze service class for failure Fk.
Hence, any data container that requires a low level DR protection can use all
the replication solutions that provide protection for that or any higher class for
the given failure type. We capture this real-life constraint in the Pure Subset
Replication Set Property, which we define next.

Definition 6 Pure Subset Replication Set: A Plan Composition problem is said
to satisfy the Pure Subset Replication Set Property if

∀Di, Dj RSi ∩ RSj 6= φ ⇒ RSi ⊆ RSj or RSj ⊆ RSi (4)

The Pure Subset property captures the fact that any two replication solutions
either provide different functionality (catering to different kinds of failure) or
they have a total order amongst themselves. We will later use this property to
establish bounds on the goodness of proposed algorithms.

3.2 Traffic Independent Bandwidth Transformation

Replication technologies use various techniques to reduce the replication band-
width generated by any given data container. The savings are obtained by tech-
niques like compression and write-coalescing. In many cases, the savings in band-
width depends entirely on the replication technology being used and not on the
properties of the data container. We use this fact to simplify the bandwidth
transformation function (Bi,j) from being a function of both the replication
technology Rj and data container Di to being a function Bj of only the replica-
tion technology Rj .

We use the traffic independence of the bandwidth transformation function
to simplify the optimization problem in the following manner. In the Cost
function Cj of the replication technology Rj , we replace all instances of the
write bandwidth wj by the function Bj(wj) and replace the equation wj =
∑N

i=1 xi,jBi,j(wi) by wj =
∑N

i=1 xi,jwi in Eqn. 3.

3.3 Independent Cost Functions

The framework of the Plan Composition problem in Eqn. 1 uses the simplifying
assumption that costs of the various replication technologies are quasi-linear
(additive) in nature. Hence, we compute the cost of the plan as a sum of the
cost of all the replication technologies deployed. However, in real enterprises,
cost of various technologies are not linear as they are bundled together. To take
an example, buying the IBM Metro Mirror (MM) license or the IBM Flashcopy
License requires one to purchase a DS6000 or a DS8000 storage controller first [7].
However, the same storage controller can be used by both the Global Mirror or
the Flashcopy technology. Hence, in real practice, cost functions are not always
additive in nature.

However, we will initially assume the additive cost constraint for ease of expo-
sition of our algorithms. We will later show that our algorithms can take into
account the non-additive nature of the cost functions as well.

4 Plan Composition Algorithms

We now present fast algorithms that solve the plan composition problem and
prove approximation guarantees for the algorithms.

We first present algorithms for a simplified version of the problem, where cost
is only a function of the size of data being protected, i.e., Cost of a replication
technology is a function of only the total space taken by all the data containers
protected by the technology. This one-dimensional cost problem, as noted earlier,
is also NP-hard and is of independent interest, since it captures the bandwidth
minimization variant of the plan composition problem. Moreover, we will later
enhance the algorithm to work with multiple parameters or multi-dimensional
cost functions.

4.1 Algorithms for the One-dimensional Cost Problem

In the One-dimensional variant of the problem, cost of a replication technology is
dependent on only one parameter. Even though, this could be used to minimize
any objective that depends on exactly one parameter (e.g., bandwidth can be
minimized using write rate), we consider the case where cost is a function of
space, i.e., Costj = C(sj), while noting that the same formulation and results
hold for any other dimension as well.

A Plan Composition algorithm makes two decisions: (i) Pick a [cost,space]
point for each selected replication technology and (ii) map data containers to
a selected replication technology for DR protection. In order to solve the first
problem, we use the greedy strategy of filling up as much space as possible at the
least cost. Hence, we favour replication solution corner points min{Aj} that can
provide protection to data at the least cost per unit amount of data protected
(Fig. 1). (From now on, we use replication solution Rj to indicate Rj at the
least slope corner point) This greedy strategy may lead to incompletely filled
replication solutions Rj (or equivalently incompletely filled replication solution

function LeastSlopeFirst
k = 0
CurrDC = {D1, ..., Di, ..., DN}
For each Rj ∈ ∪(RS1, ..., RSi, ...)

create an array Aj of corner points of the cost function
Sort the array Aj by slope (Cj/sj)

