
RJ 10241 (A0204-013) April 11, 2002
Computer Science

IBM Research Report

Coordinating Backup/Recovery and Data Consistency between
Database and File Systems

Suparna Bhattacharya †, C. Mohan ‡, Karen W. Brannon ‡
Inderpal Narang ‡, Hui-I Hsiao ‡, Mahadevan Subramanian ‡

† IBM Software Lab, India
Golden Enclave, Airport Road

Bangalore 560017 India

‡ IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120 USA

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Coordinating Backup/Recovery and Data Consistency
Between Database and File Systems

Suparna Bhattacharya†

C. Mohan‡

† IBM Software Lab, India
Golden Enclave, Airport Road
Bangalore 560017 India

(bsuparna@in.ibm.com)

Karen W. Brannon ‡

Inderpal Narang‡

‡ IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120 USA

Hui-I Hsiao‡

Mahadevan Subramanian‡

(kbrannon, hhsiao, mohan,
narang,

maha@almaden.ibm.com)

ABSTRACT
Managing a combined store consisting of database data and file
data in a robust and consistent manner is a challenge for database
systems and content management systems. In such a hybrid
system, images, videos, engineering drawings, etc. are stored as
files on a file server while meta-data referencing/indexing such
files is created and stored in a relational database to take
advantage of efficient search. In this paper we describe solutions
for two potentially problematic aspects of such a data
management system: backup/recovery and data consistency. We
present algorithms for performing backup and recovery of the
DBMS data in a coordinated fashion with the files on the file
servers. Our algorithms for coordinated backup and recovery have
been implemented in the IBM DB2/DataLinks product [1]. We
also propose an efficient solution to the problem of maintaining
consistency between the content of a file and the associated meta-
data stored in the DBMS from a reader’s point of view without
holding long duration locks on meta-data tables. In the model, an
object is directly accessed and edited in-place through normal file
system APIs using a reference obtained via an SQL Query on the
database. To relate file modifications to meta-data updates, the
user issues an update through the DBMS, and commits both file
and meta-data updates together.

Keywords
DB2, DataLinks, Database backup, Database recovery, Content
Management.

1. INTRODUCTION
The motivation for introducing the DataLinks feature of DB2
stems from a number of observations. Much of the world's data
lives in files and most data would continue to live there and the
volumes will grow. Also, most of the world's applications work on
files. Corba and the OLE DB framework have been proposed for
providing uniform access to database and nondatabase data [2]
[3]. An example of extending database capabilities to external
repositories such as file systems can be found in [4] which focuses
on extending database indexing, partitioning, replication and

query processing to data stored external to the database. While
much of the world’s data resides in files, file systems do not
provide the rich data management characteristics found in a
DBMS. File systems do not provide sufficient metadata, nor do
they provide a general-purpose query engine to manage access to
and integrity of files. The DBMS has evolved to become a superb
manager of data, i.e., it provides referential integrity, access
control, and backup and recovery for its data. It allows arbitrarily
complex data models and arbitrary queries.

A DBMS may not always be appropriate for the storage of very
large objects. Many RDBMSs support the LOB data type for
storing such data, however LOBs require the use of an SQL API
to operate on them. This presents a problem for preexisting
applications written to operate on data in files. The Oracle
Internet File System (iFS) [5] addresses this concern by
supporting the file system interface. SHORE [6] is another
system that merges database and file system technologies. SHORE
objects can be accessed via the normal UNIX file system
interface. In both systems, however the file/object data is actually
stored in the DBMS as LOBs. LOBs typically do not have support
for hierarchical storage management as provided by products like
Tivoli TSM [7]. Such support is crucial for cost-effective
management of data with varying access patterns (frequent to
infrequent usage). In addition, there is a substantial read/write
performance penalty to access LOB data compared to accessing
the data as normal files in a networked file system [5]. Also,
legacy data maintained in files would have to be loaded into such
systems. With DataLinks, legacy data can remain in files as is.
DataLinks attempts to marry file systems and databases in such a
way to extend the DBMS data management capabilities of data-
valued based access control, referential integrity and
backup/recovery to file systems, while retaining the powerful data
management properties of file systems. DB2/DataLinks is an
optional feature available for IBM’s DB2 on open systems [1].

The importance of integrating files containing unstructured and
semi-structured data with business applications is growing. It is
possible to maintain pointers to external files as VARCHAR data,
for example in a DBMS, to address this integration problem.
While supporting applications written to use the file paradigm,
this solution presents a daunting administration task: keeping the
file data and DBMS data synchronized, especially over DB
backup/recovery and file system backup/recovery. A system such
as Oracle iFS or SHORE could be used to store the file data.
Since this data is actually stored in the DBMS, there are no issues
with coordinating DBMS backup/recovery and file system
backup/ recovery. However, there can be a significant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGMOD’2002, June 4-6, 2002, Madison, Wisconsin, USA.
Copyright 2002 ACM 1-58113-497-5/02/06 …$5.00.

1

performance degradation for reading the LOB data compared with
reading directly from a file system. Also, the time to do a DB
backup can become excessive when backups include a large
amount of data in LOBs.

DataLinks extends the DBMS functionality of management of
data to files stored in file systems while providing referential
integrity, access control, and coordinated backup and recovery AS
IF the files are stored in the DBMS [8]. A key feature of
DataLinks is that the data in linked files can be accessed directly
from the file system with no need to flow the data through the
DBMS. This provides a performance advantage as well as the
ability to support existing/new applications based on the file
paradigm, but with improved DBMS-style management of the
data in files. DataLinks can also be used for the management of a
large number of files in a network of computers. The storage
model is the usage of a DB as the metadata repository with URLs
(Uniform Resource Locators) as pointers to the files residing in
multiple file servers, which may belong to heterogeneous
computer nodes and operating systems. This is shown below in
Figure 1. The semantics of the field containing the URL is that the
reference to the object stored in the external file system is
consistent with the metadata (relating to that object), which is
stored in the database. For example, the object cannot be deleted
from the external store as long as there is a reference to it in the
database.

Normal database administration requires that the database be
backed up periodically, for example, once a week. This is so that
in case of database corruption or device failure the database can
be restored from one of the backup copies, typically the most
recent one [9]. Depending on whether or not updates to the
database are allowed to take place while the backup operation is
in progress, the backup copy may or may not be self-consistent.
The restoration of the database contents will typically require
processing of the log records to bring the database to its most
recent state. The latter is typically the desired state (e.g., when a
device failure occurs). However, at times, it is desired that the
database not be brought to its most recent state, because an
application may have corrupted the database. When the database
is brought to a state other than the most recent state, it is called
point-in-time recovery. In this paper, we present algorithms for
performing backup and recovery of the DBMS data in a
coordinated fashion with the file servers, which have files,
referenced from the database. From a backup and recovery
standpoint, the files are considered to be part of the database but
they are actually stored external to the DBMS. In anticipation of a
DBMS backup operation, which would occur sometime in the
near future, the backup of a referenced file is initiated when the
file is associated (linked) with a record in the DBMS. The file
backup is performed asynchronously to the linking process so that
the linking transaction is not delayed

In a typical scenario, when a database backup occurs, all
unfinished file backups are ensured to be completed before the
database backup is declared successful. When a database is
restored to a state, which includes references to files in the file
system, the DBMS ensures that the referenced files in the file
servers are also restored to their correct state. Note that the files
could have been deleted or newer versions may have been created
as a result of operations subsequent to the backup from which the
database is restored. Our algorithms take into account these

possibilities. It should be noted here that the referenced external
files themselves are not kept in the same backup file where the
database metadata is backed up. Rather, these external files may
be backed up individually in a backup server, such as, Tivoli
Storage Manager (TSM) [7].

