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ABSTRACT:
In this paper we propose a measure of similarity/association between two partitions of

a set of objects. Our motivation is the desire to use the measure to characterize the quality
or accuracy of clustering algorithms by somehow comparing the clusters they produce with
“ground truth” consisting of classes assigned to the patterns by manual means or some other
means in whose veracity there is confidence. Such measures are referred to as “external”.
Our measure also allows clusterings with different numbers of clusters to be compared in a
quantitative and principled way. Our evaluation scheme quantitatively measures how useful
the cluster labels of the patterns are as predictors of their class labels. When all clusterings
to be compared have the same number of clusters, the measure is equivalent to the mutual
information between the cluster labels and the class labels. In cases where the numbers of
clusters are different, however, it computes the reduction in the number of bits that would
be required to encode (compress) the class labels if both the encoder and decoder have free
access to the cluster labels. To achieve this encoding the estimated conditional probabilities
of the class labels given the cluster labels must also be encoded. These estimated proba-
bilities can be seen as a “model” for the class labels and their associated code length as a
“model cost”. In addition to defining the measure we compare it to other commonly used
external measures and demonstrate its superiority as judged by certain criteria.

Keywords: clustering, clustering accuracy, clustering validity



2. The Evaluation Problem

Evaluation of the validity® (quality or accuracy) of the output of clustering algorithms is
a difficult problem in general. Measures or indices of cluster validity can be divided into two
types: esternal and internall9]. External validity criteria measure how well the clustering
results match some prior knowledge about the data. It is assumed that this information is
not, in general, computable from X. Perhaps the most common form of external information
is a set of classes (categories) and class labels for the objects corresponding to X. These
are usually obtained via manual classification.

The use of some measure based solely on the feature data X (an internal measure), begs
the question: Why not just use this measure itself as an objective function for clustering?
This may in fact be possible in some cases where the objective function used does exactly
capture what is desirable in a particular application and there is a feasible algorithm for
finding the optimal clustering. In such cases the evaluation problem is moot. In other cases,
of course, the answer to this question may have to do with computational feasibility - it may
not be possible to devise an algorithm to efficiently find the associated optimal clustering.

In many (if not most) applications, however, clustering algorithms attempt to do what
humans can do quite well, albeit slowly relative to the speed of a computer. This human
sufficiency is especially true in the case of document clustering, for example, where natu-
ral language understanding and vast amounts of world knowledge (or specialized domain
knowledge) are used by humans. In such applications the best accuracy/quality measure
will therefore be based on human subjective judgments. One way to obtain this is to ask
humans to judge the quality of the results directly. This is an expensive and time consuming
process however and every algorithm (or variation of a single algorithm) tried will require
a new set of subjective judgments.

An alternative to this is to ask humans to cluster the data set into what they consider
to be an appropriate set of clusters. This is done once to obtain a set C of what we will
refer to as class labels: C' = {c¢;]i = 1,2,...,n}, & € C. The idea is that the intended
users of the algorithm would be quite happy if the algorithm had produced these classes as
clusters. They are thus treated as the ideal clustering and quality is judged based on some
measure of how well the cluster labels produced by the algorithm(s) agree with the class
labels. Any accuracy assessment based on this notion is thus measuring the quality of the
clustering relative to the particular classification represented by C. Another classification
will obviously result in a different measure in general. Despite this weakness, external
measures tend to be the most reliable and are therefore usually preferable when class labels
are available?. In this paper we propose an external validity measure appropriate for flat
(non-hierarchical) clustering where a ground-truth classification is available for evaluation

purposes.

37This term is used by different workers in slightly different ways. We use it only to refer to a measure
applied to the results after a clustering algorithm has done its job; not something that can be used in the

process of clustering.
4Gee Appendix C for further discussion of external versus internal validity measures.



As in the case of the cluster labels, we can think of C' as a sample drawn from a
population described by a probability distribution {p(c)}. Also, we can think of the set of
pairs {(¢;, k;)} associated with C and K as a sample drawn from a population described by
the distribution P = {p(c, k)}.

3. Summaries of the Class-Cluster Relationship

A complete characterization of the behavior of a particular algorithm when used to
cluster a given data set is, of course, contained in the individual objects (e.g. documents)
themselves i.e. which objects were assigned to which clusters. Some amount of anecdotal
evidence of this type is invaluable in diagnosing the behavior of the clustering algorithm. For
large numbers of objects, however, the objects in aggregate are more than can be dealt with
in this manner. Some reduced information is essential. For a partitional clustering the usual
first level of reduction is expressed by the two-dimensional contingency table H = {h{c, &)},
where h(c, k) is the number of objects labeled class ¢ that are assigned to cluster k by f.
In a perfect (from an external measure’s point of view) clustering H is a square matrix
(ie. |C| = |X|) and only one non-zero element per row/column. This will be diagonal if
associated classes and clusters are given the same label. Two associated definitions are the
one-dimensional marginal tables h(c) = ¥, h(c, k) and h(k) = >°_h(c, k).

A further reduction is embodied in the 2 X 2 contingency table A = {a;;]1,7 € {0,1}},
where the elements a,; are counts of pairs of vectors {zy, z,}. The row index value ¢ indicates
the state of the pairs with respect to the classes. A value of 0 indicates pairs that were
assigned to the same class, whereas a value of 1 corresponds to pairs occuring in different
classes. Similarly for the column index j except that it corresponds to clusters rather than
classes. The following are the associated definitions and formulas in terms of #.

