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BAYESIAN MARGINAL LIKELIHOOD FOR MULTIVARIATE

GAUSSIAN WITH CONJUGATE PRIORS

Byron Dom and Alex Cozzi

ABSTRACT: This report is intended as a tutorial derivation of the Bayesian marginal
likelihood/probability corresponding to multivariate Gaussian (Normal) models and conju-
gate priors, which are Gaussian for the mean vector � and Inverse Wishart for the covariance
matrix �. While we have found this result stated elsewhere, we have not found an easily
accessible treatment of its derivation allowing various terms to be easily interpreted unam-
biguously and so on. We hope that what is presented here will be at least somewhat usefull
in �lling this apparent void.



1. Background

1.1. General Background

The background and context for this problem lie in the subject of Bayesian statistical
estimation1, whose central identifying feature is the treatment of parameters in probability
distributions (e.g. the mean � and covariance � in the case of multivariate Gaussian distri-
butions) as random variables with their own distribution referred to as the prior distribution
or just \prior". A convention often used (and followed by us here) in generic discussions of
Bayesian theory is to represent the collection of these parameters (a.k.a. the \parameter
vector") by � and the prior by �(�). For a set X of data vectors xi where:

X = fxiji = 1; 2; : : : ; ng; xi 2 R
d

we represent the speci�c parametric probability model form (e.g. multivariate Gaussian)
by P (X j�) and we can also use these de�nitions to introduce the joint distribution:

P (X; �) = P (X j�) �(�):

The marginal probability (or probability density) of X is obtained by integrating P (X; �)
over the domain � of �:

P (X) =

Z
�
P (X; �) d�

A distribution classically more interesting to Bayesian statisticians is the posterior

P (�jX) over the parameters �:

P (�jX) =
P (X j�) �(�)

P (X)
:

For example, the maximum a posteriori (MAP) estimate for �, �̂ is the one that maximizes
this.

�̂(X) = argmax
�

P (�jX)

The predictive distribution over new (unseen) data x given the past (previously observed)
data X can also be expressed in terms of P (�jX):

P (xjX) =

Z
�
P (xj�)P (�jX) d�:

Our interest in P (X) is due to its usefulness in model selection, or more speci�cally model
order/structure selection. By this we mean choosing things like the number of clusters in
a clustering problem or the number of features and particular feature subset in feature
selection, a problem that arrises in many contexts in both supervised and unsupervised

1Readers desiring to learn more about this subject can consult one of the many excellent texts. Three
used by us are [4, 3, 2]
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learning. The set of model structures for a given problem is always countable and frequently
�nite. For this reason it is often convienient to think of them as being indexed by the
integers. The value of P (X) in model selection is its regularizing property. By this we refer
to the fact that it e�ects a natural trade-o� between the complexity (e.g. the number of
clusters) and goodness of �t. When P (X) is considered as a function of X for a �xed model
structure it is referred to as a probability, whereas, when it is considered as a function of
the model structure for a �xed X , it is called a likelihood. Because the parameters � have
been integrated out, P (X) is referred to as the marginal likelihood in this context. This
connection with the more familiar likelihood function P (X j�) would be made clearer by
writing P (X) as P (X jk) where k is a variable/parameter representing model structure. We
retain the P (X) form, however, to keep the notation simpler. Two examples of the use of
P (X) for model-structure selection in unsupervised learning are [7, 8].

The quantity � logP (X) has been referred to by Rissanen in some work (see [5]) as the
stochastic complexity of X with respect to the model class consisting of all models of a given
type/structure (i.e. indexed by all values of �) and the associated prior �(�)2.

1.2. Speci�c Distributions

In the following equations the notation j�j denotes the determinant of the matrix �
and �T denotes its transpose. Vectors are assumed to be single-column matrices and when
transposed, therefore, are single-row matrices (e.g. � and �T ).

The result we will obtain is a closed form for the following integral

P (X) =

Z Z
P (X; �;�) d� d� (1)

where
P (X; �;�) = P (X j�;�) �(�j�) �(�) (2)

and

P (X j�;�) = N(X j�;�) � (2�)�nd=2j�j�n=2 exp

"
�
1

2

nX
i=1

(xi � �)T��1(xi � �)

#
; (3)

where � 2 Rd is the mean vector and � is the symmetric, real-valued d � d covariance
matrix. Its inverse ��1, which appears frequently, is referred to as the \precision matrix".
For the associated priors we use so-called conjugate priors for the multi-variate Gaussian.
The term \conjugate" refers to priors for which the general functional form (structure) of
the posterior is the same as that of the prior. An important implication of this is that they
produce closed forms when integrated with P (X j�;�). The prior for � is

�(�j�) = N(�j�0;�=�) �

�
�

2�

�d=2

j�j�1=2 exp

"
�
1

2

nX
i=1

(�� �0)
T���1(�� �0)

#
: (4)

2In more recent work[6] he has used a somewhat di�erent de�nition of stochastic complexity
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where �0 and � are hyperparameters. The prior for the covariance-matrix parameter � is
the following inverse Wishart distribution3 W�1(�j	; �).

