
RJ 10192 (95066) August 17, 2000
Computer Science

Research Report
A SYSTEMATIC ENUMERATION OF CONTINGENCY TABLES

Byron E. Dom
IBM Research Division
650 Harry Rd.
San Jose, CA 95120

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication.
It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the
outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and speci�c
requests. After outside publication, requests should be �lled only by reprints or legally obtained copies of the article (e.g.,
payment of royalties).

IBM
Research Division
Yorktown Heights, New York � San Jose, California � Zurich, Switzerland

A SYSTEMATIC ENUMERATION OF CONTINGENCY TABLES

Byron E. Dom
IBM Research Division
650 Harry Rd.
San Jose, CA 95120

December 1, 2000

ABSTRACT: We derive an enumeration scheme for m-bin one-dimensional contingency
tables that sum to n. This might be used for compression (encoding) or to generate indices
into an array. The scheme corresponds to a lexicographic ordering of the tables.

Keywords: enumeration, enumerative coding

1. The Problem

We are concerned with one-dimensional contingency tables t = ftiji = 1; 2; : : : ; mg,
where the ti are non-negative integers and sum to n:

P
i ti = n. Contingency tables

correspond to counting discrete items. We seek an e�cient encoding of these tables. We
are motivated by the need to store a table T in memory where each entry corresponds to a
di�erent t. We want to store these in the minimum amount of memory yet be able to access
them e�ciently. We will store the table as a linear array and we need to derive a scheme to
rapidly compute the integer index into that array. Associating objects (contingency tables
in this case) with all or some of the positive integers is the process of enumeration.

2. The Solution

Some De�nitions:

� t = ftiji = 1; 2; : : : ; mg where
Pm

i=1 ti = n.

� tk = ft1; t2; : : : ; tkg = the \pre�x" table of length k; thus tm � t.

� C(n;m): the set of all (m;n) contingency tables t.

� �(n;m) � jC(n;m)j = the number of unique tables in C(n;m).

� �(t) = index value associated (by our scheme) with table t.

We make use of the following lemma. See the appendix for a proof.

Theorem 2.1. The number �(m;n) ofm-bin one-dimensional contingency tables summing
to n is:

�(n;m) =

�
n+m� 1

m� 1

�
�

(n+m� 1)!

(m� 1)!n!
:

The enumeration scheme is straightforward. First, observe the following: the number
of t's with t1 = 0 is equal to �(n;m� 1), the number with t1 = 1 is �(n� 1; m� 1) and so
on. In our scheme the indices 1 through �(n;m� 1) will correspond to tables with t1 = 0.
Indices �(n;m � 1) + 1 through �(n;m � 1) + �(n � 1; m � 1) correspond to tables with
t1 = 1 and so on with the index value �(n;m) going to the table with t1 = n and all other
ti = 0. We then apply the same idea recursively within each of those ranges of indices.
Thus the �rst �(n;m� 2) indices go to tables for which both t1 = 0 and t2 = 0; the next:
�(n;m � 2) + 1 through �(n;m � 2) + �(n � 1; m � 2) go to tables for which t1 = 0 and
t2 = 1, and so on. From this it should also be clear that the table with tm = n and all other
ti = 0 will be associated with index value 1.
De�nitions:

�(tk) �

kX
i=1

ti

1

�(tk) �

tk�1X
j=0

�(n � �(tk�1)� j;m� k) (1)

Theorem 2.2.

�(t) =
m�1X
i=1

�(ti) (2)

Proof: See paragraph above.
Note 1: This scheme can be shown to be a special case of the general enumerative
encoding method described in [1]. This connection is demonstrated in Appendix B.
Note 2: The ordering produced by this scheme is lexicographic[1], which means the
following. The contingency tables can be thought of as m-digit base-(n + 1) numbers.
The �rst bin (t1) of t is taken to me the most signi�cant digit and the last (tm) the least
signi�cant. The indices produced correspond to a numerically sorted list of the numbers
corresponding to all �(n;m) tables. See Appendix C.4 for an example.

3. Computational Issues

The number of � values that must be summed is equal to �(tm�1) � O(n).