1. agop is the number of pairs of vectors that are found in both the same class and the

same cluster:
E hie, k th,kh k) —1
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2. ag; is the number of pairs occuring in the same class, but not the same cluster:

apr = Z Z Z h(c, k)h(e, k)
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3. ayq is the number of pairs occuring in the same cluster, but not the same class;

ao = 3.3 hle,kh(c, k)
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4. ay; is the number of pairs of vectors that are found in neither the same class nor the
same cluster;

ar = D003 ke k(e k)

c e<c k ki<k

= (:) — (@00 + o1 + @10). (5)

5. Column and row sums of A eg. ape and aep: The symbol “e” in place of an index
indicates that the index is summed over. For example:

ape = iaoi = Z(hgc)) (6)

i=0 [
Gep = gaio = ;(h(;))- (7)

6. 3, 3,8i; = M = (3) the total number of pairs.

4. An Information-Theoretic External Validity Measure

In this section we describe our proposed measure.

4.1. Comparing Clusterings Where the Number of Clusters is Fixed

We first treat the special case of clustering problems where the number of clusters
is known (or at least fixed) in advance. For such problems our measure is essentially
equivalent® to the conditional entropy® H(C|K), which is defined as

1 1]
H(CIK) = =Y ple,k)logp(clk).

c=1 k=1

We don’t know the distribution p(C, K) however and we are thus forced to estimate it.
For this we use H and we refer to the associated estimate of H(C|K) as the empirical

conditional entropy and denote it by H(C|K):

ici Ik
H(C|K) = ;ZZ”’(C‘ ) 1og hfs‘zk])“) - H(C,K) - H(K).

n
e=1 k=1

5Qur general measure (described in the following section) includes an additional term that depends
primarily on |Cl, |K| and n (See Appendix B) and is relatively insensitive to other details of H. We omit

this additional term here for pedagogical purposes.
®See [2] for a discussion of conditional entropy and mutual information.
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Alternately and equivalently we might define and use the empirical mutual information,
I(C; K)

ic;k) = H(C) - H(OIK), (8)
where — | ” "
HC) = -) —~lg——.

These (H{C|K) and I(C; K)) are equivalent because H(C) is fixed for a given ground-truth
set.

Why should we expect H{C|K) to be a good measure of clustering quality? Given our
stated general approach, this is equivalent to asking why we should expect this to be a good
measure of the usefulness of the elements K as predictors of the corresponding elements of
C. H{C|K) is the number of bits” required to encode (compress) the class labels of all the
objects using H as a model and assuming that both the encoder and the decoder “know”
it and {k;}. The worst-case value of H(C|K) is just H(C), the number of bits it takes to
encode {¢;} with no help from {k;}. This case corresponds to I(C; K) = 0. The best-case
value of H(C|K) is 0, which corresponds to perfect correspondence between ¢ and k. This
corresponds to 1(C; K) = H(C).

The conditional entropy was used as an external validity measure in [1] and mutual
information was used as one in 20, 19]. Also workers in the area have discussed mutual
information as a measure of association between categorical attributes{10, 18]. We assume
that it has not been used more often as an external validity measure for clustering because it
is not viable for comparing clusterings with different numbers of clusters. This is discussed
in some detail in the following section.

4.2. Clustering for a Variable Number of Clusters

Here we propose a measure for comparing the output of two clustering algorithms de-
signed to determine the number of clusters as well as clustering the feature vectors. While
H(C|K) and I{(C;K) are excellent measures of clustering quality when the number of
clusters is fixed, they have one deficiency: they don’t take the number of clusters into con-
sideration directly. If two different clusterings to be compared have the same H(C|K), but
different numbers of clusters, the one with fewer clusters will usually be preferable. An
extreme case that demonstrates this is a clustering that assigns a different value of k to
every object. This will have the smallest possible code length H(C|K) = 0, but in reality
provides no useful information. What is missing in the coding scenario used in justifying
our use of H (C|K) is that, for the cluster labels to be useful as predictors, the distribution
(P or #) must be available to the decoder. In the coding analogy this must therefore be
transmitted from the encoder to the decoder. In the extreme cluster-per-object example
this distribution is equivalent to a list of the class labels of all the objects.

7 Assurning base-2 logarithms.



4.2.1. The Cost of Encoding # In Section 4.1 we explained the use of conditional
entropy as a validity measure when the number of clusters is fixed. In what follows, to
handle the case of a variable number of clusters, we add the cost of encoding our estimation
(H in this case) of the distribution P. The decoder knows {k;} and therefore {h(k)}. What
the encoder needs to transmit are # using some predetermined encoding scheme and then C
using a code constructed using H. The code length for C is equal to nH(C|K). Obtaining
a code-length for # is somewhat more involved, however. Think of H as a matrix with rows
indexed by ¢ and columns by k. The quantity A(k) is equal to the sum of the elements in
the k** column #. The number of possible columns corresponding to h(k) is the number
of |C|-component vectors with non-negative integer components summing to (k). This is
given by the following combinatorial formula:

()

