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Abstract

Remote delivery of services using geographically distributed service delivery
locations has emerged as a popular and viable business model. Examplesof ser-
vices delivered in this manner are software services, business process outsourcing
services, customer support centers, etc. The very nature of services and the fragile
nature of the business environments in some of the delivery locations accentuates
the need for business continuity. A key aspect of enabling business continuity is, at
the time of a disruptive event, ability to reroute the services delivered fromaffected
locations to unaffected locations while meeting their resource requirements. Such
rerouting is called recourse. We highlight the need for recourse awareresource
allocation. We study this problem from a computational viewpoint, present anew
recourse aware resource allocation heuristic, and experimentally compare this to
traditional resource allocation methods.

1 Introduction

Business continuity is one of the most important aspects of remote service delivery.
Essentially, this entails a commitment of a service provider to the service seeker that
at least certain critical services will be delivered round the clock irrespective of the un-
certainties in the remote operational environment. In thispaper, we consider the basic
problem of resource assignment when the service provider has an additional commit-
ment of business continuity. We model business continuity measures as recourse ac-
tions. We motivate the need for “recourse aware” resource assignment by highlighting
the deficiencies of traditional resource assignment heuristics in the presence of recourse
actions. We present the computational complexity of the recourse aware resource as-
signment problem, novel heuristics to compute recourse aware resource assignments,
and experimental results.

1.1 Business Continuity in Service Delivery

Recently, emerging economies like India, China, Brazil, etc. have emerged as popu-
lar destinations to deliver software services, back-officeservices, remote infrastructure
management, and so on. Most of these are remote service deliveries in the sense that
the services are delivered to customers spread throughout the world. A major portion of
such service delivery is enabled by setting up of large-scale, geographically distributed
infrastructures consisting of heterogenous resources. See [7] for more insight on the
acceptance and feasibility of such a global delivery modelsfrom the point of view of
service provider. It also presents an overview of the typical heterogenous, geographi-
cally distributed infrastructure network set up by such service providers.

One of the important aspects of services is that they cannot be stored and served
when the demand arrives. A service has to be essentially served when it arrives. This,
coupled with the concerns of the sourcing organization thatthe service delivery is hap-
pening from remote, uncertain environments makes a compelling case for a service
provider to ensure highest levels of business continuity (in this case it means continu-
ity of service delivery). See [8] for a client perspective ofglobal sourcing.
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Typical disruptions in the geographies that we mentioned are localized in nature.
They could be any of the following: strikes, societal unrest, urban flooding, natural
disasters, below par supply of utilities like power and water, etc. When a disruption
happens at a location, the part of the organization’s infrastructure located there become
unavailable. Therefore, services that are being deliveredfrom the affected locations
have to be rerouted to unaffected locations. The rerouted location must be able to offer
the required combination of resources for the service delivery to take place. Such a
reroute action is called “recourse”.

Importance of Recourse Aware Allocation: Traditionally, resource allocation in
organizational setting is done without taking into accountrecourse requirements. The
resource allocation method typically optimizes some notion of resource utilization or
other business performance metrics. For instance, resource allocation may be treated as
a “bin packing” problem and employ “best fit” policy [1, 2]. However, resource alloca-
tion under a disruption free environment could be very different from the optimal allo-
cation when frequent disruptions have to be dealt with via recourse actions. Therefore,
recourse aware allocation is important in situations wherecontingency mechanisms
have to be invoked frequently.

Recourse Aware Resource Allocation Problem: The services required by each
customer has to be allocated to a single location from where the required combination
of resources will be deployed. But, the allocation of location to the customers should be
such that, efficient recourse actions exist, at least for a pre-identified set of disruptive
scenarios. We assume the following simplified set-up. At a given point in time, the
service delivery organization knows the remaining capacity of different resources at
different locations (after the allocations to the existingcustomers) and it also knows
from the historical data the most common disruption patterns (in terms of affected
locations). Now, the would like to batch the set of all new customers won over in the
last quarter and allocate a base location for them (from where the services required by
the customer will get their required combination of resources). It would like to do the
allocation in such a way that the expected cost of rerouting at the time of disruptions is
minimized.