Figure 1. DataLinks Storage Model

Content Management is a technology that aims to manage both
database data and file data in a consistent manner. An issue in
such systems how to ensure that a reader sees a coherent view of
the file data and the meta-data stored in the DBMS when updates
are not tightly coupled. The DataLinks technology can be used to
address this problem by generating a temporally unique version
indicator associated with the last committed update transaction,
and encoding this version indicator in the object reference
associated with a given meta-data state. The current last
modification timestamp of the file is available from the file
system. A thin interceptor layer (DLFF) at the object’s native
store compares these with the latest information it has about the
last committed version of the file and the corresponding last
modification timestamp for that version. A mismatch of the
versions or the timestamps indicates that the meta-data may not
correspond to the current contents of the file and access to the file
may be denied. Thus consistency is maintained.

The remainder of this paper is organized as follows. The normal
operations of DataLinks which are relevant to backup and
recovery are presented in Section 2. Section 3 presents the actions
that take place as part of a database backup operation while
restoration of a database is covered in Section 4. Section 5
discusses a solution to the problem of maintaining consistency
between the file content and the meta-data stored in the DBMS.

2. DATALINKS CONFIGURATION
Figure 2. illustrates a typical DataLinks configuration. DataLinks
functionality is supported by introducing DATALINK as an SQL
data type in the DBMS, and by having a piece of cooperating
software, called DataLinks Manager, DLM on a file server. The
DATALINK SQL data type has been introduced as an ISO
standard [10]. The DataLinks Manager (DLM) has two distinct
software components, DLFM and DLFF, which are described
below. The DATALINK column(s) in an SQL table contain the
“pointer” to the file stored in a file server. The data structure for

2

the DATALINK data type includes the name of a file server and
the name of a file, as in URLs. An application uses an SQL call to
query the DBMS to search on the business data and perhaps, the
features of unstructured (and/or semi-structured) data stored in the
DBMS. The query specifies DATALINK column(s) in the select
list and the DBMS returns the URL information to the client
application. The client application can then access the file(s) using
the normal file system protocols. The DBMS is not in the data
path for delivery of file data, although file data can optionally
flow through the DBMS in case an application just wants to
maintain a single connection to the DB (rather than using
connectivity with the file server). Note that we have introduced
the new data type in the DBMS, but not any new API for database
access or file access. We believe that this is significant for the
following reasons.

• Current DBMS applications can be easily extended to
incorporate new types of data such as image, video, text etc.
using the SQL API to obtain the file server name(s) and file
name(s) of interest.

• Applications to capture, edit and deliver the new types of
data work on the file paradigm and would not require any
change. Typically the file server name and file name obtained
from the database can be fed into the application which
provides the file access, e.g., web browser, or viewer (or
helper) applications on the desktop for image, video, etc.

• Since the file data does not flow through the DBMS, there is
negligible impact on the performance of file access compared
to native file system access.

The components of the DataLinks Manager are described in the
following sections

Figure 2. DataLinks System Configuration
.

2.1 DLFM (DataLinks File Manager)
As part of the data manipulative processing for storing the
DATALINK value in the database, the DBMS communicates with
the appropriate DLFM in the network, based on the server name
provided in the DATALINK data value. This communication is
the basis for the DBMS coordination for management of files on
the corresponding file server. DLFM supports transactional
properties to the database data and references to the files, and
coordinated backup and recovery between database data and files.
The DBMS interacts with DLFM using a two-phase commit

protocol as described by Hsiao and Narang [11] to provide
transaction atomicity. For this purpose, the DBMS acts as the
coordinator and DLFM as the subordinate. DLFM needs some
recoverable (transactional) storage for keeping persistent
information about the operations (like LinkFile, UnlinkFile, etc.)
that are initiated at DLFM by the DBMS. This functionality may
come from a recoverable file system or a DBMS. To support
coordinated backup and recovery with the DBMS, DLFM
interfaces with a backup/archive server, such as TSM [7] to
backup files and if required, restore files.

2.2 DLFF (DataLinks File System Filter)
DLFF is an interceptor module that filters certain file system calls,
such as file open, rename and delete. For example, the filter logic
in the file open call can be used to provide database-centric access
control that is rule based [12]. The filter logic for operations like
file rename and delete can be used to prevent such actions, if the
file is referenced by a database in order to preserve referential
integrity. That is to avoid the problem of dangling pointers from
the database to the file system. DLFF does not come in the normal
file read/write path of the underlying file system and does not
impact performance. The functionality of DLFF is supported
without requiring changes to existing file systems in which the
files pointed to by the database are stored. This is very important
for the case for supporting existing file data without any migration
since such data may be terabytes in size. Also, the underlying file
systems may be specialized such as a streaming media server. The
added functions of DLFF are implemented in a layered approach
using the facilities, like installable file systems, of modern file
systems. If database centric access control option has been
specified, then when an application interacting with the DBMS
retrieves a DATALINK column value, the DBMS returns not only
the server name and file name of the referenced file but also a
token or handle which may be embedded in the file path name.
The application passes all of this information during the file
system open call. The token signifies that the DBMS has allowed
access to the file temporarily and DLFF validates it before
allowing the user to access the file. The token has a configurable
expiration time. This is the mechanism by which DataLinks
supports DBMS-managed access control for files. The token is
discussed in more detail with regards to data consistency in
Section 5.

2.3 LinkFile API
The LinkFile API links a file and places it under the control of the
DBMS. The DBMS would issue this API to DLFM when a record
is inserted into a table with a DATALINK (type) column or when
a record update involving a DATALINK column occurs. The file
server name is determined from the server name part of the
DATALINK data structure. When DLFM executes the LinkFile
API, it applies certain constraints to the file referred to in the
DATALINK column. Such constraints can include the following
and can be combined as options that are specified on the
DATALINK column when the SQL table is defined.

• DB-Owner Constraint: The DBMS becomes the owner of
the linked file. This constraint implies that the DBMS access
permissions determine access to the file. Such an access
would be based on a DBMS assigned token, as explained
above. The user can choose to use the file system
permissions rather than the DBMS permissions to support
legacy applications if more appropriate. When the file system

3

permissions are to be used, the DBMS would not generate a
token when it returns the DATALINK column value.

• Read-only Constraint: The linked file is marked read-only.
Marking the file read-only guarantees the integrity of indexes
that may be created on the contents of the file and stored in
the DBMS for search purposes. DataLinks supports
coordinated backup and recovery only if the linked file is
marked read-only. Then, in order to update the file, either the
file has to be in the unlinked state or a file versioning
mechanism needs to be supported. If only the file reference
in the DATALINK column is kept in the DBMS, i.e. no
indexes on the contents of the file, and if coordinated backup
and recovery is not required, then the user may not want to
use the DATALINK column option which results in linked
files being marked read-only. Due to space limitations,
support for update-in-place of a file will not be discussed
here.

• Referential Integrity Constraint: Metadata is maintained to
indicate that the file is referenced by the DBMS. This
constraint would prevent renaming or deletion of the file by a
file system user once the file is referred to by the DBMS. It is
applied to maintain referential integrity of the DBMS
reference to the file.