Thus we can encode the &** column by specifying an integer index from 1 through this
number. If we assume that all columns consistent with h(k) are equally likely (uniform-
prior assumption), the code length for this integer index is the log of (9). Thus the number
of bits required to encode the entire matrix # when the {h(k)} are already known is the
log of the number of H’s consistent with {h(k}}, which is given by:

X! K|

Wk + 1] -1y _ h(k) + 1] - 1
e 11 ("0 77) = ,;bg( ) (10)

k=1

Our clustering quality measure (smaller values are better) is the entire encoding cost (data
plus model) per object, which is given by:

K|

0o(C, K) = H(CIK) + %;mg ("B, (1)

To actually use the encoding scheme implicit in this we would need an additional term
of logn bits to encode |C|, but we omit it because it is fixed for a constant for a given
ground truth set. This (11) can be seen as an application of the minimum description
length principle (MDL)[15, 16].

Note that this measure is not symmetric with respect to C and K, which is reasonable.
The status of these two sets of labels is not equivalent in this context.

4.2.2. Extreme Cases The following list enumerates several extreme cases of our mea-

sure.

1. Perfect clustering: The minimum possible value of {11) occurs when there are exactly
as many clusters as classes and there is a one-to-one correspondence between classes



and clusters. In this case H(C|K) is equal to zero (the cluster labels give perfect
knowledge of the class labels) and we are left only with (10), the code length associated
with 7, which is equal (in this case) to:

4

1 h(c)+ €| -1
E;log( ()1ch|1 ) (12)

2. n - oo for fixed |C|, |K| and P: This case is worked out in detail in Appendix B. We
repeat the result here.

logn
Q(C,K) ~ H(CIK) + [K[(c| - 1)=52. (13)

For very large n the 13;‘12 term will become insignificant leaving
Q(C,K) ~ H(CIK). (14)

For two clusterings with the same conditional entropy H(C|K), but different numbers
of clusters, the log n term will always be important, however, and will be the deciding
factor that causes the clustering with the smalleat number of clusters to be rated best
(smallest Q).

3. Uncorrelated ¢ and X: The worst-case (ma.ximum) value of @4 will occur where the
cluster labels provide no useful information about the class labels. We consider three
sub cases of this uncorrelated case.

(a) |K| = 1: Considering the 1st term in (11), we have H(C|K) = H(C). The 2nd

term, the model-encoding cost reduces to (1/n) log ("T(':l!c_ll_l), the cost of encoding
thie)) 1 +1C] -1
ou(C.Kilk|=1) = fi(C) + Tog ("7 1Y), (1)

(b) 1 < |K} < n: As long as the cluster labels have no useful information about the
class labels® (ie. p(c|k) = p(c)), Qo will increase with |K|. For complete lack
of information to strictly hold, however, we must have Ve, k& k(c, k) = h{c)/|K],
which can only strictly hold when the {h{c)} are all exactly divisible by |K{. For
n > [C| and n > |K|, this can be made to hold approximately for any n. As
|K'| = n, however, it will be impossible to have the no-information case.

(c) [K| = n: In this case H(C]K) = 0 because the class labels are completely
determined by the cluster labels, when # is known. The model-encoding cost,

®That is, information that can be utilized when one knows H = {h(c, k)}.



on the other hand, reduces to nlog|C|, the cost of simply directly encoding the
class labels assuming they are a priori equally likely.

Q(C, K; K| =n) = loglC]| (16)

Either of these may be the maximum value, depending on H(C). For example,
clearly, if the class labels are equally likely a priori, the 1-cluster cost will be the
largest. On the other hand, if all the classes are empty except one, the n-cluster
cost is the largest.

4.2.3. Other Possibie Forms of the Measure We can modify this definition to make
it analogous to mutual information. That is, we can use the difference between this code
length (11) and the number of bits that would have been required to encode the ¢ values
using — log p(c) bits each. This code-length difference is equal to:

EIKJI log (h(k)-{f-lCl 1)], (a7

There is an important qualitative difference between this and (C; K'), which is symmetric
with respect to C' and K whereas Z(C; K) is not.

As we discuss in the following section, most other external measures have the property
that the best possible value is equal to one, whereas the worst is zero. Here we transform
ours to have this {0, 1] property. Our basic measure is given by the code length given in
(11).

L5 g (h(cl)c+||_c1|—1)

QO (C: K)
Clearly @2 = 0 can only be approached as n = 0.

(18)

Q2(Cl K) =

5. A Survey of Other External Validity Measures

An extensive review of related association measures prior to 1959 including work in the
late 19th century can be found in two papers by Goodman and Kruskal[5, 6).

5.1. Classification Error

An external measure that is sometimes used in cases where the number of clusters is
equal to the number of classes is classification error, If the rows and columns of X are
made to correspond by associating the majority class in each cluster with the cluster itself,
then H can be viewed as the confusion matriz of pattern recognition and the sum of its off-
diagonal elements divided by the total number of objects is the total classification error. The
problem with this is that it ignores how incorrect classifications are distributed among the



other clusters. Being distributed uniformly randomly among the other clusters is arguably
much worse than all going to a single cluster.