Outline: We present an abstract formulation of the problem in Section 2 and
present the computational complexity of the resource allocation problem in Section 3.
In Section 4, we present an algorithmic approach to compute efficient resource alloca-
tion. In Section 5, we present experimental results.

2 Problem Formulation

In this section, we formulate the problem of computing a resource allocation that is
amenable for efficient business continuity contingency planning.

In the context of a service delivery system, there are three important components to
be modeled. They areresource infrastructure network, service accounts, andscenar-
ios. The resource infrastructure network is used to model the set of all the resources
that a service delivery organization uses to deliver its services. The service accounts
represent the different services being delivered to different customers. Essentially, ser-
vice accounts represent the customer accounts in the business world and model the
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resource requirements of the customer accounts. The scenarios are used to model the
different possible disruptions that may occur to the resource infrastructure network.

Formally, the resource infrastructure network comprises of resources belonging to a
finite set of resource typesT = {T1, T2, . . . , Tr}. We uset as an index to the resource
types. The resources in the organization are distributed geographically over a set of
locationsL = {L1, L2, . . . , Lm}. We usei as an index to the locations. Associated
with each locationLi is its capacity profile given by(ci,1, ci,2, . . . , ci,r) whereci,t
denotes the capacity of the resource typeTt available at locationLi. Furthermore, for
each pairLi1, Li2 ∈ L, we are also givendi1,i2, the distance betweenLi1 andLi2. In
our model, we assume that the cost of movement betweenLi andLj are same in both
the directions. However, these assumptions can easily be relaxed.

The service accounts in the system are given by the setJ = {J1, J2, . . . , Jn}.
We useh as an index to the service accounts. Each service accountJh is specified
by its resource requirement profile:((uh,1, lh,1), (uh,2, lh,2), . . . , (uh,r, lh,r)). uh,t is
the “normal requirement” and means thatJh requiresuh,t units of the resource type
Tt during normal operations.lh,t is the “critical requirement” and means thatJh re-
quireslh,t units of resource typeTt to ensure continuity of service delivery; further-
morelh,t ≤ uh,t. Associated with each service accountJh is oh, its overhead factor.
This overhead factor captures the overhead involved in starting the service delivery
from the alternate location when it is rerouted. In the context of the software service
delivery example, it may include overheads like getting network ports and access con-
trols enabled, arranging for secure access to the seats, transferring project servers (if
need be), etc. In the rest of the paper, we use the terms service accounts and jobs
interchangeably.

We now formalize the notion of resource assignment. Since each service account
is a project, it needs to obtain all its resources from the same location. Therefore,
an assignment has to map each service account to a location from where it obtains
all its requirements. Formally, an assignment is a mapping of service accounts to the
locations, i.e,A : J → L. Let A−1(Li) denote the set of service accounts assigned
to locationLi, i.e,A−1(Li) = {Jh ∈ J |A(Jh) = Li}. A valid assignment is one in
which the capacities of the resource types at each location are not violated. Formally,
∀Li ∈ L and∀ Tt ∈ T ,

∑
Jh∈A−1(Li)

uh,t ≤ ci,t.
For business continuity planning, a key input is the set ofscenarioswhich model

different disruptions that could happen. Formally, the setof scenarios is given by
S = {S1, S2, . . . , Sp}. We usek as an index to the scenarios. Each scenarioSk is
a subset ofL. The meaning ofSk is that the resources located at the locations inSk are
not available. Therefore, for a given scenarioSk, the set of service accounts that need
to be rerouted is given byA−1(Sk) = ∪Li∈Sk

A−1(Li). They need to be rerouted to
one of the locations inL\Sk. When a jobJh is rerouted to locationLi it means that a
resource profile of(lh,1, lh,2, . . . , lh,r) is allocated toJh at locationLi.