In order to support the trivial option of no referential integrity, we
allow an option called “No_control” which can be specified for
the DATALINK column. For No_control, the URL syntax is
validated, however, the DBMS does not issue the LinkFile API.
Following is a table listing the possible combinations of the
constraints that can be specified as options for a DATALINK
column during CREATE or ALTER TABLE.

Table 1. DATALINK Column Constraints

Option DB-owner
Constraint

Read-only
Constraint

Referential
Integrity
Constraint

DBMS
control

Yes Yes Yes

File_control No No Yes
File_control
read_only

No Yes Yes

No_control No No No

As part of the LinkFile API, the DBMS passes the constraints that
DLFM should apply to the file that is being linked. For
DBMS_control, DLFM may also save the original owner and
access permissions (or access lists) of the file, so that it is
possible to restore them when the file is unlinked from the
DBMS. For File_control_read_only, DLFM may save the file's
write permission information since it may need to be restored
during unlink. Whether to save the original owner and
permissions is determined by the Unlink option that can be
specified as Unlink(Restore) or Unlink(Delete) for the
DATALINK column. Unlink(Restore) implies that the original
owner/permissions should be restored when the file is unlinked
from the DBMS; Unlink(Delete) implies that the file should be
deleted when it is unlinked from the DBMS. For the latter, it is
not necessary to save the original owner/permissions at the time of
link.

The linking operation is done in a transactional manner. This
means that if the transaction performing the link were to fail, then

the link operation is undone during transaction rollback. On the
other hand, if the transaction were to commit, then the effects of
the LinkFile API will persist, even if there are failures. DLFM
persistently records the fact that the file is now pointed to by the
database. For brevity, we do not describe here the details of
change of ownership and permission of a linked file, and their
persistence.

As mentioned above, coordinated backup and recovery can be
supported for those files that belong to a DATALINK column
with options DBMS_control or File_control_read_only, since the
file is marked read-only during the LinkFile operation. We
provide an option of specifying Recovery(Yes) or Recovery(No)
to declare whether the files pointed to by an DATALINK column
are important enough to require backup since backing up of files
costs storage, CPU and, perhaps, network resources.

An example of a CREATE TABLE for T1 with 2 columns, C1 an
integer value and C2 a DATALINK value, is given below. For the
DATALINK column, we have selected the options
DBMS_control, Recovery(Yes) and Unlink(Delete).

CREATE Table T1 (C1 integer,
C2 DATALINK(DBMS_control,
Recovery(Yes), Unlink(Delete)));

An example of an SQL INSERT into table T1, defined above is as
follows:

hvc1 = 5;
hvurl = "http://server1/foo";
EXEC SQL INSERT INTO T1 (C1, C2)
VALUES (:hvc1, DLVALUE(:hvurl));

DataLinks Manager software should be installed in server1. The
DBMS would communicate with DLFM on server1 and request it
to link file foo transactionally. The DBMS would accept the data
value in the DATALINK column of the row to be inserted only if
the file foo exists and the transaction commits. In the above
example, when the transaction commits, DLFM would make the
DBMS the owner of the file and the file would be marked read-
only. DLFM would not save the original owner and permissions
of the file since Unlink(Delete) is specified. DLFM would make a
persistent record that the file is linked to a DBMS. In this
persistent record, DLFM saves a DBMS provided time-based
recovery identifier called RecoveryID_at_link. This identifier is
also stored in the DATALINK column by the DBMS. The
recovery identifier also finds use in the consistency detection
scheme discussed later in Section 5.

Values stored in the DATALINK column in the DBMS for the
above SQL INSERT are as follows:

URL scheme Server
name

File name RecoveryID
at link

http Server1 foo t1

Values stored in server1’s DLFM for the file record for file foo
are as follows:

File
name

RecoveryID
at link

Linked
State

RecoveryID
at unlink

Backup
Number

foo t1 L null 0

RecoveryID_at_unlink and Backup Number are discussed later in
the context of the UnlinkFile API.

4

Since Recovery(Yes) is specified for the DATALINK column in
our example, DLFM would make a persistent entry in a copy-
table so that a backup copy of the file would be made soon after
this transaction commits. Such a copy may be made in a batch
mode by a copy-daemon in DLFM that processes many files. It is
not efficient to make a copy of the file in the DBMS transaction
scope since the size of the file may be large (several hundred
megabytes to gigabytes). However, the persistent entry in the
copy-table is made within the DBMS transaction's scope. It is
possible to make the copy asynchronously because the file is
marked read-only at link time. We have to handle the case where
the file is unlinked before copying is completed. It is crucial that
the backup operations of the copy-daemon operate efficiently and
finish the file backups in a timely manner. The database backup
will not succeed unless the file backups are completed. If the
copy-daemon gets far behind in making the backup copies of the
files, then there is an increased window during which backups
could fail. These concerns can be addressed by parallelizing the
functions of the copy-daemon. Since metadata is available in
DLFM about the files, possibly including on which disk a file is
stored, multiple copy-daemons could operate efficiently to ensure
that file backups are completed as quickly as possible.

In case DLFM fails prior to completion of making a copy of the
file, DLFM would start the copy-daemon during its restart
recovery so that the copy would be made ultimately. The record
entry (of relevance to this paper) in DLFM's copy-table would be
as follows:

File Name RecoveryID at link
foo t1

2.4 UnlinkFile API
The UnlinkFile API lets DLFM know that the database no longer
references the named file. This API will be issued when a record
containing a DATALINK column is deleted or when a record
update involving a DATALINK column occurs. If the options
specified on the DATALINK column are DBMS_control and
Unlink(Restore), then DLFM will restore the ownership of the file
to the original user and also restore the access permissions that
were recorded earlier when the LinkFile API was processed. If
Unlink(Delete) option were specified, then DLFM would delete
the file from the file system. Furthermore, if Recovery(No) were
specified, then DLFM would also delete the persistent information
it had stored earlier about the file. However, if Recovery(Yes) is
specified, then in order to support coordinated, point-in-time
recovery with the DBMS, DLFM continues to retain that
information persistently and notes that the file is in the unlinked
state. Note that the backup server still has a copy of the file in
case the file needs to be restored as part of a coordinated restore
with the DBMS. If the DATALINK column options are
File_control_read_only and Unlink(Restore), then the write
permissions to the file are restored. The Unlink(Delete),
Recovery(Yes) and Recovery(No) discussions are the same as
those for DBMS_control as described above.

The UnlinkFile API also includes a parameter called RecoveryID.
It is a time-based recovery identifier, assigned by the DBMS,
known as RecoveryID_at_unlink. DLFM records this ID in the
record for the file when it is updated to note that the file is in the
unlinked state. Note that both RecoveryID_at_link and

RecoveryID_at_unlink are maintained. These can be used
subsequently to support coordinated recovery with the DBMS.

A file foo can be linked at time t1, then unlinked at time t2 and
deleted, then subsequently created again at time t3, and unlinked
at time t4 and get deleted. Assuming that there is no garbage
collection of unlinked files in between, DLFM would have the
following records with their Recovery_IDs.

File
Name

RecoveryID
at link

Linked
State

RecoveryID
at unlink

Backup
Number

foo t1 U t2 3

foo t3 U t4 5

Even though file foo does not exist in the file system because the
user chose Unlink(Delete) option, the backup server would have 2
distinct files for foo: foo as it existed at t1 and foo as it existed at
t3. Having these versions of file foo in the backup server allows
coordinated recovery to be possible between DBMS and DLFM.
It is possible for the DBMS to reconcile with DLFM based on the
RecoveryID_at_link and/or RecoveryID_at_unlink as described in
Section 4.