Applying this measure to the case where the number of clusters is different than the
number of classes is also problematic. This problem is addressed in [11]° by defining a
“normalized Hamming distance” in which the following associations are used:

é(k) = argmax, A(c, k), (19)
k(c) = arg maxy, h(c, k). (20)

A “directional Hamming distance” Dg(-;-) is defined as

Du(CiK) =33, zc;éé‘(k) h(c, k) (21)
Du(K;C) =32, Ek¢1§(c) h(e, k) (22)
The normalized Hamming distance is then defined in terms of these as follows.
. Dy(C;K)+ Dy(K;C
Dy(C,K)=1- a( )Qn H( ) (23)

5.2. Measures Based on 4

Jain and Dubes[9] list the following four commonly used external measures of partitional
validity. All are functions of the matrix A, defined in Section 3.

¢ Rand[14]: a_un(i-_)au

e Jacard[13]: 2

RS/« «
ago+ao1 +aip

e Fowlkes and Mallows[4]: %, where & = agea4p

e I' statistic(Hubert and Schultz)(8]: \/~(MMMO)‘(_:4 ae0)
a —dpe el

6. Comparison Methodology

How does one compare clustering accuracy measures? Judging the accuracy of clustering
algorithms is a difficult enough problem, but now we present ourselves with the even more
difficult meta-question of how one compares accuracy measures. First, as we stated in the
introduction, we only consider so-called external measures which judge accuracy by seeing
how closely, in some appropriate sense, the partition of objects produced by a clusteri.ng
algorithm agrees with what is deemed an ideal (ground truth) partition. By this constraint
we have obviously reduced our question to one of what constitutes the best measure of

agreement between the two clusterings.

?This is also discussed in [7].



Our argument will proceed as follows. While acknowledging that what constitutes a
desirable accuracy measure depends on the particular application, we assert that having a
general measure is desirable for assessing general clustering algorithms designed to be used
in many applications and, even in those cases where a particular application is targeted,
measuring the most relevant quantity (e.g. time saved at some particular task) may be
infeasible. We believe that our measure is superior to others as a general measure, though
we must acknowledge that the choice of which measure to use is, to a certain extent, a
matter of taste. We make a concession to this fact in our arguments. First we argue that
our measure is superior and should therefore be used in all appropriate cases i.e. comparing
a partition to a ground-truth partition. Second, we argue that, even if one doesn’t accept
that our measure is intrinsically superior, it must at least be acknowledged that it has all
the desirable qualitative properties and produces different results from all other measures
in some cases and should therefore be accepted as, at least another measure in the set to
choose from. In support of these assertions

1. We show that our measure has all the desirable properties,

2. We argue on philosophical grounds that our measure is superior because of its information-
theoretic basis.

3. We show that other measures give counter-intuitive (if not simply incorrect) results
in certain cases, but that our measure always give the desired behavior.

4. We show that our measure gives results different from those produced by other com-
monly used measures.

6.1. A Parametric Form for p(e, k)

To identify desirable properties of a clustering accuracy measure we first examine how
one might characterize the statistical relationship between the class labels and cluster labels
corresponding to a set of objects. A data set for which there are known class labels (ground
truth) may itself be characterized by the number of objects n, the number of classes |C|
and the distribution of class labels {4(c)}, which can be thought of as a sample drawn from
a distribution characterized by a probability function {p(¢)}. In addition to these data-
set properties the output of a clustering algorithm is further characterized by the number
of clusters and joint distribution of class and cluster labels: % = {h(c,k}}. We can also
consider this to be a sample drawn from a population characterized by P = {p(c, k)}.

We next define a family of distributions over (¢, k) with the hope that this family cap-
tures most of the essential characteristics of such distributions from the perspective of
characterizing the accuracy of clustering algorithms. Members of this family are identified

by values of certain parameters as follows:

¢ IC|: number of classes

10



o (e€C)ple) = 1/lc]
® |K|: number of clusters

® Decomposition of K into two disjoint subsets Ku (“useful”) and K, ( “noise”). The
cardinalities of these subsets are given by |K,| and |K,,| respectively and clearly |K| =
[Kul + [Kal. The roles of these two cluster subsets are as follows.

— Ky: These clusters are completely noise in the sense that there is no correlation
between these cluster labels and class labels. Also:

(Vk € Kn) (Ve €C) plclk) = 1/1C|.

— Ku: The clusters in the useful set X, are correlated with the classes and K,
is further decomposed into IC| subsets {K{c)|c € C} and correspondingly C is
decomposed into subsets {C(k)|k € K,}. The role of these subsets is as follows.
For a given c the probabilities p(k(c) are equal for all k € (¢). While the sizes
of the {K(c)} could be left as parameters also, we determine them automatically
as follows.

* If |C| = [Kyf, then |K(c)| =1 and K(c) consists of cluster k = c.

¥ If [C] < |Kyl, then (Vk € K,) [C(k)] = 1 and at least some of the {C(k)}
will overlap, corresponding to more than one cluster. Cluster-to-class as-
signments proceed as follows:

- The first [IK,|/|C[] clusters are assigned to class 1.

- The next [(|Ku| - IC(1)[)/(IC] — 1)] clusters are assigned to class 2.

- and so on .... The number of clusters to be assigned to the next class
being given by the ceiling of the ratio of the number of unassigned clusters
remaining to the number of unassigned classes remaining.