End For
Merge the M arrays (A1, ..., AM) in sorted order to get a merged array A
While CurrDC 6= φ

Pick the least slope entry point in A as Rj

(Rj denotes the selected corner point min{Aj} with cost Cj and space sj)
eligibleDC = selectMostConstrainedDC(currDC, Rj , sj)
If

∑

i,Di∈eligibleDC
si ≥ sj

∀Di ∈ eligibleDC Match(Di) = Rj

CurrDC = CurrDC - eligibleDC
Else
∀Di ∈ eligibleDC PartMatchk(Di) = Rj

k = k + 1
CurrDC = CurrDC - eligibleDC

End If
End While
PickBest(Match, PartMatch, k)

end LeastSlopeFirst

Fig. 2. LeastSlopeFirst (LSF) Algorithm for Single Dimensional Costs

corner points min{Aj}) and we bound this fragmentation cost by separately list-
ing these partially filled replication solutions, to add to the least slope solutions
later. For the second problem, we pick the data container Di to be protected
first that have the minimum number of eligible replication technologies (small-
est |RSi|). Fig. 2 details out the LeastSlopeFirst (LSF) algorithm that greedily
picks replication technologies and bounds the cost due to fragmentation. The
selectMostConstrainedDC method captures the data container selection tech-
nology. The procedures used by LSF are detailed next.

Definition 7 selectMostConstrainedDC Selection: Given a set of data contain-
ers Di, a replication solution Rj, and a space constraint sj, selectMostConstrainedDC

sorts the replication solutions by the arity of RSi. It then keeps on adding data
containers from the sorted list to its selection, till the accumulated space of the
selected data containers equals sj.

Definition 8 PickBest Procedure: Given a set of k partial matches PMk and
a match M , the PickBest procedure returns the minimum cost subset of PMk

and M that covers all the data containers.

We start by noting that in its trivial version, PickBest returns all the partial
matches and the complete match as the output of LSF . Although, in actual prac-
tice, we use smarter implementations to cut down the cost, these optimizations
in PickBest do not change the approximation bounds. We first prove the opti-
mality of the selectMostConstrainedDC data container selection process and

then use it to prove approximation guarantees on LSF . The optimal selection
of data containers is one that given (i) a set of data containers and eligible repli-
cation solutions for them and (ii) an ordered set of replication solution corner
points, can protect the maximum amount of data using the selected replication
solutions. We call this selection as the Maximum Matching Selection and show
that our procedure is a Maximum Matching Selection.

Definition 9 Maximum Matching Selection: Given a set of replication solu-
tions Rj with space sj, and a set of data containers Di with space si and eligible
replication solutions RSj respectively, a selection is called a maximum match-
ing selection if it can protect the maximum amount of data by the replication
solutions Rj.

Lemma 1. selectMostConstrainedDC is a Maximum Matching Selection.

Proof. Let Matchs be the match returned by selectMostConstrainedDS and
let Matcho be the optimal match. We first transform both of these matches to
equivalent match that satisfies the following properties. (i)For any two data con-
tainers Di, Dj protected by replication technologies Ri, Rj with corner points
Ai, Aj , if the service class of Di is greater than Dj , then the service class of Ri

is higher than Rj . (ii) For any two replication solutions Ri, Rj s.t. the service
class of Rj is higher than Ri, if Ri is used to protect any data from any data
container, then Rj is completely filled up to its selected corner point min{Aj}.
Note that (i) can be trivially achieved by swapping any two data containers
which violate this constraint and the swap is always admissible due to the Pure
Subset Replication Set Property. Similarly, (ii) can be achieved by moving pro-
tected data containers (either fully or partially) to any partially-filled replication
solution corner point of a higher class. Note that after the swaps and upward
movement, both Matchs and Matcho would have unallocated space left only in
the replication technology of the lowest class. Let Dk be highest service data
container in Matcho that is not in Matchs and let it be protected by the lth

replication solution (ordered from highest to lowest service class). Note that
Dk can be protected using any of the l − 1 higher replication technologies as
well since it is of the lowest DR Service Class amongst them. Hence, this was
available for selection in invocations of selectMostConstrainedDC for any of
those l replication solutions. Further, also note, that at least one such invo-
cation of selectMostConstrainedDC returned either a set of data containers
whose accumulated space was less than the space of the replication technol-
ogy or selected a data container of lower service class. By the definition of
selectMostConstrainedDC and the Pure Subset Replication Set property, ei-
ther leads to a contradiction. Hence, such a Dk does not exist, i.e, Matcho and
Matchs are identical. This completes the proof.