Formally, we need an assignmentASk
, such that,∀Jh ∈ A−1(Sk), ASk

(Jh) ∈
L\Sk and∀Jh ∈ J \A−1(Sk), ASk

(Jh) = A(Jh). The new assignmentASk
should

be a valid assignment, i.e, for all pairsTt ∈ T and(Li ∈ L\Sk) it should be true that
(
∑

Jh∈(A−1

Sk
(Li)∩A−1(Sk))

lh,t+
∑

Jh∈A
−1

Sk
\A−1(Sk)

uh,t) ≤ ci,t. The cost ofASk
given

byCost(ASk
) =

∑
Jh∈A−1(Sk)

oh · dA(Jh),ASk
(Jh) whereoh is the overhead factor of
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a rerouted jobJh. Note that the quantitydA(Jh),ASk
(Jh) captures the distance between

the original and rerouted locations of the service accountJh. Our cost function models
the cost of enabling the service delivery from the rerouted locations. It makes a simpli-
fying assumption that it is the product of the job’s overheadfactor and the distance of
rerouting. In presence of even more specific information of the costs involved, the cost
function can be modified to take such information into account. In planning literature,
such reallocations are called as “recourse”.

We now define therecourse aware resource allocationproblem referred to as the
RECONNECT problem. Input consists of a set of resource typesT , a set of locations
L, capacity profiles for the locations∀Li ∈ L, set of service accountsJ , set of re-
source profiles and overhead factors for the service accounts Jh ∈ J , and a set of
scenariosS. Goal is to compute a valid assignmentA for normal operations such that∑

Sk∈S Cost(ASk
) is minimized. Here, for a scenarioSk, ASk

denotes the reassign-
ment corresponding to the scenarioSk.

3 Complexity of theRECONNECT Problem

One may wish to design an efficient and optimal algorithm for theRECONNECT prob-
lem. But, we show that such an algorithm is unlikely to exist.In particular, we establish
the NP-Completeness and the hardness of approximation of theRECONNECT problem
via a reduction from the well known dominating set problem [5].

The Dominating Set Problem:The input consists of a graphG = (V,E) and an
integerg whereV is the set of nodes andE is the set of edges incident onV . The
decision problem is to output whether or not there exists a dominating set inG of size
g. A subset of verticesD ⊆ V is said to be a dominating set if, for any vertexv ∈ V ,
either v ∈ D or v is adjacent to a vertex inD. The dominating set is NP-hard to
approximate within a ratio ofΩ(log |V |) [9]. Given an instance of the dominating set
problem, we give a polynomial time reduction to theRECONNECT problem.

Our reduction is such that the resultingRECONNECT instance has just one re-
source typeT1. Therefore, the capacity profile of a location will just be a number that
indicates its capacity of the resource typeT1. Further, each service unit will be a tuple
(u, l) denoting its normal and critical requirement of the resource typeT1.

Reduction: Let G = (V,E) andg be the input to the dominating set problem.
There is one location for each node in the graph, i.e,L = {Lv|v ∈ V }. For each
edgee = (u, v), we setdu,v = 1. For other pairs which do not have an edge between
themd(u, v) is set to be the length of the shortest path connectingu andv; note that
d(u, v) ≥ 2 for such pairs. The capacities atLv, v ∈ V is1. We create(n−g) jobs with
the service profile(1, 1). The overhead factor for each job is1. Our set of scenarios
is: S = {S1, S2, . . . , S|V |} where scenarioSk corresponds to the locationLk (location
corresponding to nodek in V ) being unavailable. This completes our construction. It
is easy to see that this can all be done in linear time and therefore, our reduction runs
in polynomial time.

Lemma 1. There is a dominating set of sizeg in G = (V,E) if and only if there is an
initial allocationA to theRECONNECT problem of cost exactlyn− g.
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Proof. Suppose there is a dominating set of sizeg, sayD. Consider an allocation
which assigns exactly one job to each of the locations inV − D and no job to any of
the locations inD. Note that the locations inD have spare capacity of1. Therefore,
for each of the scenarios corresponding to(V −D), we can reroute the service account
assigned to the location to one of the locations in the dominating set. This is always
possible by the definition of the dominating set. Cost of suchreassignments is1 and
over (n − g) locations, total cost is(n − g). For the scenarios corresponding to the
locations in the dominating set, there is no need to reroute as no service accounts are
assigned to them. Thus, the reassignment cost across all thescenarios is(n− g).