* If [Cf > |K,|, then the class-to-cluster assignments proceed in a manner
exactly analogous to the cluster-to-class assignments in the |C| < |K,| case.

3> plek) = e

c€C kgK(c)

e ¢: total error probability:

(Ve € C) (Vk € K(c)) plkle) = ﬁcfc;

® €1, €: €ITOr components: € = € + €2

T (e MEeRIAGEROD B = T

i1



— €90
€2

(Ve € C) (Vk € Kn) plklc) = o

Y bk =

cel keKn

G

2
Three examples of {p(c, k)} are presented in Tables 1, 2 and 3.

Table 1: Class-cluster joint probability distribution P = {p(c, k)} with
|Ku|=1C|=5and ¢ =€ =0

I + cluster — ”
class | || 1 2 3 4 | 5 “

1 0.2:;00(00)|0.0]0.0
0.0|02(0.0|00])0.0
00/00]|02;0.0/[0.0
0.0|0.0{00]|02]0.0
0.0]00]|00)00]0.2

O o | Q| B2

Table 2: Class-cluster joint probability distribution P with |K,| = |C| =
5, |Kn] =0, ¢ =0.2and g =0

” || + cluster — ||
lclass| ] 1 | 2 | 3] 4 7] 5 ]
1 0.16 1 0.01 | 0.01 | 0.01 | 0.01
0.01]0.16 | 0.01 | 0.01 | 0.01
0.01 |0.0140.16 | 0.01 | 0.01
0.01 /001001016 | 0.01
0.01|0.01 |0.01|0.01]0.16

N | | B

6.2. Desirable Characteristics of Clustering Accuracy Measures

Assume that some accuracy measure M(H) increases monotonically from 0 to 1 as
accuracy improves, with M = 1 corresponding to the perfect clustering where {X| = |C| and
each cluster corresponds to one and only one class. Assume further that we intend to apply
it to the expected H or A corresponding to the family of distributions just defined above.
For a fixed n and |C| what behavior do we desire of M with respect to the parameters

12



Table 3: Class-cluster joint probability distribution P with |Ky| = |C| =
5, |Ku| =3, & = 0.2 and &g = 0.3. clusters {6,7, 8} are noise, while
{1,2,3,4,5} are useful.

ﬂ || + cluster — ||
[classy 1 [ 2 [ 3 [ 415 [6[7 8 |
0.10 ] 0.01 [ 0.01 [ 0.01 [ 0.01 | 0.02 | 0.02 | 0.02
0.01 | 0.10 [ 0.01 [ 0.01 | 0.01 | 0.02 | 0.02 | 0.02
0.01 [ 0.01 | 0.10 [ 0.01 [ 0.01 [ 0.02 | 0.02 | 0.02
0.01 | 0.01 [ 0.01|0.10 | 0.01 [ 0.02 | 0.02 | 0.02
0.01 | 0.01 | 0.01 | 0.01 [ 0.10 [ 0.02 [ 0.02 | 0.02

U o o]

of this family®: |Kyl, |Knl,€1 and e2? Expressing the answer in terms of differences and
derivatives with respect to single parameters while all others are held fixed, we have:

Table 4: Desirable Properties of M
P1: For |K,| < |C] and A|K.| < (IC] - 1Ku|)y A AiJCuI > 0.

P2: For |Ky| > |CI, AiKJ < 0.

. _AM
P3: AlCal <0
P4: % < 0 with equality holding only when |K,| = 1.

P5: % < 0 with equality holding only when [Ky| = 0.

Summarizing, M should indicate that a clustering is worse whenever:
e the number of useful clusters varies away from |K.| = [C|
e the number of noise clusters |K, | increases

e either of the error parameters €; and ¢z increases

6.3. Analysis of Qp2 Vis a Vis the Desiderata of Section 6.2

For simplicity we will base our analysis/discussion on the asymptotic forms of our mea-
sure given in (13) and (14). Here we consider the variation with respect to the various

model parameters.

10 A1 others are determined by these four.

13



¢ P1 and P2 (|K,|): Certainly, increasing |K.| beyond |C| will increase both H(C|K)
and the model cost. Decreasing it from |C| will increase H(C|K), while decreasing the
model cost, however. We see from (14) that the increase in H(C|K) will dominate,
asymptotically.

¢ P3 (|K,|): Increasing [K,! while holding €; fixed will increase the model cost while
having no effect on H(C|K). The former is obvious, while the latter is due to the fact
that only the fraction €; of objects that are assigned to noise clusters (not the number
of noise clusters) affects H(C|K).

e P4 and P5 (¢; and €;): Increasing either € or €; will clearly increase H (C|K), but
have no effect on the asymptotic model cost |[K|(|C| — 1) logn. Thus BG—Q— > 0, which

implies that % <.

Thus we have shown that our measure satisfies all of our desired characteristics asymptoti-
cally. In the following section we will do an exploration of the ability of all of the measures
discussed here to satisfy these characteristics for a certain set of test cases.

7. Comparison Results

Qur comparison of the measures proceeds as follows. All results are obtained by first
computing the expected values of # and A for the given P (i.e. corresponding to specific
values of the parameters |C|, |Kyl, |Ky|, €1 and &) and then using them to compute values
of the various validity measures!!, In most of the results we present the Q@ form of our
measure because it has the same general behavior as the other measures in that Q» = 1
corresponds to a perfect clustering and values decrease toward 0 as the clustering accuracy
gets worse. Both forms of the measure (Qp and Q) obviously produce the same ordering
of a given group of clusterings all compared against the same ground truth.