4. Implementation and Experiments

To check the validity of (2) it was implemented in the APL function INDEX (see Ap-
pendix C.1). Complete sets of tables were generated in order using the APL functions
MAKE TABLES (see Appendix C.2) and BUILD TABLE (see Appendix C.3). The index
values from this ordering were then compared with those computed by INDEX. Sample
results are presented in Appendix C.4.

Acknowledgment: Thanks to Corneliu Constantinescu for making me aware of the
reference [1].

References

[1] Thomas M. Cover. Enumerative source encoding. IEEE Transactions on Information

Theory, IT-19(1):73{77, January 1973.

2

Appendices

A. The Number of m-Bin Contingency Tables Summing to n

This is a well known result. It is derived here for pedagogical purposes.

Theorem A.1. The number �(m;n) of m-bin one-dimensional contingency tables sum-
ming to n is:

�(n;m) =

�
n+m� 1

m� 1

�
�

(n+m� 1)!

(m� 1)!n!
:

Proof: We will represent our tables abacus-style. Think of a linear (i.e. not a closed loop)
string of n beads (each represented here by \�") and m� 1 movable partitions (represented
by \j") that can be placed between the beads to delineate bins.

� � �j � j � : : : � j�

1. The number of possible arrangements (permutations) of these n+m�1 objects (beads
plus partitions) is (n+m� 1)!.

2. Each permutation corresponds to a table as follows. The count in the �rst bin of the
table is the number of beads appearing to the left of the �rst (left-most) partition. The
count in the 2nd bin is the number of beads between the �rst and second partitions
and so on with the count in the mth bin being the number of beads appearing to the
right of the last (right-most) partition. Clearly the permutation-to-table mapping is
many-to-one.

3. The n beads are indistinguishable from each other as are the m� 1 partitions. Thus,
to obtain the number of tables (unique sets of bin counts) we must simply divide our
original number of permutations for the combined set (beads plus partitions) by the
number of permutations of the partitions (m� 1)! times the number of permutations
of the beads n!, yielding:

�(n;m) =
(n+m� 1)!

(m� 1)!n!
:

4. Q.E.D.

3

B. Connection with Previous work of Cover: \Enumerative Source Encoding"

Here we discuss the connection of our enumeration scheme with the general scheme of
Cover[1]. Cover provides the following general enumeration scheme for length-m strings
whose symbols are taken from an n-symbol alphabet.

�(t) =
mX
k=1

tk�1X
j=1

ns(t1; t2; : : : ; tk�1; j); (3)

where the notation has been changed slightly to make it closer to ours. In the strings
corresponding to (3) the alphabet consists of the integers 1 through n. The set S of strings
to which this applies will, in general, be a subset of the complete set f1; 2; : : : ; ngn. The
constraints de�ning this subset are reected in the counting function ns(t1; t2; : : : ; tk) �
ns(tk), which is de�ned as the number of strings in S with the pre�x tk � ft1; t2; : : : ; tkg.

Applying this to our problem, in which S = C(n;m), we make the following identi�cation:

ns(t
k) = �(n � �(tk); m� k):

Also, the \symbols" in our case are the possible bin values f0; 1; : : : ; ng. Thus we change
the lower limit of the inner sum in (3) from 1 to 0. Finally, we note that the upper limit
of the outer sum can be changed from m to m � 1 in our case because the k = m term
has a value of zero. Making these changes yields the following, which is our (2) with (1)
substituted for �k.

�(t) =
m�1X
k=1

tk�1X
j=0

�(n� �(tk�1)� j;m� k) (4)

4

C. APL Program Listings

C.1. INDEX Function

[0] I_INDEX T;M;N;K;I;SUM;X

[1] " THIS FUNCTION RETURNS THE LEXICOGRAPHIC-ORDER

[2] " INDEX I FOR THE 1-D CONTINGENCY TABLE T.