It is clear that garbage collection of the unlinked files is necessary
at some point in time. At the time of unlink, a backup number is
assigned to the file record in the Backup Number field.

3. BACKUP OPERATION
Traditionally, database backups have been supported with two
flavors [9]. If a backup is made while there are no concurrent
updates, then it is referred to as an offline backup. If the backup is
made while concurrent updates are allowed, then it is referred to
as an online backup. DataLinks supports both types of backups.
For coordinated backup between database metadata and external
files, a straightforward approach could be to copy all the files that
are referenced by the DATALINK fields at the time the database
is backed up. However, the performance of this approach may be
unacceptable for the following reasons:

• A database backup typically copies a database page at a time
rather than a record at a time [9]. Reading each record at
backup time to determine the DATALINK field values would
cause significant performance degradation to the backup
procedure. Uncommitted updates may also cause additional
complications.

• Many files may be large in size. Copying them may take
more time than the time it takes to back up the database.

Hence, we need an alternate way of identifying and backing up
the newly linked files. One of the objectives of our design is that
performance of the database backup should not suffer in the
presence of the DATALINK columns referencing files. This
objective is realized by initiating the backup of a file when the
transaction referencing that file in a LinkFile operation commits.
This is described in section 2.3, “LinkFile API”. The key point is
that the backup of the file is performed asynchronous to the
transaction, and it is guaranteed that the backup copy would be
made.

Extensions to these algorithms to ensure that the database backup
operations succeed even if one or more DLM file servers are
unavailable are presented in [13].

5

3.1 Coordinated Backup
Initiating the asynchronous copying of files poses some
challenges with respect to the backup of the database and some
mainline functions. At the time the DBMS backs up the database,
it needs to ensure that any asynchronous copy operations of the
files referenced by this database, which were started since the
immediately preceding backup, are complete. It is sufficient to
check completion of only the copy operations initiated since the
immediately preceding DBMS backup because of the following
reasons:

• A file is marked read-only when it is linked to the database
and cannot be updated as long as it is linked from the
database. To update a file in place, one has to unlink the file
from the DBMS, update it and then link it again. From
DLFM's standpoint, the RecoveryID_at_link makes these
two versions of the file temporally unique.

• Completion of asynchronous copy operation is checked at
every DBMS backup, so by induction it is sufficient to check
completion of the copy operations, which were initiated since
the immediately preceding backup.

To accomplish the above, the DBMS issues the BackupVerify and
BackupEnd APIs to the DLFM. Next we describe the parameters
associated with these APIs and then their use.

3.1.1 BackupVerify API
The purpose of the BackupVerify API is to verify whether the
asynchronous copying of the files, which gets initiated as a result
of LinkFile, is complete. The information passed via this API of
interest here is as follows:

sincetime: Timestamp that represents the lower bound for
the files whose LinkFile operations were performed at or
after this timestamp and resulted in asynchronous copying of
the files to be made to the backup server.

curtime:Timestamp that represents the upper bound for the
files whose LinkFile operations were performed at or before
this timestamp and resulted in asynchronous copying of the
files to be made to the backup server.

The BackupVerify API is issued by the DBMS to DLFM at the
time the DBMS starts to backup the database. In order to verify
that all the asynchronous copy operations, which are set in motion
as a result of LinkFile calls, which were initiated since the
immediately preceding backup are complete, the DLFM uses the
backupendtime of the previous backup registered in the backup
table as the SinceTime and the start-timestamp of the current
backup or the end-of-log LSN at the time of the start of the
current backup as CurTime. The set of files that satisfy the
following condition would be checked to see whether they have
been backed up or not:

CurTime >= RecoveryID_at_Link >= SinceTime

If all the files in this set are already backed up, then the
BackupVerify call returns success. If not, it returns
copying_in_progress. In the latter case, the DBMS can continue
to do its processing to copy the database but when the DBMS
completes copying the database, it must issue the BackupVerify
API to check whether the files in the above set and any newly
linked files have been copied. If it is an offline backup of the
database, then no new LinkFile calls would be issued while the
backup is in progress and so if BackupVerify returns
copying_in_progress the first time, most likely DLFM would

return success on the second call. If success is not returned, then
the DBMS decides on a time interval frequency at which it would
continue to check whether the files have been copied or not. In the
extreme case, if DLFM were to fail or some large interval of time
were to expire with files in the above set still not copied, then the
DBMS would fail the backup operation.

For an online database backup, backup operations could be
initiated as a result of new LinkFile operations while the database
backup operation was in progress. The DBMS must ensure that
those linked files are copied as well before declaring that the
coordinated backup is complete. The DBMS must issue
BackupVerify on completing the backup on the database side.
This is in contrast to the offline backup where BackupVerify
needs to be issued a second time during a given backup only if the
first BackupVerify (at the start of the backup) returned
copying_in_progress.

The SinceTime and CurTime values for this second call for online
backup are set as follows:

• SinceTime: For the first BackupVerify, it is set to end-
timestamp or end-LSN of the previous backup. For the
second BackupVerify, that value is moved forward to the
timestamp/LSN taken just before the first BackupVerify was
issued ONLY if that first BackupVerify returned success.

• CurTime: Timestamp or LSN taken at the end of database
backup.

3.1.2 BackupEnd API
The purpose of the BackupEnd API is to declare that the
coordinated backup has completed successfully. This API is
transactional and is issued only after verifying that asynchronous
copy operations as requested by BackupVerify APIs are complete
on all the DLFMs. The information passed via this API of interest
here is as follows:

txnId: The transaction within which this API is invoked.

backupendtime: Timestamp that represents the end of the
coordinated backup. All subsequent LinkFile operations
should have a timestamp that is greater than backupendtime.

BackupEnd tells DLFM that the coordinated backup succeeded.
DLFM records the backupendtime and other information related
to this coordinated backup within the Backup table. BackupEnd is
issued by the DBMS to the various DLFMs in a transactional
fashion, using the two-phase commit protocol. After the
coordinated backup is successful, garbage collection is initiated.

3.2 Efficient Garbage Collection After Backup
A garbage collection procedure on the DBMS side monitors the
number of database backups that are kept valid as well as dictates
when to garbage collect files that were unlinked on the various
DLFMs based on the database configuration parameter,
NUM_DB_BACKUPS. When database backup files are to be
garbage collected, the garbage collection procedure will mark the
utility history tracking, UHT, file entry for the database backup as
expired. The procedure will also notify all DLFMs to garbage
collect the associated files that were unlinked before this expired
backup. The backup number field associated with the unlinked
file entry is used to identify such files. The unlinked files would
be deleted from the backup server and the corresponding DLFM
metadata would be discarded. Determining which unlinked files
should be deleted is performed efficiently, as described in [13].

6

3.3 Information Tracked for DBMS Backups
Recall the topology illustrated in Figure 1., where a DBMS can
reference files on multiple file servers. Additional information that
is tracked with a database backup includes the list of DLFMs, and
the list of DATALINK columns with data referencing this DLFM.
The reason this information needs to be tracked is that during the
restore operation we need to validate that those DLFMs still have
the meta information about the DATALINK columns of the
database. The case in point is that a database may have been
deleted but it is necessary to restore it from an earlier version.
When a database is deleted, DLFMs do not delete DATALINK
meta information immediately but keep it for some period of time
that is user configurable. When a database is restored to an earlier
version and a DLFM that is in the list of DLFMs that are tracked
with that backup no longer has the DATALINK column defined,
then the restore procedure has to resort to the reconciliation
procedure. The reconcile utility is described later.