Similarly, we show that if there is an assignment of cost exactly (n−g), then, there
is a dominating set of sizeg. Observe that at most one job can be assigned to each
location. Therefore, in any allocation, there should be(n − g) locations with one job
each andg locations which are not allocated any job. LetB be the set of locations
with no job. For each of the scenario in(V − B), the cost of rerouting is at least
1. Furthermore, for a locationv ∈ (V − B) which does not have a neighbor inB,
the rerouting cost is at least2. Therefore, unlessB is a dominating set, cost of the
reallocations across all scenarios inV −B has to be at least(n− g) + 1.

In our reduction, the distances satisfy triangle inequality. Furthermore, it is easy to
see that our reduction is approximation preserving (refer to [3]). So, theRECONNECT
problem is at least as hard as the dominating set problem. We have:

Theorem 1. TheRECONNECT problem is NP-Complete even when the distances sat-
isfy triangle inequality (i.e, form a metric) and unlessP = NP , it is NP-hard to
approximate within a ratio ofΩ(log n) wheren is the number of locations.

4 Algorithmic Approach

As proved in 3, theRECONNECT problem is a difficult problem from the point of view
of computing optimal recourse aware resource allocation. In this section, we develop
an algorithmic approach to solve the problem in practice.

4.1 Relative Importance of Resource Types

Note that, since the system requires the rerouting to take place in case of each scenario,
we assume that there is sufficient residual capacity even after allocating all the jobs to
the locations. For each resource typeTt, letCt represent the total capacity of resource
type t across all locations, i.e,Ct =

∑
Li∈L ci,t. Similarly, letRt represent the total

demand for the resource typet across all the jobs, i.e,Rt =
∑

Jh∈J uh,t. The residual
capacity fort is given byBt = Ct − Rt. We assumeBt > 0. The ratior(t) = Bt

Ct

represents how tight the supply of the resource typeTt is. Lower the ratio, more scarce
is the resource type. The weightage of a resource typet is given by

w(t) =
r(t)∑

t1∈T r(t1)
(1)
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We now compute an ordering on the jobs which represents the overall scarcity of
its resource requirements. The weightage of a service account Jh is given by

W (h) =
∑

t∈T

uh,tr(t) (2)

4.2 Location Allocation Heuristic

The set of jobs inJ are considered in the decreasing order of their weightsW (Jh).
Our heuristic for assigning a location to a jobJh is the following: assign it to a location
Li such that, in the scenarios that containLi, the average cost of reroutingJh from Li

is minimum. When we consider the jobs in the decreasing order of their weightages,
we say thatJh sufferscontingency deficiencyif the following condition holds (given
the allocation for the previous jobs in the order): for everychoice of location forJh
there is some scenarioSk ∈ S under which there is no viable rerouting option. In
other words, no matter which location it is allocated to, it cannot be rerouted under
some scenario. If that happens, a given choice is evaluated by adding a large penalty
for every scenario under which rerouting is not possible. The details of the complete
algorithm are presented in Algorithm 1.

5 Experimental Results

In this section, we present experimental results that studythe potential benefits of re-
course aware resource allocation in comparison to traditional methods.

5.1 Simulation Engine

We have built a simulation engine that can simulate distributed service delivery orga-
nizations. Most remote service delivery organizations canbe conceptualizedhierar-
chically. For example, an organization can be thought as distributedin multiple cities,
each city consists of multiple campuses, each campus consists of multiple buildings,
each building has multiple floors, and finally each floor consists of office spaces. So,
the distance between various points have a hierarchical nature. Our simulation engine
can generate such organizational structure. But, for simplicity, we present results with
a flat organization in which there is only one layer of geographical locations. This is
a convenient abstraction if we treat all the distances belowa hierarchical level, say a
campus, as equal to zero. In this case, the flat representation just considers a distance
metic over all the campuses. In most settings, the flat representation is good enough to
the hierarchical one.