7.1. Simple Cases

We begin by examining two simple cases. The first of these (See Figure 1) has |C | =
|K| = |Ku| = 5 and |K,| = 0. The ¢ parameter is then varied over a range of [0,0.8].
All measures show the desired (and expected) behavior with their values decreasing with
increasing €1.

In the second case we examine, we hold |KC,|, €1 and e; all fixed at 0 and |C| = 6, while
increasing |Ky| from 6 to 60. These results are shown in Figure 2. All measures show the
desired/expected behavior decreasing monotonicly (from one) with |Cyl.

11 Qur measures Qg and O, require computing factorials of certain /4 values. These are computed using
the I' function so that meaningful results are obtained when the expected h values are non-integer.
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7.2. A More Detailed Comparison Over a Broad Range of Model Parameters

7.2.1. Comparison Results The calculated accuracy-measure values reported in this
section correspond to fixed values of |C|(|C| = 5) and n(n = 500). All other model parame-
ters were varied over the following values.

e |K,): 10 values: 2,3,...,11

o |Ky,|: 7 values: 0,1,...,6

e ¢: 4 values: 0,0.066...,0.133...,0.2
e ¢;: 4 values: 0,0.1,0.2,0.3

Running through the complete range of these values would result in 1120 =10 x 7 x 4 x 4
instances of {p(c, k)}, but when meaningless combinations (e.g. [Kn| = 0 with non-zero €;
values) are eliminated, there are 760 valid combinations. For each valid parameter combi-
nation values of all 7 measures (Qp, Q2, Rand, Fowlkes, Gamma, Jacard and Hamming)
were calculated.

While this is clearly not a complete characterization of the behavior of these measures,

it has the following objectives.

e To confirm the analysis of our measure in Section 6.3. The absence of any violations
of our desired characteristics, while not proving that they hold in all cases, is evidence

in support of that contention.

e To show that our measure produces a unique ranking of the various cases, a ranking
different from that produced by other measures.

o To see if any of the other measures violate our desirability criteria in any of these
cases, which would suggest that our measure is superior as judged by our criteria.

The results of these calculations and and their associated ranks according to all the
measures are displayed graphically in Figures 3 through 7. Each figure consists of two
parts: (a) the ranks (of the various cases) produced by one of the other measures plotted
versus the ranks produced by our measure; (b) the values of the other measure plotted
versus the corresponding Qp values. As can be seen from these figures, the values of the
measures and their rankings over the range of model-parameter values explored, the other
measures, while clearly correlated with our measure (Q3), produce different rankings. Thus
our measure is a clear alternative with its own unique ranking.
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7.92.9. Examination of Whether or not the Measures Satisfy the Desirable
Properties of Section 6.2 We analyzed the results of our calculations to see if the
desirable properties listed in Table 4 of Section 6.2 were satisfied. Checking all instances of
the associated differences, we found the following.

Qur measure (Q3) satisfied all tests.
P4: All measures satisfied all tests of the %—f—f— < 0 criterion.

P5: All measures except Rand satisfied all tests of the %—“:’tﬂ < 0 criterion. We observed
29 cases where Rand failed this test. All occured for cases where |Ky| < |C[; most for
|Ky| = 2 and only 4 for [K,| = 3 with none for |Ky| > 4.

P1 and P2: We observed 14 instances of measures failing the 3% tests. Of these
12 were Rand and 2 were Hamming. The two Hamming cases were minor infractions
where AA,& = 0 was observed between {K,| = 10 and 11 for particular instances of
the other model parameters. All the Rand errors involved detecting the peak at either
|K.| = 6 or 7. All were for large values of the error parameters €; and 3.

P3: The test that created the most problems for the measures other than ours was

% < 0. This difference ratio was measured for each of the measures at each of 6
|Kn| values 1,2, ...,6 for every combination of the following values of the other three
model parameters.

— |Ky4|: 10 values: 2,3,...,11
— ¢1: 4 values: 0,0.066...,0.133...,0.2
— €p: 3 values: 0.1,0.2,0.3

Any time one or more errors was detected in a sequence of measure values corre-
sponding to the sequence of |Ky| values 1,2,...,6, it was counted as one error. The
distribution of these errors over the measures is given in Table 5. Note that three of
the measures (Rand, Gamma and Hamming) failed on every one of the 120 instances
of the parameter triple (|K/, €1, €2). The Hamming measure failed because it showed
no sensitivity to this parameter i.e. Al = 0.

Table 5: The number of cases (out of 120) where the various measures
failed the A4, < 0 test.

Rand | Fowlkes | Gamma | Jacard | Hamming
120 103 120 80 120
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8. Discussion and Conclusion

We have proposed and evaluated a new external cluster-validity measure based on
information-theoretic considerations. We have also examined the behavior of this mea-
sure and its ability to satisfy certain desirability criteria. We have also compared it with
other commonly used external validity measures.