Now, the question arises as to how does the DBMS determine
which DLFMs are involved since, as mentioned earlier, the
database backup does not read any database record as it makes the
copy of the database. This is discovered by contacting all known
DLFMs as per the configuration file and then recording the ones
that respond positively that they have the DATALINK metadata
defined. The DATALINK metadata is defined in a DLFM when
the first LinkFile (ever) is issued to that DLFM.

3.4 Impact on LinkFile and UnlinkFile
Operations
As mentioned in Section 3.1, DLFM needs to verify the
completion of copying of only those files that were linked since
the last backup. This requires validation of RecoveryID_at_link (a
timestamp and/or LSN) so that it is greater than the
backupendtime. Otherwise, the verification of whether the
asynchronous copy of the file is complete or not, may not be
performed correctly. This validation is performed by the DLFM
since it tracks the BackupEndTime of the last backup. If the above
condition is not met, then DLFM returns an error condition. The
DBMS can then reassign a new RecoveryID and reissue the
LinkFile operation.

In Section 2.3, “LinkFile API”, we mentioned the case where a
file is unlinked before it is copied to the backup server. Below, we
describe how we handle this. The UnlinkFile operation has to pay
attention to whether asynchronous copying of the referenced file,
which would have been initiated when the corresponding LinkFile
call was issued, is complete or not. In the rare case where a
database update of the DATALINK field causes the file to be
unlinked and the copy of the file is not yet made, then the unlink
operation is serialized by the DLFM with the backing up of the
file. This is necessary since the file could be deleted from the file
system as a result of the unlink operation committing before the
copy is made. Once the deletion is performed, copying cannot be
done and a subsequent database restore operation might require
that version of the file be available.

4. RESTORE OPERATION
A backup copy of the database can be used to recover the database
to one of many possible consistent states:

• The consistent state could be the state when an offline
backup was taken. Such a state is referred to as offline
backup state, OBS.

• The consistent state could be the state at some point in the
log when no update was being allowed to the database. Such
a state is referred to as a quiesce point state, QPS.

• The consistent state could be to some arbitrary point-in-time
state, PTS.

• The consistent state could be the state at the time of crash
(i.e., the database is current) known as the current time state,
CTS.

If the database does not have a DATALINK field, i.e., there are
no references to external objects, e.g., files, then the restore of a
database from an offline backup (OBS recovery) restores the
database to a consistent state. For QPS, the restore processing
applies log records to the restored version of the database from
when the appropriate online copy was started to the point when
the update transactions were quiesced. The database is brought to
a consistent state up to when the quiesce point was established.
However, when DATALINK fields are defined, references to files
would be involved. Additional processing is required to
synchronize references to files with respect to the restored version
of the database. Later, we describe the details of synchronizing
files referenced by the database for the cases OBS and QPS.

For recovery up to the current state or CTS, the DBMS applies the
log to the last database backup that was restored up to the point
when the database was closed after a problem like media failure.
For point-in-time recovery or PTS, the user dictates that the
DBMS may apply the log only up to some arbitrary point in the
log. In the case of CTS, applying the log up to the point of closing
the database after the media failure implies that the database was
not in use after that point, hence the database would be brought to
a consistent state. The references to the files would already be
synchronized in this case (CTS). However, in the case of PTS,
when the log is applied up to some arbitrary log record that is at a
point earlier in the log than at the end of the log, the database may
not be restored to a consistent state with respect to the
DATALINK data that is referenced by the database. The
administrator may have to run the reconciliation procedure
described below, to bring the database to a consistent point.

Extensions to these algorithms to ensure that the database
recovery operation succeeds even if one or more DLM file servers
are unavailable are presented in [13].

4.1 Restore of a Database for OBS
Below, we describe the additional processing which is required to
synchronize references to the files with respect to the restored
version of the database. Efficient synchronization is possible
because the DBMS provides DLFM a RecoveryID, at the time of
establishing the link of the reference, RecoveryID_at_Link, and
another Recovery_ID at the time of unlinking the reference,
RecoveryID_at_Unlink. As mentioned before, these
Recovery_IDs could be in terms of LSNs or timestamps and
DLFM tracks them in its persistent storage. Recall that an
unlinked file is tracked by DLFM for some number of backups
until it is purged as a result of garbage collection. Therefore, when
the database is restored to a consistent state, before declaring that
the database has been restored, the DBMS would do the following

7

additional processing. The DBMS would provide a
Restore_Recovery_ID, which is the timestamp or the LSN of
when the backup used for restore happened, to DLFMs which
were involved in the backup. A DLFM would do the following
processing for the files that it tracks:

• Unlink all files whose RecoveryID_at_link is greater than or
equal to the restore_recovery_ID. This would unlink all files
that were linked after the backup.

• Link all files whose RecoveryID_at_link is less than
Restore_recovery_ID AND RecoveryID_at_unlink is greater
than or equal to the restore_recovery_ID. This would relink
all files that were in the linked state prior to the backup but
were unlinked after the backup.

The above reconciliation between DBMS and its external
references is referred to as reconciliation with respect to
RecoveryID. This is in contrast to the more elaborate
reconciliation process that is performed by accessing each
database record, determining the file names, and then reconciling
with the appropriate DLFMs. Such a detailed reconciliation
procedure may be needed when point-in-time recovery (PTS,
QPS) is performed for the database, and is described later.

It should be noted that relinking a file after it was unlinked
implies restoring the version of the file when it was linked. If
required, DLFM would interact with the backup server, e.g., TSM
to retrieve that version of the file. If the correct version of the file
exists in the file system, then that version can be used for
relinking. There are possibilities of various errors while restoring
the file, such as, duplicate file name in the file system. If there are
any such errors, then the database table is put in the datalink-
reconcile pending state since detailed analysis of which
row/column is linked to the file needs to be reported. This
reconciliation process is described later. Though reconciliation
with respect to RecoveryID is more efficient, the following point
should be noted.

If the database backup image used for restore is older than the
limit of "NUM_DB_BACKUPS" backups, then the files that were
unlinked "NUM_DB_BACKUPS" backups ago may have been
garbage collected. Such a check should occur before
Reconciliation with respect to RecoveryID procedure is invoked.
If the above conditions are not met, then the database tables
should be put in the datalink-reconcile pending state and the more
detailed reconciliation process to be described next should be
performed.

4.2 Restore of a Database for PTS and QPS
After restoring a database from a backup file that was made while
concurrent updates were going on, log records have to be applied
to the restored copy. This process is called roll forward [14]. The
following possibilities exist with respect to this application of the
log:

• Rollforward is performed to the end of the logs. Processing
to the end of the logs ensures transactional consistency
between the database references and the files in the file
servers. So there is no need for any additional processing
when DATALINK columns are defined in the database. This
is the CTS case mentioned earlier.

• Rollforward is performed to an arbitrary point in the log,
PTS or to some point in the log when no update was being
allowed to the database, QPS. The database tables with

DATALINK columns are put in the datalink-reconcile
pending state at the end of database rollforward processing.
Such tables are identified through the DBMS catalogs, which
are consistent at the end of rollforward processing. In this
case, the Reconcile utility, which we describe next, should be
run. For QPS, reconcile with respect to recoveryID can be
performed when the log sequence numbers, LSNs are
unambiguous [13].