�(�) = W�1(�j	; �) �
j	j�=2 j�j�

1

2
(�+d+1)

2
1

2
�d�d

�
�
2

� exp

�
�
1

2
trace(	��1)

�
(5)

where 	 (a real-valued d� d matrix) and � (a real-valued scalar) are hyperparameters and

�d

��
2

�
� �d(d�1)=4

dY
i=1

�((�+ 1� i)=2):

2. Program to be followed to Obtain an Expression for P (X)

The integral in (1) can be rewritten using (2) as follows:Z �Z
P (X j�;�) �(�j�)d�

�
�(�) d� (6)

We will perform the integration in (6) in two steps. We �rst perform the inner integral
(over �), which yields P (X j�), followed by the outer integral (over �).

3. An Expression for P (X j�)

The goal here is to obtain an expression for:

P (X j�) =

Z
P (X; �j�)d� =

Z
P (X j�;�) �(�j�)d�; (7)

where P (X j�;�) and �(�j�) are given by (3) and (4) respectively. Thus:

P (X j�;�) �(�j�) = (2�)�(n+1)d=2�d=2j�j�(n+1)=2 �

exp

("
�
1

2

nX
i=1

(xi � �)T��1(xi � �)

#
+

�
�
1

2
(� � �0)

T���1(� � �0)

�)
(8)

Next we manipulate the terms in \[: : :]" in the argument of the expf: : :g. Starting with
the leftmost (and omitting the �1=2 factor for the moment) and expanding we obtain:

(xi � �)T��1(xi � �) = xTi �
�1xi � �T��1xi � x

T
i �

�1� + �T��1�: (9)

Next we sum this over i and use the de�nition of the sample mean �x � (1=n)
P

i xi to
obtain:X

i

(xi � �)T��1(xi � �) =
X
i

xTi �
�1xi � n�T��1�x� n�xT��1�+ n�T��1� (10)

3See Equation (1) on p.268, in Section 7.7.1 \The Inverted Wishart Distribution" of [1].
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Next we add and subtract �xT��1�x and regroup to obtain:

X
i

(xi� �)T��1(xi ��) =

 X
i

xTi �
�1xi � n�xT��1�x

!
+ n(�� �x)T��1(�� �x): (11)

This can be further manipulated, using the following result. This result can be easily seen
by expanding the right hand side of (12) and cancelling terms.X

i

xTi �
�1xi � n�xT��1�x =

X
i

(xi � �x)T��1(xi � �x) (12)

It can also be shown that:X
i

(xi � �x)T��1(xi � �x) = n trace[S��1] = n trace[��1S]; (13)

where S is the sample covariance matrix4. of the data X � fxiji = 1; 2; : : : ; ng:

S �
1

n

nX
i=1

(xi � �x)(xi � �x)T :

Finally, substituting (13) into (12) and then (12) into (11) yields the following for this �rst
term: X

i

(xi � �)T��1(xi � �) = n trace[��1S] + n(�� �x)T��1(�� �x) (14)

At this point, we have the following for the argument of expf: : :g in (8):

�
1

2

�
n trace[��1S] + n(� � �x)T��1(�� �x) + (�� �0)

T���1(�� �0)
	

(15)

We can now apply the result of Appendix A to combine the two �-dependent terms. This
will give a new Gaussian with covariance matrix

�� = (n+ �)�1�

and mean

�� =
n�x + ��0
n + �

.
Using this result, we can rewrite (8) as follows.

P (X j�;�) �(�j�) =
nh

(2�)d=2(n+ �)�d=2j�j1=2
i
N(�j��;��)

o h
(2�)�(n+1)d=2�d=2j�j�(n+1)=2

i
�

exp

�
�
1

2

�
n trace[��1S] + n�xT��1�x+ ��T0�

�1�0 � (n�xT + ��T0 )
��1

n+ �
(n�x+ ��0)

��
;(16)

4The de�nition of this varies. For example one frequently sees S � 1

n�1

P
n

i=1
(xi � �x)(xi � �x)T .
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where N(��;��) is a Gaussian over �. The term immediately to the left of it in \[: : :]" is
the associated normalizing factor, which we simultaneously multiplied and divided by. The
term in \[: : :]" immediately to the right of N(��;��) is the term multiplying \expf: : :g"
on the left in (8).