We now use the above lemma to bound the cost of the solution returned by
LSF .

Theorem 1. The LeastSlopeFirst algorithm returns a plan P such that the cost
CP of the plan is no more than twice the cost CO of the optimal solution O.

Partial1OPT

LSF

Platinum BronzeGold Silver

C
O

ST

SPACE

Fragmentation

Partial2

Fig. 3. Sample Run of LSF and Optimal. Fragmentation denotes the space wasted by
LSF due to fragmentation and bounds the additional space for which LSF has incurred
cost.

Proof. We first observe that as a result of Lemma 1, LSF matches the optimal
data containers to any selected replication solution. Hence, any penalty that LSF

pays is in selecting non-optimal replication technologies. Let Rlsf be the set of
replication solutions picked by LSF and RO be the set of replication solutions
picked by the optimal solution. Note that LSF always gives higher priority to
replication solutions with least slope (Fig. 3). Hence, for any point si in the space

dimension,
δC

lsf

i

δs
lsf

i

<
δCO

i

δsO
i

, i.e. the slope of LSF is less than the slope of optimal.

Hence, the only loss that LSF may sustain is because of fragmentation in the
partial matches (Fig. 3). Multiplying both sides by 2 ∗

∑N

i=1 si, and using the

fact that the total fragmentation in LSF is bounded by S =
∑N

i=1 si (the number
of partial matches are bounded by the number of DRSC under protection, and
each partial match is smaller than data protected by a DRSC), we obtain Clsf <

2 ∗ CO. Hence, the result.

For an intuitive understanding of the result, observe that any selection process
would pick replication solutions to fill data containers whose total space is given
by

∑N
i=1 si. Since LSF always picks the least slope solutions, it incurs the least

cost but it may pay by overshooting the space for each DRSC using partially
filled replication solutions. Since the overshoot is bounded by the size of the
replication solution, the total overshoot is bounded by

∑N
i=1 si.

4.2 Algorithms for General Cost Functions

We now consider the k-dimensional version of the Plan Composition problem,
where the cost of a replication solution depends on k parameters/dimensions,
from d1 to dk. Since any traffic transformation (e.g., bandwidth transformation)
is already captured in the cost function (Sec. 3.2), the value of a replication solu-
tion Rj across any dimension dl is summation of the value along the dimension
dl all the data containers protected by Rj .

∀l ∈ [1, d], ∀j ∈ [1, m], dl
j =

N
∑

i=1

xi,jd
l
i (5)

Fig. 4. Multi-dimensional LSF and LSAF may move along the sides and Optimal may
follow the diagonal.

Our strategy remains the same as in LSF . We pick replication solutions that
can protect data containers at the least cost per unit amount of data protected.
However, since data containers have more than one relevant dimension now, we
need to make a slight modification. In our first version, we order dimensions by
their relative cumulative sizes (dl

a =
∑N

i=1 dl
i). We then pick the dimension dmax

with the greatest accumulated sum (maxk
l=1 dl

a) and order replication solution

corner points by
δCj

δdmax
j

. We follow the LSF procedure with the dimension dmax

replacing the space parameter s. Once, we use up the dimension dmax, we use the
next largest dimension and continue till we have protected all data containers
(currDC = φ).

Fig. 4 illustrates the strategy, where we move along the dominant dimension
until we hit the wall of the cuboid. We then pick another dimension to move
along. Noting again that (a) we use the least per-unit dimension cost replication
solutions, (b) optimal also needs to travel dmax

a , (c) we repeat the process for
a maximum of k dimensions and (d) the cost of fragmentation is bounded by a
factor of 2, we get a bound of 2k, which leads to the following result.

Theorem 2. Multi-dimensional LSF returns a plan that has a cost no more
than 2k times the cost of the optimal solution.