The Reconcile utility performs the processing necessary to ensure
that files which are referenced by the database table data are in the
linked state and files which are not referenced by the database
table data are in the unlinked state. Reconciliation is performed in
the transactional context since files may have to be linked and
unlinked in this process. The DBMS Reconcile utility examines
the DATALINK columns of the restored database's tables records
and collects the list of referenced file names, file server names,
RecoveryID_at_link recovery ids and the (DBMS) record-IDs.
The record-IDs are needed to report errors as described below.
Then, this list of file names, RecoveryID_at_link recovery ids and
their respective record-IDs is passed to appropriate DLFMs.
DLFMs have to try to restore the correct version of the
corresponding files, determined by their RecoveryID_at_link and
put them in the linked state. Any other files (i.e., files not in the
list passed by the DBMS) that are linked from that database, as
per DLFM metadata, should be unlinked. If a DLFM cannot find
in its backup server some of the files needed by the DBMS or the
files cannot be restored for any variety of reasons, it returns the
corresponding record-IDs for exception processing to the DBMS.
The DBMS can set such DATALINK column value to NULL and
report them as exceptions. By removing such entries from the
database tables, the DBMS can make the table available for use.
After determining the fate of the files reported in the exception
list, and taking appropriate actions on the file server(s), the
DATALINK column of the exception rows may be updated to
reference the appropriate files. Applications are allowed read
access to the database tables for which the reconciliation
processing is being performed and also on tables that are in
datalink-reconcile pending state.

5. THE LOOSELY COUPLED
TRANSACTION MODEL
Content Management (CM) Systems, especially those designed
for managing distributed content typically store meta-data that
describes an object or related information in a store such as in a
RDBMS, that is separate from the file containing the content of
the object. One challenge in such a system is that of maintaining
consistency between the content of the file and the associated
meta-data from a reader’s point of view. If file and meta-data
updates are tightly coupled such that updates to both happen
within a single unified transaction, then the transaction
coordinator typically ensures a consistent view by locking out
readers of meta-data as well as file data until the transaction is
committed. In this way intermediate or uncommitted updates to
either file data or meta-data are not visible. Given that file content
edits can be relatively long running, such an approach may not be
desirable. Thus, a loosely coupled transaction model for file and
meta-data updates is needed, where file edit is independent of the
meta-data update, to avoid holding long duration locks on meta-
data tables.

8

An improved approach, based on the loosely coupled transaction
idea, is implemented in IBM Content Manager [15]. It de-couples
the action of updating a file from the database/CM transaction that
makes the updated file visible (to CM users) and changes meta-
data associated with the file. With this approach, a new version of
a file is created when the file is updated. During file update and
before an updated file is “committed” to CM, existing meta-data is
not locked and continues to reference the last committed version
of the file. When a user decides to commit an updated file, the
associated meta-data is then updated and committed within the
same database/CM transaction. Since file update and associated
meta-data update are done within the same transaction, users will
always have a consistent view of meta-data and file data. In
addition, the last committed version of a file is maintained, thus
users can continue to reference a consistent version of the file
even when it is being updated. This approach, however, has its
drawbacks. Firstly, multiple versions of a file are maintained
which requires much more disk storage space. Secondly, either
the file reference needs to be changed (or a version number
increased) every time a new version is created, which is
undesirable for some applications, e.g. Web servers, or new file
version name needs to be changed to the existing name at the
commit time, which requires additional file system access. It is
often convenient and natural to allow the content of files to be
accessed and edited in-place without creating multiple versions by
directly accessing the file system natively. This, however, creates
the possibility for leaving file content and meta-data in an
inconsistent state, which is unacceptable in many applications.
Thus, a novel scheme to guarantee a consistent view of file-data
and meta-data to a reader without the need of holding long
duration locks on meta-data stored in the database and without the
need of maintaining extra version of a file is highly desirable.

The following sections address the above problem in the context
of meta-data maintained in a database table associated with an
external file reference to content that is stored in a file system or
an object store that is external to the database. The external file
reference is maintained within the database using the DATALINK
SQL data type. In order to be able to unbundle file and meta-data
updates without loss of basic transactional semantics on the
linkage and consistency between the two types of data, the update
model lets a user directly edit the file in-place independently of
the meta-data without the knowledge of the meta-data store, and
then effect the corresponding meta-data updates on the meta-data
store explicitly relating them to the file updates and committing
both file and meta-data updates together. Thus the potentially
long-running content edit process is decoupled from the database
transaction that updates the associated meta-data, or more
precisely, the two updates are loosely coupled. The file must be
accessed or edited using an object reference supplied by the meta-
data store, rather than its native name (which may or may not be
the same) in order to ensure a consistent view to the CM/DB
application.

5.1 SQL Mediated Object Manipulation
The notion of SQL mediated object manipulation can be applied
to an object that is located in an external store, but referenced in a
database table. The idea is that the DBMS acts as a mediator in
terms of providing update access and relating file updates to
corresponding meta-data updates without actually implementing
the content updates itself. Once an update reference is granted by

the DBMS, actual file updates happen in-place directly on the file
system using native file operations without going through the
DBMS. Updates are committed to the database via the DBMS
once the update is done. The permission to update the file may be
mediated by the DBMS or by file system permissions. With this
approach, actual file edits happen outside of the database
transaction. This is significant because it means that database
locks are not held during potentially long running content edits.

To associate an object with its meta-data in the database, a user
issues an SQL INSERT statement involving a DATALINK entry
as described in Section 2.3. To access (read or write) the object, a
user obtains a handle to reference the object (Section 2.2) from
the results of an SQL SELECT on the table based on the
identification criteria. The object is then accessed directly from
the external store, by supplying the handle as the name of file to
the native file system API. Once content updates are completed,
the user issues an SQL UPDATE on the database, optionally
passing in the handle, then updates the corresponding meta-data
fields in the table, and finally commits the update transaction.
Note that this update transaction need not be part of the
transaction in which the SQL SELECT was issued to obtain the
handle. Coordinated backup and recovery is supported for the
external data “linked” to database meta-data, so that a restore of
the database to an earlier point in time also restores the content
files to the corresponding state in conjunction with the associated
meta-data (Sections 3 & 4). The object can be disassociated from
the database by issuing an SQL DELETE operation, which
“unlinks” the file from the database.

An interceptor/filter module, i.e. DLFF services direct content
access using the handles described above and is illustrated in
Figure 3. As described in Section 2.2, it transparently intercepts
accesses to the external object store and validates the handle,
which contains an embedded access token used for referencing the
object. DLFF communicates with a file/object management
mediator daemon, i.e. DLFM that tracks and manages objects on
the file system, which are linked to the database. DLFM records
certain attributes of these objects at the time of their association
with the DB, and at the time of committed updates. To support
file-data and meta-data consistency, DLFF returns an error for file
accesses where the file contents are no longer consistent with the
meta-data associated with the handle being used to reference the
object. For a UNIX operating system, this error could be
ESTALE.

5.2 The Consistency Detection Scheme
The following describes the design goals considered in arriving at
the proposed consistency detection scheme. The central objective
is to make sure that a reader application always sees consistent
data in all possible scenarios including the possibility of a
database restore to an earlier point in time. In order to provide the
convenience of in-place update using native file system APIs, the
consistency check is performed via the interceptor layer. A crucial
concern is to avoid holding database locks during long running
content-edits. The meta-data is thus visible while the file is being
modified. As explained earlier, this is why a tight transaction
model is not appropriate.