In general, the answer to the question of which clustering accuracy measure is best
will depend on the particular application and it is certainly impossible to anticipate every
possible application. In those cases where it is judged that accuracy is best measured by
comparing the results of a clustering algorithm to some ideal (“ground truth”), however,
our measure is appropriate. At the very least, we can say that the measure we propose offers
one more choice to the list of similarity measures appropriate for such comparisons and this
measure may give a relative ranking (among various clustering results) that is different from
that produced by other measures. We would like to say something stronger, however. We
believe that the measure proposed here is superior to other measures in a certain funda-
mental sense. Information theory has, since its inception in 1948[17], clearly demonstrated
the viability of code length as a measure of information content. The subsequent develop-
ment of the theory of algorithmic complezity[12] extended these ideas and ultimately led to
the minimum description length principle[15, 16], which distilled the essence of these and
extended them further. For this reason we feel that our measure, which embodies these
principles, is superior to the other measures discussed here, which we consider to be more
heuristic in nature. This is, of course, a philosophical argument. In support of it we have
shown that, when compared with other measures, our measure is the only one that satisfies
all of a set of desiderata related to how measure values should vary with certain features of
the class-cluster distribution.
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A. Computing the Expectation E{A}

Here we discuss the general problem of computing expectations of functions of the
contingency table % (e.g. the elements of A}. Following that we address specific problem

of obtaining expressions for E{A}.
In formal statistical clustering analyses we assume that the set of objects being clustered

is a sample drawn from some very large population (a.k.a. “process” or “source”). The
characteristics of this population, when combined with some clustering procedure, such as
the f of (1), yield a probability distribution P = {p{c, k)}, where p(c, k) is the probability
that an object drawn randomly from that population will belong to class ¢ and cluster k and
p(c, k) is the Bernoulli parameter for that outcome. Using P, the distribution describing
the random variable # will be the following multinomial distribution.

o) = ((yyo ) TTipte 0P, ()
! c.k

where ({ h(:k)}) represents the multinomial coefficient:

({h(if k)}) B ﬁﬁ

We can also write the distribution for the number of times out of » that a randomly drawn
object will belong to class ¢ and cluster k. That is the binomial distribution:

p(h(c, k) = (h(:: k)) [p(c, k)]h(c,k)[l — p(e, k)]n—h(c,k).
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Using this it is easy to show that

S{(45)} - (e

st = £32{("57))
= (3) X Xbtenr
Using these results and (2) through (5) we obtain:
E{eq1} = Z:E{(h(;))} — E{ago}
= (g) {chtp(c)]z - X2k k)]Z}

and therefore:

- (3) IHIPICLECEY
B{aw} = E{(hg“))} ~ Blow}

= ’2‘ {Zm ch}k:{p(c,k)]Z}
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B. Asymptotic Form of Qy(C, K)

Here we examine the asymptotic (n — oo) behavior of our quality measure (11), which
we repeat here:
K|

Q(C, K) = H(C|K) + %Zlog (h(k)+|cl—1)'
k=1

ICl -1
For the first term in this equation we have:
H(CIK) ~ H(C|K).

The second term (the model cost) takes a little more work to analyze. First consider the
behavior of () as n — oo for fixed .

(:) = (n—nis!:)!k! N HI‘=,,;+1%'_

The numerator in this expression can be written:
nin—1)(n—-2)...(n—k+1),

which has k terms and thus is a k*"-degree polynomial in n for which the coefficient of the
highest order term (n*) is 1. Thus, as n = o

S
k k!

log (Z) ~ klogmn.

Next we apply this result to the individual terms:

()

and therefore

As n — o0, h{k) ~ np(k) and thus

log (h(’“?c”iLL("'l‘l) ~ (IC] - 1)log(np(k) + IC| = 1) ~ (jc| - 1)logn.
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Using this, we have

X1 hk)+|C] -1
E 1 ~ |K|(|C] — 1) logn,

which gives
logn

Q(C, K) ~ H(CIK) + [K[(Ic]-1)

7

For very large n the lﬂﬁﬁ term will become insignificant leaving
Q(C,K) ~ H(CIK).

For two clusterings with the same conditional entropy H{(C}K), but different numbers of
clusters, the (logn)/n term will always be important, however, and will be the deciding

factor.

C. Discussion of External vs. Internal Validity Measures

Here we present a supplementary discussion of issues related to the question of which
of the two types of validity measures (internal and external) is most appropriate in a given
situation. First we discuss a case where an internal measure may be appropriate - doing
clustering using the process of density estimation. Following that we expand on the case for
using external measures and then we discuss a crucial issue in the use of external measures

- obtaining the appropriate ground-truth set.

C.1. The Case for Internal Measures: Validated Likelihood

An internal validation measure of sorts may be appropriate in certain cases, for exam-
ple, in the common approach of doing clustering by doing density estimation. This process
involves estimating a probability model p(z) that characterizes the data generating mecha-
nism. With the usual assumption that the data are i.i.d., the probability of the complete

data set X is given by:
p(X) = []»)
=1

The model p(z) usually has both a structure and associated parameters that must be esti-
mated. A specification of the structure includes the number of clusters. As an example we
might fit X using a mixture density of the form

M
p(z;ie,8) = ) o5 f(z;85), (31)

=1
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where the {f(z;8;)} are the component densities and the {a;} are the mizing coefficients
(Ele a; = 1). For example a mixture of Gaussians is frequently used and the fitting is
usually performed using the Ezpectation Mazimization (EM) algorithm [3].