We now propose a variant of Multi-dimensional LSF called LSAF that also
has an approximation guarantee of 2D. However, it satisfies additional properties
which may lead to a better approximation guarantee. The LeastSolidAngleFirst
(LSAF) algorithm differs from multi-dimensional LSF by ordering the repli-
cation solutions by δC

δ

√

∑

k

l=1
(dl)2

. Hence, LSAF uses the derivative of the cost

(or the solid angle) to pick the replication solutions. If at any given time, it
consumes any particular dimension than it removes that dimension from the
derivative calculation. Hence, the method has a list of active dimensions, which
is initialized with all the dimensions and pruned as one or more dimensions get
exhausted. To take a geometric view, if the process hits any walls of the hyper-
cuboid (Fig. 4), it takes out that dimension from any future calculations (i.e.
the set of active dimensions). Along the lines of theorem 2, one can show that
LSAF provides an approximation guarantee of 2k. However, note that LSAF

always incurs less cost per unit distance traveled in the protected space of ac-
tive dimensions than the optimal. On the other hand, the optimal can travel

along the diagonal whereas LSAF can be forced to travel along the sides of the
hypercuboid. We first prove some technical lemmas.

Lemma 2. In a hypercuboid of dimension k, the ratio of the diagonal to the
sum of the sides is maximized if all the sides are equal.

Proof. The proof is by induction. It is easy to see that the above holds for k = 2.
We make the inductive hypothesis that for a hypercuboid of dimension k − 1,
the ratio is maximized if all the k − 1 sides are equal. We now use the following
observation, which is easy to prove using any minima finding technique.

Observation 1
(k−1)d2+d2

k

((k−1)d+dk)2 is minimized if d = dk.

The above is nothing else but square of the ratio of the diagonal to the sum of
sides and proves the inductive hypothesis for k dimensions.

Lemma 3. In a hypercube of dimension k, the ratio of the diagonal to the sum
of the sides is given by

√

(k).

Lemma 3 is easy to verify and leads us to the following result.

Lemma 4. The total distance traveled by LSAF is no more than
√

(k) times
the distance traveled by optimal.

We also observe that along the number of active dimensions, LSAF has the
least cost per unit distance traveled amongst all possible algorithms (including
optimal). Hence, LSAF has a lower bound on the approximation guarantee of
of 2

√

(k), whereas it is easy to see that the multi-dimensional LSF has a lower
bound of 2k. This leads us to the conjecture that a tighter analysis of LSAF may
leads to an approximation guarantee of 2

√

(k), which if true, would be included
in the final version.

LSAF also runs in time that is almost linear (linear in the number of data
containers but not in number of replication solutions). Further, even though it
has an approximation guarantee of 2k, LSAF is expected to perform very well
in practice because the approximation guarantee is given by the ratio of the
length of the sides of the hypercuboid to the length of the longest side. Another
way to look at it is that the approximation bound depends on the number of
dominant dimensions. (A dominant dimension in a hyper-cuboid has length along
that side (dimension) greater than the average length of all sides (dimensions)
Also, the number of such dimensions is small if values are power law distributed.
Based on our modeling of the various replication technologies, we found both the
observations to be true making LSAF a promising plan composition algorithm.

4.3 Handling Non-independent Cost Functions

We now relax our last assumption on the independence of cost functions. As
stated earlier, cost functions may not always be dependent. To take an example,
a disk controller with Metro Mirror (MM) replication and the same controller

with Flashcopy are two different solutions. However, their costs are dependent
as controller cost is present in both the replication solutions since the same
controller can be shared.

In order to take into account this dependence, we combine dependent solutions
into one solution with the union of dimensions as the dimension of the combined
entity. In the earlier example, we replace the two dependent replication solutions
by a single replication solution. The solution is disk controller with Flashcopy and
Long Distance replication with two separate space (data capacity) dimensions:
one for data protected by Flashcopy and the other for data protected by Long
Distance Remote Copy. We repeat the same process for all dependent replication
solutions until we have a replication solution space with all replication solutions
having independent cost functions. The above process leads to a new problem
with potentially much larger number of dimensions where the cost functions of
the technologies are independent. Hence, we can use LSAF to solve the problem.
We also note that since the approximation bound of LSAF depends on the
number of dominant dimensions only, an increase in the number of dimensions
may not impact the performance of LSAF significantly. We show in the next
section that the number of dominant dimensions is typically a small constant in
practise.