The solution has to be suitable for a distributed model of file and
meta-data storage and support fast content access times in such an
environment. This means that the scheme should avoid having to

9

check back with the DBMS or the meta-data store to ensure
consistency during file access. At the same time it should avoid
introducing additional overheads in the update-path or the normal
transaction path as that could lead to performance degradation.
Certain time based decision schemes avoid communication
between multiple entities in a distributed environment, but require
that the clocks on these systems be kept in synchronization
through some means, for example, through a combination of
administrative settings and distributed time protocols. One of the
initial schemes that was explored had such an element as it
involved comparing the timestamp of the last committed update
embedded in the handle by the database with the modification
timestamp of the file which is set by the file system. The idea
here, however, is to avoid imposing such clock synchronization
requirements on the database and file system servers for
supporting consistency detection. This keeps the administrative
overhead and complexity low.

Figure 3. DataLinks System Architecture Detailing the
Interceptor/Filter Module

Another requirement is the suitability of the scheme for a
distributed file system (or object store) implementation with
authoritative caching at file system clients. The problem that
arises in the presence of “authoritative caching” where the file
system client takes decisions on its own based on prior
information from the file server cached at the client, is that an
interceptor layer on the file server may not always be able to
intercept file accesses and validate consistency. This gives rise to
a need for implementing an interceptor layer at the file system
clients. In such a situation it is desirable to minimize the need for
communication between the client side interceptor and the file
management daemon on the server. This must be achieved
without requiring the server to maintain any state about its clients.
The design for a distributed file system with authoritative caching
is described fully in [17]. It involves extending the consistency
detection logic with a reliable client initiated caching scheme for
the relevant attributes stored by the file management daemon.

An underlying design principle is simplicity and reuse of existing
internal mechanisms of the two storage engines, i.e. the DBMS
and the file system, avoiding any duplication or introduction of
complex logic. The scheme should require only the absolute
minimal additional state to be maintained outside of what is
already available.

5.2.1 The Source of Inconsistencies
As described, the handle required to access the object from the
object store contains an access control token generated by the
DBMS. From a reader’s perspective, inconsistencies between the
meta-data accessed from the database and the corresponding
contents referenced by the handle could occur in the following
situations:

• File updates happen after the token is generated.

• Uncommitted updates were pending at the time the token was
generated. In this case, the meta-data in the table at the time
the token was generated corresponds to the last committed
file data, and hence does not reflect any uncommitted file
updates that happened before the token was generated.

• The database gets restored to a prior time before the token is
used to access the file.

An update can happen via a re-linking of the same file with
different contents (after an SQL DELETE or “unlinking” of the
file and a change in contents via a rename or a write to the file,
followed by an SQL INSERT or “linking “of the file. It can also
happen through an SQL UPDATE following file edits in case of
an update-in-place. There are two cases to be considered:

• Updates committed (or reverted to an earlier point in time in
case of a database restore) before the token is used (results in
a change in last committed version of the object)

• Updates not yet committed before the token is used (update-
in-progress state)

This leads us to the following solution.

5.2.2 Basic Solution for Local File systems
The proposed solution is based on two constituents: a version
indicator or generation number associated with the file, which is
temporally unique for every committed update to the file, and use
of the last modification timestamp attribute of the file maintained
natively by the file system or external store. Since updates are
committed with the knowledge of the DBMS in communication
with DLFM, the time based RecoveryID (discussed in Section 2.3)
for the update, can be used as the version indicator. Also,
whenever updates are completed, the last modification timestamp
of the file at the time of update completion is noted in the local
repository as the last modified time of the latest committed
version of the object. It is more efficient if the last modification
timestamp is recorded when an SQL UPDATE is issued for the
file, rather than at the time when the transaction finally commits.
This is possible because in this model, no further updates to the
file are allowed until the transaction commits.

The approach works as follows. The DBMS encodes the latest
version indicator (or generation number) as part of the embedded
token in the handle it provides for referencing the file. Then when
the user supplies the above handle directly to the file system to
open the file, the filter layer which intercepts these file system
operations would make a call to the file management daemon to
perform the following checks to ensure consistency at the point of
open:

I. Lookup the latest committed version number V(commit) of
the file, and the corresponding modification timestamp
Tm(commit) recorded in the local repository.

II. Extract the version number encoded in the embedded token
in the handle, V(token)

10

III. Get the current value of the last modification timestamp of
the file Tm(access) from the file system.

IV. Return an error (indicating stale data), if either of the
following conditions are met:

• If V(token) g V(commit), the token is inconsistent with
the current file contents. This covers the case where the
reader had obtained the access token/handle any time
prior to the start of the update which was last committed
and also the situation where the reader had obtained the
token and the metadata, and then in the meantime the
database and the file got rolled back to an earlier state.

• If Tm(access) g Tm(commit), there are uncommitted
updates to the file’s contents. This covers the case
where an updater has modified the file and then closed
it after releasing any file locks, but hasn’t updated the
corresponding meta-data. Then, optionally, if the
supplied handle has write-access, check the repository
state to rule out the case where the updates have been
made using the same access token.

Readers and updaters must use application level file locking to
cover concurrent file read and updates; in particular, to ensure that
there is no open file descriptor when an updater starts updating
the file.

When the consistency detection logic is performed at a distributed
file system client rather than at the file server [17], then there is an
added step of loading/refreshing V(commit) and Tm(commit)
values from the server. If these values are cached at the client,
then this is required only if the file has not already been accessed
at the client, or if the consistency check using the cached values
indicates stale data.

5.2.3 Encoding the Version Number in the Token
The access token contains a message authentication code, MAC
that is a one-way hash value with the addition of a secret key [18].
The encryption scheme exists because the access token is also
used to provide database-mediated data value based access control
for access to the referenced file system objects. Note that the hash
is not a mandatory for the consistency detection scheme as such
and the version indicator could be embedded into the object
reference in any alternative manner that seems appropriate, if
access control is not required.

The MAC, h is computed as follows:

h = hash(K, Tx, file, server, token len, flags),

where K is a secret symmetric key, Tx is the expiration time and
the flags contain information about the token including which
type of access is granted. Tx, token length and flags are also
passed as part of the token. For cases where consistency is to be
maintained between the DBMS meta-data and the object, the
token can be set up to contain the version number and a different
MAC, H which would be computed as:

H = hash(K, Tx, file, server, token len, flags, Vc),

where Vc is the latest committed version at which the token is
created and flags can contain information indicating that
consistency is requested.

For token validation, the file system filter passes the token to the
file manager daemon. If the flags indicate that consistency is
requested, the daemon validates the token by calculating H where
Vc is obtained from the last committed version number stored in

the daemon’s repository tables. The daemon checks that the token
has not expired and compares H with the MAC contained within
the access token.

5.3 Scenarios Analyzed
A set of key scenarios has been analyzed in detail in [17] showing
how the proposed solution prevents potential inconsistencies from
arising in these scenarios. It is assumed that it is sufficient to
guarantee the consistency at the point of the file/object open. The
user is expected to use some kind of file/application-level locking
as in normal file system applications to ensure serialization
between concurrent readers and updaters. Specifically, an updater
must not start its updates if there is any reader, which has opened
the file, otherwise the reader could see inconsistent data.