One naive way of implementing a simulator of service delivery would be to inde-
pendently and randomly generate each of the three major components: infrastructure,
service accounts, and scenarios. But, the resulting data would be quite meaningless
as the service accounts that an organization decides to serve typically depends on its
infrastructure. Similarly, whether a scenario is of interest or not depends on what im-
pact it has on the overall infrastructure network. Therefore, our simulator is designed
to reflect the correlations between various components as briefly described below.
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input : Resource typesT , LocationsL, Capacity profiles for the locations,
distancesdi,js between the locations, Service accountsJ , Resource
profiles of the service accounts, and ScenariosS

output: A recourse aware resource allocationA : J → L
1 ∀Tt ∈ T , computeCt, Bt, Rt, andr(t) as described in Section 4.1;
2 ∀Tt ∈ T , computew(t) as shown in Equation 1;
3 ∀Jh ∈ J , computeW (h) as shown in Equation 2;
4 Order the jobs in the decreasing order of their weightages. After reordering,J1

corresponds to the job with highest weightage and so on;
5 for h← 1 to | J | do
6 curChoice = NULL; curCost =∞ ;
7 for i← 1 to | L | do
8 if (It is feasible to allocateJh toLi) then
9 cost = 0;

10 for every scenarioSk such thatLi ∈ Sk do
11 For allJh is allocated toLi, is it possible to rerouteJh under

Sk? ;
12 If Yes, cost += Cost of Optimal Rerouting ofJh underSk;
13 Else, cost +=Z whereZ is a large penalty for contingency

deficiency;
14 end
15 if (cost<curCost)then
16 curCost = cost; curChoice =Li;
17 end
18 end
19 end
20 AllocateJh to curChoice;
21 end

Algorithm 1: The main algorithm

We observe that there are a few resource types (example: Email, WAN, Power
Systems), referred to ascommon typewhich are required by almost all the service ac-
counts. Then, there are resource types, referred to asspecial typewhich are required by
only a few service accounts (example: LANs with limited access and security features,
secured seats, etc.). At each location, the simulator generates instances of all the com-
mon type resources and sets high capacity for them. As for thespecial type resources, it
only generates a subset of them and sets relatively lower capacity. Moreover, not all the
resource types of the organization are required by all service accounts (example: purely
call handling account may not need printers, copiers, etc.). Further, it is important to
note that the service accounts taken on by the organization is highly correlated with its
infrastructure network. So, the simulator generates the resource requirements of the
service accounts as follows. Each service account has an associated inherent size. It
picks small subsets of both common and special type resources. Its requirement for
the common type resources is set proportional to its inherent size. For the special type
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resources, its requirement is set as per a normal distribution whose mean is determined
by its inherent size. We have verified that the profile of the infrastructure networks and
the service accounts generated this way are quite similar toreal-life data (which are
highly confidential and no company can make it available for public dissemination).

5.2 Scenario Generation

We construct both rule based scenarios and scenarios which are constructed by care-
fully analyzing the infrastructural network for bottlenecks. Example of rule based sce-
narios is one whereS1 = {{L1}, {L2}, . . . , {Lm}}, i.e, set of all possible scenarios
in which exactly one location is not available. In real-life, rule based scenarios help
an organization to test its preparedness for contingency. We consider two rule based
scenario setsS1, S2 whereS1 is defined as above andS2 consists of all possible sce-
narios in which exactly two locations are not available. Apart from the rule based
scenarios one can also construct scenarios that are specificto the infrastructural net-
work. Specifically, we constructmoderateanddifficult scenarios based on their impact
on the residual capacities of the resource types in the network. The moderate scenarios
are created as follows: starting from the entire network, keep marking a random loca-
tion as unavailable till the residual capacity of any one of the resource types falls below
80% of its original capacity. We generate many such scenarios. The difficult scenarios
are created similarly except that the threshold for completing a scenario is 60% instead
of 80%.

5.3 Geographical Distribution of the Locations

One way of generating the locations on a map would be to just locate them at random
locations on a grid. But, it is easy to see that such an approach does not stress test
the allocation heuristics for the following reasons: with respect to a location, number
of locations at different distances is fairly well spread out. Therefore, likelihood of
ever rerouting jobs from a location to its farthest point is very small. But, a re-look at
Figure?? highlights the fact that there are two clusters which are separated by large
distance. The best fit allocation fails because, in some scenarios it has to reroute across
the clusters. Therefore, we generate the locations as follows (it also mimics real-life
cases pretty well): we consider a small number of clusters which are separated by a
large distance; we generate locations only within these clusters. This forces a job to
pay a high cost every time it has to be rerouted to a location outside its clusters.