When this mixture fitting is used as part of a clustering procedure, the mixing coeffi-
cients are interpreted as marginal cluster probabilities p(7) and the component densities as
conditional densities p(z|j). For these we can compute p(j|z):

oy pali)sl)
PUIE) = 5 p(ali)

To do partitional (a.k.a. “hard”) clustering, we assign the object corresponding to z to
the cluster j for which p(j|2) is maximum. The values {p(j |£)} can also be interpreted as
degrees of membership in a “soft” clustering scheme.

A good (and standard) way to evaluate the density-estimation process is to take a
validation set X, drawn from the same population as X and use the model estimated
from X to compute the probability (or density) of X, (also referred to as the “validated
likelihood” of the model). The reason for using an external validation set rather than the
original data X is to preclude an overly optimistic estimate due to over fitting.

A potential prablem with this validation-set strategy is that the amount of data available
may be limited and the relationship between the number of objects/vectors n and the
number of adjustable parameters in the optimum model may be such that all of the data
is needed to get reliable estimates of the model structure and parameters. In this case
the technique of cross validation can be used. In k-fold cross validation X is divided into
% non-overlapping subsets of n/k vectors. For each of these subsets, the model-estimation
process is performed on its complement and the likelihood is then measured on the withheld
subset. This is performed for each of the subsets and the & likelihoods are averaged to get
the final estimate. In the extreme form of this (known as “leave-one-out”) k = n.

This measure is infernal in the sense the the score is based on the feature values z, but
it is externalin the sense that the feature vectors on which it is based are not from the set
used to do the mixture fitting i.e. they are from a separate validation set.

When density estimation is used to do clustering, evaluation using validated likelihood
may be reasonable. A problem is that it may give weight to the ability of the model to
describe the distribution of features that have very little ability to discriminate among the
underlying clusters. The extreme form of these features are the so-called “noise features”
identified (for example) in the model-selection/clustering algorithms of [20, 21]. These are
features that follow the same distribution in all clusters. Another case where validated like-
lihood may not be appropriate is where the clustering algorithm determines which features
to use in clustering. Thus two different density-estimation-based clustering algorithms may
be operating in different feature spaces and their associated likelihood values can therefore

not be compared directly.
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C.2. The Case for External Measures

C.2.1. Cases where Internal Validation is Impossible In addition to the cases
described above where density estimation is used to do clustering and yet the use of validated
likelihood may still be problematic, there are cases where density estimation isn’t used. In
fact, in some cases, there are no feature values to be described; only pairwise similarity
values. Many clustering algorithms that can handle either of these cases are based on
methods of graph analysis. An early example is based on the minimum spanning tree
(MST)[22]. In such cases external methods would seem to provide the best choice (if not
the only choice) as validation measures.

C.2.2. The Ground Truth The goodness of the quality assessment performed using an
external measure is obviously limited by the quality of the validation set and its ground-truth
labels. The set of objects should be representative of those the algorithm will encounter in
practice and their labeling should obviously reflect the task it is desired that the clustering
algorithm perform.

In certain cases constructing such a validation set may be problematic. For example in
‘some cages there may be more than one meaningful way to cluster the set of objects. One
aspect of this is a granularity issue - if the objects fit in a hierarchy of categories (i.e. a
taxonomy), what level in that hierarchy should the ground-truth labels reflect?12 A more
difficult issue is the following. Suppose one wishes to evaluate a general purpose clustering
algorithm but there are multiple unrelated ways that one might cluster the objects. How
should the validation-set objects be labeled in these cases? We would propose the following

answers to these.

1. In the first case (the hierarchy) the labels should reflect the lowest level in the hier-
archy. If a clustering algorithm chooses to cluster at a higher level in the hierarchy,
it will still receive a reasonable accuracy score due to the power of the labels of the
higher level nodes in predicting the bottom-level labels of associated objects, which
would reduce the number of bits required to encode those bottom-level labels.

2. In the second case (multiple possible organizations) a set of classes corresponding
to the Cartesian product of all the sets (organizations) should be constructed and
each class in the combined set treated as a different class. Thus if there were three
possible organizations corresponding to the three sets of classes A = {a;}, B = {b;}
and C = {cx}, the new set of classes will be AX Bx C = {a;bjcr}, where the class
a;bjep, corresponds to those objects in the intersection a; Nb; N ck. In this case, the
best accuracy score will obviously be obtained by discovering the complete A x Bx C
otganization, but discovering any of the single organizations (A, B or C) or associated
pairs (A x B and so on) will be rewarded because knowing the associated labels will
allow the full A x B x C labels to be encoded with fewer bits.

121, this work we have Limited ourselves to flat partitional clustering. A variation of cur measure for
hierarchical clustering is planned for future work.
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It is obviously also important that the number of objects per class in the validation
set be sufficient to allow the underlying structure to be captured. The Cartesian-product
classification scheme just outlined may result in a large number of labeled objects being
required to have a sufficient validation set. If practical considerations preclude these large
numbers of objects, however, then one must proceed carefully, attempting to observe, for
example, when a clustering algorithm has discovered a viable structure that is not reflected
in the validation set.
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