6. SUMMARY AND CONCLUSIONS
For an environment where a linkage is maintained, with
referential integrity, between data in a DBMS and files in a file
server which is external to the DBMS, we present algorithms for
performing backup and restore of the DBMS data in a coordinated
fashion with the file system. We have introduced a new SQL data
type in the DBMS, DATALINK, to enable a merger of DBMS
and file system technologies. The object referenced in a
DATALINK column can be perceived as being stored in the
database for access control, referential integrity, and backup and
recovery, but actually it is stored outside in a file system.
DataLinks does not require changes to existing file systems that
manage the files pointed to by the database. For backup, our
approach makes use of a backup/archive server like TSM for
storing the file backups. In order to avoid delays in the database
backup operation, backup of a referenced file is initiated when the
file is associated (linked) with a record in the DBMS. The file
backup is performed asynchronously to the linking process so that
the linking transaction is not delayed. No database locks are held
while the backup of the referenced file is in progress. During a
database backup operation, we do not require the processing of
the copied records to identify what files need to be backed up on
the file system side. This results in improved performance. It even
allows for efficient copying of the database pages (e.g., by
avoiding reading in the copied pages into the buffer pool of the
DBMS [9]). When database backup occurs, all unfinished file
backups are completed before the database backup is declared
successful. When a database is restored to a state that includes
references to files in a file system, the DBMS ensures, using its
cooperative software on the file server, that the referenced files
are also restored to their correct state. Our algorithms have been
implemented in the IBM DB2/DataLinks product [1] and the
DataLinks concept has become part of the SQL standard [10].
This product is currently used in production environment, for
engineering designs in large automotive and aerospace
enterprises.

A loose transaction model for updates to a file and its
corresponding meta-data through a mediator can be a useful
notion for directly performing in-place edits of content data
residing on stores external to the indexed meta-data store (the
latter could be a DBMS), provided there is a way to guarantee
consistency between the file contents and the associated meta-data
from a reader’s perspective. We observe that it is possible to
achieve this without holding long duration locks on meta-data
tables.

11

The proposed solution encodes a version indicator in the handle
for referencing the object associated with a given meta-data state.
A thin interceptor layer on the native store where the object’s
contents are stored decodes this version indicator and compares it
with the version indicator of the latest committed version of the
file, to determine if the handle refers to the current version. If the
version matches then it checks for uncommitted updates by
comparing the last modification time stamp of the file with the last
modification timestamp for the latest committed version. If these
match, then it allows access to proceed as usual for the file,
otherwise it reports an error indicating that the handle refers to
stale data.

The solution turns out to be surprisingly simple in hindsight, as it
exploits the internal timestamping and cache coherency
mechanisms of the two storage engines (i.e. DBMSs and file
systems). And yet, as we have demonstrated, it is powerful
enough to work for various potential inconsistency scenarios
including the situation where a file’s contents may have changed
via a rename operation, which does not affect the modification
timestamp of the file. It is capable of covering cases where the
database has been rolled back to an earlier state, as might happen
in the case of a point-in-time restore, and should also work with
database replication, as long as the legitimacy of the last modified
timestamp of the file is maintained during a restore and across
replicas.

A major advantage of this approach is that it is suitable for a
distributed model for file and meta-data storage since the file
content access path checks do not require any direct
communication with the meta-data server. The consistency
detection scheme prevents an inconsistent view of contents even
in the event that the interceptor system becomes out of sync with
the DBMS. This turns out to be a very useful characteristic in
terms of robustness as well as optimization opportunities. For
example, we have shown how this technique extends easily to a
configuration where the external store happens to be a distributed
file system and the content is accessed directly from distributed
file system clients [17]. The approach may be enhanced to work
correctly (in terms of preventing access to potentially inconsistent
data) with mobile file systems (e.g. Coda) that operate in
disconnected mode.

7. ACKNOWLEDGMENTS
The authors would like to thank all the people from IBM
Almaden, IBM Silicon Valley Lab, IBM Toronto and IBM India
who have contributed to the DataLinks technology over the last
few years. Members of the DataLinks development team are
Karen Brannon, Vitthal Gogate, Inderpal Narang, Ajay Sood,
Mahadevan Subramanian and Parag Tijare. Other early
contributors to the DataLinks project are Suparna Bhattcharya,
Ashok Chandra, Lindsay Hemms, Joshua Hui, Hui-I Hsiao, Dale
McInnis, Nelson Mattos, C. Mohan, Robert Morris, Frank Pellow,
Bob Rees and Stefan Steiner. Other major contributors to the
design for SQL Mediated Object Manipulation support in
DataLinks include Joshua Hui, Parag Tijare, Ajay Sood,
Rajagopalan P. Krishnan, S. Ravindranadh Choudhary, Vitthal
Gogate, Mahadevan Subramanian and Steven Elliot.

8. REFERENCES
[1] IBM DB2 DataLinks,

http://www.ibm.com/software/data/db2/datalinks

[2] Object Management Group. CORBA: The Common Object
Request Broker: Architecture and Specifications, July 1995.
Release 2.0

[3] Blakely, J. Data Access for the Masses through OLE DB,
Proc. ACM SIGMOD International Conference on
Management of Data, Montreal, June 1996

[4] Blott, S., Relly, L., Schek, H. An Open Abstract-Object
Storage System, Proc. ACM SIGMOD International
Conference on Management of Data, Montreal, June 1996

[5] Oracle Corporation: Oracle Internet File System, Features
Overview, Oracle Internet File System, Frequently Asked
Questions: Technical Questions, Oct 2000

[6] Carey, M., DeWitt, D., Naughton, J., Solomon, M., et al.
Shoring Up Persistent Applications, Proc. ACM SIGMOD
Conference, Minneapolis, MN, pp. 383-394, May 1994.

[7] Cabrera, L.-F., Rees, R., Hineman, W. Applying Database
Technology in the ADSM Mass Storage System, Proc. 21st
International Conference on Very Large Data Bases, Zurich,
September 1995

[8] Narang, I., Rees R. DataLinks - Linkage of Database and
FileSystems, Proc. Sixth Int Workshop on High Performance
Transaction Systems, Asilomar, September 1995

[9] Mohan, C., Narang, I. An Efficient and Flexible Method for
Archiving a Data Base, Proc. ACM SIGMOD International
Conference on Management of Data, Washington, D.C., May
1993. A corrected version of this paper is available as IBM
Research Report RJ9733, March 1994

[10] ISO/IEC 9075-9-2000, Information Technology – Database
Languages – SQL – Part 9: Management of External Data
(SQL/MED).

[11] Hsiao, H. and Narang, I., DLFM: A Transactional Resource
Manager, Proc. ACM SIGMOD Conf Dallas, Texas , May
14-19, 2000.

[12] IBM, DB2 Universal Database V7, Administration Guide:
Controlling Access to Database Objects, 2000.

[13] Narang, I., Mohan, C., Brannon, K. and Subramanian, M.
Coordinated Backup and Recovery between Database
Management Systems and File Systems, IBM Research
Report, RJ10231, Feb 2002.

[14] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz,
P. ARIES: A Transaction Recovery Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using Write-
Ahead Logging, ACM Transactions on Database Systems,
Vol. 17, No. 1, March 1992.

[15] IBM Content Manager,
http://www.ibm.com/software/data/cm

[16] Papiani, M., Weson, J., Dunlop, A. and Nicole, D., A
Distributed Scientific Archive Using the Web, XML and
SQL/MED, ACM SIGMOD Record, Vol 28, No. 3,
September 1999.

[17] Bhattacharya, S., Brannon, K. W., Hsiao, H. and Narang, I.,
Data Consistency in a Loosely Coupled Transaction Model,
IBM Research Report, RJ10232, (Feb 2002). (Available
from http://www.ibm.com/research/resources)

[18] Schneier, “Applied Cryptography 2nd Edition”, J. Wiley &
Sons, New York, 1996.

12