5 Experimental Evaluation

5.1 Implementation and Setup

We implemented the plan composition logic as a Java-based library that ex-
ports a planning interface. The library has a configuration file to capture (i) the
supported DR SLA levels (ii) the data containers discoverd in the cloud with
their SLA levels and (iii) the replication technologies available in the cloud. The
library returns an XML that captures a mapping for each data container to an
instance of a replication solution, along with associated configuration parame-
ters. The XML can be used by the resiliency management layer in the cloud to
deploy the plan.

Stack Type Min Cost (x1000$) Incr. Cost Min. Capacity RTO RPO Distance(Km)

Block MGM 400 80$/GB 100GB 15 0 1500

Block Sync 250 55$/GB 100GB 15 0 300

FS Sync 60 100$/GB 25GB 15 0 300

DB Sync 20 1600$/user 25 15 0 300

Block Async 150 25$/GB 100GB 15 3 1500

DB Async 20 800$/user 25 15 3 1500

Block FC 100 5$/GB 100GB 60 900 300

FS FC 25 10$/GB 25GB 60 900 300

DB FC 5 500$/user 10 60 900 300
Table 1. Replication Technologies Used

We created 4 SLA classes to capture a cloud with diverse data governance re-
quirements. The SLA classes are named as Platinum, Gold, Silver, and Bronze to
capture the entire spectrum from low RTO, RPO and high distance protection
to high RPO, low distance protection. We also created a knowledge base of pop-
ular replication technologies, which were used to protect the data in the cloud.
We considered Metro Global Mirror, which provides long distance protection
using 2 sites, for the most critical requirements. We also considered synchronous
(Sync), asynchronous (Async), and flashcopy (FC) based technologies at block-
level, filesystem (FS) level and database (DB) level replication. Table. 1 captures
all the replication technologies considered and Table. 2 captures the mapping of
replication technologies to SLA classes.

SLA Class Feasible Replication Solutions

Platinum Block MGM

Gold All Platinum solutions + Block Sync, FS Sync, DB Sync

Silver All Gold solutions + Block Async, DB Async

Bronze All Silver solutions + Block FC, FS FC, DB FC
Table 2. Replication Technologies available to each SLA class

The third input to RSCMap is the set of data containers hosted on the cloud.
In order to create the data containers for our evaluation, we took a configu-
ration snapshot of the production data center of a Fortune 500 company. We
selected 100 virtual machines and used their datastore for protection using our
RSCMap framework. These VMs can be classified as those that use raw vol-
umes, use filesystems, or use databases. The distinction is important from the
DR perspective since a DB-based datastore hosted on filesystem can be pro-
tected using block replication, filesystem replication or database replication. On
the other hand, a raw volume can only be protected using block replication tech-
nologies. Finally, we also capture the number of users for databases, since DB
replication licenses are driven by the number of users.

In order to evaluate the value addition of RSCMap, we also implemented
2 algorithms that capture the state-of-the-art in DR planning. The first algo-
rithm Least Cost Global (LCGlobal) picks a common replication technology to
protect all data containers in the cloud. It uses the cheapest technology that
provides the required protection level for the most constrained data container in
the cloud and captures the conservative approach followed in data centers. Our
second algorithm LCLocal is a finer-grained approach, which picks the cheapest
replication technology for each service class separately. Hence, this algorithm is
aware of multiple service classes and uses it to reduce costs.

In our evaluation, we created a baseline setting using six instances of each
replication technology (which is enough to protect all the data containers), and
use the various algorithms to come up with a disaster recovery plan. We present
the results of this baseline evaluation next. We also vary the properties of the

replication technologies and the data containers to capture the performance of
the algorithms under diverse settings.