[3] " AUTHOR: Byron Dom; DATE: 08/09/2000

[4] M_�T " NO. BINS IN TABLE

[5] N_+/T " SUM OF TABLE

[6] K_1 " BIN INDEX

[7] I_0 " RESULT: ORDER INDEX OF T

[8] LOOPK:

[9] SUM_0++/(K-1)^T " SUM OF PREVIOUS BINS (HIGHER ORDER)

[10] X_0 " VARIED OVER POSSIBLE VALUES OF BIN

[11] �(T[K]=0)/SKIP " IF THIS BIN=0, NOTHING TO ADD TO INDEX

[12] LOOPX:

[13] I_I+(M-(K+1))!N+(M-K)-(SUM+X+1) " ADD NO. TABLES WITH T[K]=X

[14] �(T[K]>X_X+1)/LOOPX

[15] SKIP:

[16] �(M>K_K+1)/LOOPK

[17] I_I+1

C.2. MAKE TABLES Function

[0] TTABLE_M MAKE�TABLES N;NROWS;L;T

[1] "

[2] " THIS BUILDS A TWO-DIMENSIONAL TABLE WHOSE ROWS ARE ALL

[3] " THE M-BIN ONE-DIMENSIONAL CONTINGENCY TABLES THAT SUM TO N.

[4] " THESE TABLES (ROWS) ARE GENERATED IN LEXICOGRAPHIC ORDER.

[5] "

[6] " AUTHOR: Byron Dom; DATE: 08/09/2000

[7] "

[8] TTABLE_(0,M)�0 " FINAL RESULT (2-D TABLE)

[9] T_0 " USED TO BUILD 1-D CONT. TABLES BY BUILD�TABLE

[10] L_0 " INDEX FOR RECURSION LEVEL � CURRENT BIN IN T.

[11] BUILD�TABLE " RECURSIVE FUNCTION THAT ACTUALLY DOES IT

[12] NROWS_1^�TTABLE

[13] TTABLE_((NROWS,1)�NROWS),TTABLE " 1ST COL. IS INDEX; THE REST IS TABLE.

5

C.3. BUILD TABLE Function

[0] BUILD�TABLE;I;SUM

[1] "

[2] " RECURSIVE FUNCTION CALLED BY THE FUNCTION 'MAKE�TABLES'

[3] " TO BUILD A 2-D ARRAY WHOSE ROWS ARE ALL M-BIN 1-D CONTINGENCY

[4] " TABLES THAT SUM TO N. THEY ARE GENERATED IN LEXICOGRAPHIC ORDER.

[5] " AUTHOR: Byron Dom; DATE: 08/09/2000

[6] "

[7] L_L+1 " L IS RECURSION LEVEL; THE BIN BEING VARIED BY THIS INVOCATION

[8] SUM_+/T " T IS 1-D CONT. TABLE; SUM IS SUM OF BINS 1 THRU L-1

[9] �(M=L)/BOTTOM " IS THIS THE LAST BIN?

[10] "

[11] " THE FOLLOWING LOOPS THROUGH ALL POSSIBLE VALUES OF

[12] " THE Lth (CURRENT) TABLE ENTRY AND RECURSIVELY BUILDS

[13] " THE REST OF THE TABLE.

[14] "

[15] I_0

[16] T_L^T

[17] LOOP:

[18] T[L]_I

[19] BUILD�TABLE " BUILDS THE REST OF T, BINS L+1 THRU M.

[20] L_L-1

[21] T_L^T

[22] �((N-SUM)�I_I+1)/LOOP

[23] �0

[24] "

[25] " THE FOLLOWING EXECUTES AT THE 'BOTTOM' OF THE RECURSION

[26] " (THE LAST BIN), WHICH CORRESPONDS TO ONE COMPLETE 1-D TABLE

[27] "

[28] BOTTOM:

[29] T_T,N-SUM

[30] TTABLE_TTABLE,[1]T

[31] �0

6

C.4. Some Test Results

3 MAKE�TABLES 5

1 0 0 5

2 0 1 4

3 0 2 3

4 0 3 2

5 0 4 1

6 0 5 0

7 1 0 4

8 1 1 3

9 1 2 2

10 1 3 1

11 1 4 0

12 2 0 3

13 2 1 2

14 2 2 1

15 2 3 0

16 3 0 2

17 3 1 1

18 3 2 0

19 4 0 1

20 4 1 0

21 5 0 0

INDEX 1 0 4

7

INDEX 2 3 0

15

INDEX 4 1 0

20

INDEX 10

4816547511

+/ 10

55

7