5.4 Experimental Comparisons

We have used our simulation engine to construct service delivery organizations of dif-
ferent sizes to conduct our experiments. Simple and very small organizations with
just a handful of locations and jobs were analyzed manually to ensure the soundness
of the approach. We then generated medium sized and large sized organizations for
our experimental study. The medium sized organizations consisted of roughly a dozen
locations and up to 250 jobs. The large sized organizations consisted of two or three
dozen locations and in the range of 500 jobs.
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We have implemented the following resource allocation heuristics: recourse aware
allocation heuristic presented in Section 4, first-fit algorithm which assigns resources
by following the first-fit bin-packing heuristic, similarlythe best-fit heuristic for bin-
packing, and finally just a random allocation strategy of allocating a random location
with required capacity of resource types.

We generated large number of instances of medium and large sized organizations
on which all the four allocation procedures were run. Due to lack of space, we will
only present a summary of the experimental comparison of thefour methods. What
we have captured in these summaries is representative of theresults observed across
all the experiments. We consider two parameters for comparison: maximum number
of jobs that need to be rerouted under one of the scenarios andthe actual average cost
of rerouting under all the scenarios of interest. We report the results split across the
different rule based scenarios, moderate scenarios, and difficult scenarios.

Table in Figure 1 shows the comparison of the different methods with respect to the
number of jobs that need to be rerouted. Here, “RA” refers to the recourse aware allo-
cation heuristic, “FF” refers to the first-fit heuristic, “BF” refers to the best-fit heuristic,
and “Random” refers to the random allocation method. In the BF heuristic, a job is al-
located to a location which minimizes the fragmentation, i.e, a location at which the
remaining capacity after the allocation is minimized. In the FF heuristic, locations are
ordered based when a job was first assigned to them. The FF heuristic allocates a job to
the earliest location in the order where it can fit in. Under the “Scenario Type” column,
“Rule: x loc” refer to the rule based scenarios which include all scenarios in which ex-
actlyx location(s) are not available. Similarly, Table in Figure 2shows the comparison
with respect to the actual cost of rerouting. In both tables,we normalize the entries
with respect to RA. For example, if an entry in a cell in Figure2 has an entryf , it
means its average reroute cost wasf times the average reroute cost of the RA strategy
(across all the different experiments).

From the table in Figure 1, we see that the average number of jobs that need to be
rerouted for the bin-packing heuristics could be smaller than the corresponding number
for the recourse aware allocation. But, the crucial observation is to look at the cost of
rerouting in Figure 2. Note that the recourse aware allocation consistently has lower
cost than all the other strategies. Even with smaller numberof average jobs to reroute,
the BF and FF strategies could take take up to a factor of1.6 times more than the cost of
RA. Clearly, the RA strategy performs very well in terms of the cost of rerouting. But,
the curious case is that of the Random strategy. Its performance is surprisingly better
than the bin-packing strategies. Preliminary observationsuggests that the bin-packing
algorithms do a good job in terms of the minimizing the numberof jobs that need to be
rerouted. But, they suffer from lack of efficient reroute options in some of the scenarios
and end up paying higher cost on an average.

6 Conclusions

In this paper, we argued the importance of recourse aware allocation of service deliv-
ery organizations. We presented an abstract formulation ofthe problem and studied
its complexity. We presented a novel recourse aware resource allocation heuristic. We
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Scenario Type RA FF BF Random
Rule: 1 loc 1.0 1.0 1.0 1.0
Rule: 2 loc 1.0 1.0 1.0 1.0
Moderate 1.0 0.9 0.9 1.05
Difficult 1.0 0.93 0.93 1.01

Figure 1: Comparison w.r.t. the number of jobs to be rerouted

Scenario Type RA FF BF Random
Rule: 1 loc 1.0 1.7 1.6 1.4
Rule: 2 loc 1.0 1.3 1.29 1.33
Moderate 1.0 1.58 1.64 1.08
Difficult 1.0 1.12 1.14 1.16

Figure 2: Comparison w.r.t. the average cost of rerouting

presented initial simulation based results that demonstrate the potential benefits of re-
course aware resource allocation. We leave open the problemof developing provably
near-optimal algorithm for theRECONNECT problem. Another interesting direction
is to develop challenging real-life benchmark datasets forservice operations that re-
flect the typical contingency scenarios faced in geographies like India, China, Brazil,
Russia, etc.
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