Expanding the argument of expf: : :g in (16) and collecting terms yields:

�
1

2

�
n trace[��1S] +

�
n�

n+ �

�
(�x� �0)

T��1(�x� �0)

�

Combining the terms multiplying the expf: : :g on the left yields:

(2�)�nd=2
�

�

n + �

�d=2

j�j�n=2

Next, integrating over � results in N(�j��;��)! 1, leaving:

P (X j�) = (2�)�nd=2
�

�

n + �

�d=2

j�j�n=2 �

exp

�
�
1

2

�
n trace[��1S] +

�
n�

n+ �

�
(�x� �0)

T��1(�x� �0)

��
(17)

which can also be written as

P (X j�) = N

�
�x

�����0;
�
n + �

n�

�
�

�
(2�)�(n�1)d=2 j�j�(n�1)=2 n�d=2 exp

�
�
1

2
n trace[��1S]

�
(18)

4. An Expression for P (X)

Next we perform the outer integration in (6).

P (X) =

Z
P (X j�) �(�)d�; (19)

where P (X j�) is given by (17) and the prior on the covariance parameter � is given by
(5). Multiplying (5) by (17) yields:

P (X j�) �(�) =
�

�
n+�

�d=2
j	j�=2j�j�

1

2
(�+n+d+1)

h
(2�)nd=22

1

2
�d�d

�
�
2

�i�1
�

exp
n
�1
2

h
n trace[��1S] + trace(	��1) +

�
n�
n+�

�
(�x� �0)T��1(�x� �0)

io
(20)

This can be manipulated into the following form

P (X j�) �(�) = ��
1

2
nd
�

�
n+�

�d=2
j	j�=2

�
�d(�+n2 )
�d(�2 )

�
�

���	+ nS + n�
n+� (�x� �0)(�x� �0)

T
���� 1

2
(n+�)

�

W�1
�
�
���	+ nS + n�

n+� (�x� �0)(�x� �0)T ; n+ �
�

(21)
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When we integrate this over �, the W�1 term integrates to 1 leaving:

P (X) = ��
1

2
nd

�
�

n + �

�d=2

j	j�=2

"
�d
�
�+n
2

�
�d
�
�
2

�
# ����	+ nS +

n�

n + �
(�x� �0)(�x� �0)

T

����
�

1

2
(n+�)

;

(22)
which is the result we seek.
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A. The product of two multivariate Gaussians

Here we obtain an expression for the product of two multivariate Gaussians with mean
vectors �1 and �2 and precision matrices P1 and P2. First we combine the two exponential
arguments by completing the square:

(x� �1)
TP1(x� �1) + (x� �2)

TP2(x� �2) (23)

Expand this:

xT (P1 + P2)x � (�T1 P1 + �T2 P2)x � xT (P1�1 + P2�2) + (�T1 P1�1 + �T2 P1�2)

This suggests a new Gaussian with precision matrix P12 = P1+P2. Following that thought,
the �rst three terms (the ones involving x) can be rewritten as:

xT (P1+P2)x � (�T1 P1+�
T
2 P2)(P1+P2)

�1(P1+P2)x � xT (P1+P2)(P1+P2)
�1(P1�1+P2�2)

This, in turn, suggests that the mean vector of the new Gaussian will be

�12 = (P1 + P2)
�1(P1�1 + P2�2)

Using these values for �1 and P12, to have an expression for

(x� �12)
TP12(x� �12)

we need a constant (non-x-dependent) term of:

�T12P12�12 = (�T1 P1 + �T2 P2)(P1 + P2)
�1(P1 + P2)(P1 + P2)

�1(P1�1 + P2�2)

(�T1 P1 + �T2 P2)(P1 + P2)
�1(P1�1 + P2�2)

We can now rewrite (23) as:

(x� �12)
TP12(x� �12) + (�T1 P1�1 + �T2 P1�2) � �T12P12�12:

The complete product of the two Gaussians is:

����P122�

����
1

2

exp

�
�
1

2
(x� �12)

TP12(x� �12)

�
�(���� 2�P12

����
1

2

����P12�
����
1

2

����P22�
����
1

2

exp

�
�
1

2
(�T1 P1�1 + �T2 P1�2 � �T12P12�12)

�)
:
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