5.2 Baseline Results

MGM Sync Async Flashcopy Total

LCGlobal 2832000 1952000 0 0 4784000

LCLocal 1344000 577000 680000 623000 3224000

RSCMap 944000 339500 557500 458000 2299000

Table 3. Cost Breakup (in $) using replication technologies of various types

We report the cost achieved by all the algorithms in Table. 3. We also report
the type of technologies used to protect the data containers. The LCGlobal algo-
rithm picks the least cost technology that can protect the most constrained data
container. Hence, it first tries to protect all the data containers using MGM.
When it runs out of the technology, it picks the least cost solution that can
protect all the remaining data containers. In order to pick a common replica-
tion solution for as many data containers as possible, LCGlobal selects expensive
replication solution and incurrs a very high cost. LCLocal improves on LCGlobal

by selecting the most cost-efficient technology for data containers belonging to
each service class. However, this selection does not take into account the dis-
parity between data containers belonging to the same service class. RSCMap

takes all aspects of replication solutions and the requirements of individual data
containers to protect the data at the minimum cost.

 0

 5

 10

 15

 20

 25

N
um

be
r

of
 D

at
a

C
on

ta
in

er
s

P
ro

te
ct

ed

Service Class

Platinum
Gold Silver Bronze

DB DB DBnon DB non DB non DB

L
C

-G
lo

b
a

l

L
C

-L
o

c
a

l

R
S

C
M

a
p

DB(FC)

DB(Async)

DB(Sync)

Block(FC)

Block(Async)

FS(Sync)

Block(Sync)

Block(MGM)

Fig. 5. Replication Solution selected by different algorithms

In order to understand the performance of the algorithms, we observe the
actual placement in Fig. 5. The most striking thing about the placement is
that RSCMap uses a wide variety of replication technologies for protecting

the data containers whereas LCGlobal uses very few technologies. LCLocal lies
between these 2 extremes. Hence, LCLocal is able to do a more informed map-
ping between data requirements and replication technologies than LCGlobal and
RSCMap improves the solution even further. The strength of RSCMap is high-
lighted by the selection for the database (DB) containers. RSCMap uses both
block-level and DB-level replication for these data containers. We looked at the
placement closely and observed that the databases with a large number of users
were protected using block-level replication whereas the databases with small
number of users were protected using DB-level replication. This distinction be-
tween data containers within the same SLA class and type helps RSCMap map
data containers to the replication solutions, which optimize their cost. The per-
formance of RSCMap also highlights the importance of incorporating multiple
dimensions (e.g., space, number of users) in the overall optimization.

5.3 Sensitivity Analysis

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.5 1 1.5 2 2.5 3

C
os

t (
m

ill
io

n
$)

Relative Size Multiplier (x times Baseline)

RSCMap
LC Global
LC Local

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

C
os

t (
m

ill
io

n
$)

 % of DB Data Containers

RSCMap
LC Global
LC Local

(a) (b)

Fig. 6. Impact of (a)relative size of replication solutions and (b) heterogeneity in data
containers

We next investigate the impact of fragmentation by increasing the relative size
of various replication solutions. We observe (Fig. 6(a)) that an increase in the
relative size of replication solutions leads to a decrease in the cost incurred to
protect a given set of data containers. As the relative size of the technology in-
creases, we reduce the number of copies of a particular solution needed, which in
turn reduces the total cost. At very high sizes, all data containers in a class can
be protected using a single instance of a DR technology. Hence, RSCMap pro-
tects all data containers belonging to a class using the least expensive replication
solution for the class. The above experiment highlights the ability of RSCMap

to adapt to various workload settings and tradeoff between fragmentation and
differntiated technology selection.

In our next experiment, we investigate the impact of heterogeneity. In our
baseline setting, we had data containers equally divided between DB-based and
non-DB based. In this experiment, we vary the percentage of DB-based data
containers. We observe that RSCMap outperforms LCLocal more significantly

when the degree of heterogeneity is high (e.g., improvement of 50% when the mix
is 50 : 50). However, when all data containers are of only 1 type, the performance
improvement due to RSCMap reduces (15% improvement when the mix is 20 :
80). This can be explained by the fact that RSCMap uses diversity between data
protection requirements to find the optimal solution for each data container.
When most data containers have similar requirements, the impact of intelligent
technology selection is not as high.

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12

C
os

t (
m

ill
io

n
$)

Number of available copies of Replication Solutions

RSCMap
LC Global
LC Local

 0

 20

 40

 60

 80

 100

 120

 140

N
um

be
r

of
 D

at
a

C
on

ta
in

er
s

P
ro

te
ct

ed
Number of copies of each Technology available

LC
-G

lo
ba

l

LC
-L

oc
al

R
S

C
M

ap

2 3 4 5

Bronze

Silver

Gold

Platinum)

(a) (b)

Fig. 7. (a)Impact of number of copies of replication solutions available and (b) Extent
of protection

In all our earlier experiments, we assume that replication technologies are not
constrained. We now investigate the performance of various algorithms when
the number of available replication technologies of each type are varied. As the
number of instances decrease, the impact of selecting a sub-optimal replication
technology for a data container does not only lead to increased cost, but also in
lack of protection for some data containers. The impact is highest for LCLocal,
which uses the least cost solution to protect data containers of a class. However,
it protectsh DB-based, File-Based and raw data containers using the least cost
block-based replication technology. When the block-based replication technology
instances run out, it protects DB-based data containers using appropriate DB-
based replication. However, the raw volumes can not be protected using DB-
based or FS-based replication. Hence, the algorithm finds no eligible replication
technologies to protect these data containers (Fig. 7(b). Our final experiment
highlights the importance of incorporating all attributes of data containers and
replication technologies in designing the DR plan for a cloud. A holistic approach
like RSCMap not only ensures that resiliency requirements are met at the lowest
cost but also ensures that all data containers in a cloud are protected.

References

1. N. R. Alur et al. System and method for automatically and dynamically optimizing
application data resources to meet business objectives. In US Patent Application
No 20050015641, 2005.

2. A. Azagury, M. E. Factor, and J. Satran. Point-in-Time copy: Yesterday, today
and tomorrow. In Proc. IEEE/NASA Conf. Mass Storage Systems (MSST), 2002.

3. Datamonitor ComputerWire Article. Available at
http://www.computerwire.com/industries/research/
?pid=1CEC81FD-5FDA-41D8-8FFC-79A959A87FD7

4. Synchronous Optical Network. Available at http://www.iec.org/online/tutorials/acrobat/sonet.pdf
5. Eagle Rock Alliance Ltd. Online survey results: 2001 cost of downtime. Available

at http://contingencyplanningresearch.com/2001Survey.pdf, Aug. 2001.
6. S. Gaonkar, K. Keeton, A. Merchant, W. H. Sanders. Designing Dependable Stor-

age Solutions for Shared Application Environments, In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks (DSN), 2006.

7. IBM TotalStorage Solutions for Disaster Recovery. In IBM Redbook Available at
http://www.redbooks.ibm.com

8. IBM TotalStorage Business Continuity Solutions Overview. In IBM Redbook, Avail-
able at http://www.redbooks.ibm.com

9. M. Ji, A. Veitch, and J. Wilkes. Seneca: remote mirroring done write. In Proc.
USENIX Technical Conf. (USENIX03), June 2003.

10. K. Keeton, C. Santos, D. Beyer, J. Chase, J. Wilkes. Designing for Disasters. In
Proc. USENIX File and Storage Technologies (FAST), March 2004

11. K. Keeton, D. Beyer, E. Brau, A. Merchant. On the Road to recovery: Restoring
Data After Disasters. In Proc. European Systems Conference (EuroSys), April 2006.

12. K. Keeton and A. Merchant. A framework for evaluating storage system depend-
ability. In Proc. Conf. on Dependable Systems and Networks (DSN), 2004.

13. T. Nayak, R. Routray, A. Singh, S. Uttamchandani, A. Verma. End-to-end Disaster
Recovery Planning: From Art to Science. In IEEE NOMS, 2010.

14. Oracle License Prices. Available at http://www.pro-dba.com/pricing.html.
15. Sprint Communications - Internet Services E-RATE MASTER CONTRACT

NUMBER: SRC26115. Available at http://www.state.sc.us/oir/rates/docs/sprint-
internet-rates.htm.

16. A. Verma and A. Anand. On Store Placement for Response Time Minimization in
Parallel Disks. In Int’l Conf on Distributed Computing Systems (ICDCS), 2006.

17. A. Verma, K. Voruganti, R. Routray, and R. Jain. SWEEPER: An Efficient Disas-
ter Recovery Point Identification Mechanism. In Usenix Conf on File and Storage
Technologies(FAST), 2008.

