
RJ 10269 (A0211-077) November 18, 2002
Computer Science

IBM Research Report

Make it Fresh, Make it Quick -- Searching a Network of
Personal Webservers

Mayank Bawa
Computer Science Dept.

Stanford University
Stanford, CA 94305

 Roberto J. Bayardo, Sridhar Rajagopalan,
Eugene J. Shekita, Rakesh Agrawal

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Make it Fresh, Make it Quick — Searching a Network of
Personal Webservers

Mayank Bawa
Computer Science Dept.

Stanford University
Stanford, CA 94305

bawa@db.stanford.edu

Roberto J. Bayardo Jr.
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

bayardo@almaden.ibm.com

Sridhar Rajagopalan
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

sridhar@almaden.ibm.com

Eugene J. Shekita
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

shekita@almaden.ibm.com

ABSTRACT
Personal webservers have proven to be a popular means of shar-
ing files and peer collaboration. Unfortunately, the transient avail-
ability and rapidly evolving content on such hosts render central-
ized, crawl-based search indices stale and incomplete. To address
this problem, we proposeYouSearch, a distributed search appli-
cation for personal webservers operating within a shared context
(e.g., a corporate intranet). WithYouSearch, search results are
always fast, fresh and complete — properties we show arise from
an architecture that exploits both the extensive distributed resources
available at the peer webservers in addition to a centralized reposi-
tory of summarized network state.YouSearchextends the concept
of a shared context within web communities by enabling peers to
aggregate into groups and users to search over specific groups. In
this paper, we describe the challenges, design, implementation and
experiences with a successful intranet deployment ofYouSearch.

1. INTRODUCTION
The simplicity of WWW protocols (e.g, HTTP) and the maturity

of those of the Internet (e.g., DNS) have combined to make web
tools the preferred method of sharing information on both pub-
lic and private networks. The commoditization of personal com-
puter hardware and the ubiquity of the web-browser interface have
made essentially universal content access possible. These facts
have driven the adoption of personal webservers for sharing files
and peer collaboration. As an example, almost1; 900 people within
IBM use the YouServ [21] personal webserving system every week.

Critical to group collaboration is the ability to find desired con-
tent. While the Web offers URLs for accessing content from a
named location, the popular method for locating content on the
web is through search. We believe personal webservers are used
in a manner which makes search even more preferable:
� Content on personal webservers has highly transient availabil-

ity (even in systems such as YouServ which offer simple means
of improving availability through site replication). One would
be ill-advised to rely on locating content by URL when the ref-
erenced location may be inaccessible.

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM xxx.

� Content on personal webservers is typically poorly arranged,
rendering location by navigation ineffective.

� Content on personal webservers consists of a much larger frac-
tion of non-HTML documents than the typical web. These doc-
uments typically are not cross-linked like HTML, further reduc-
ing the effectiveness of location by navigation.

Inadequacy of Web Search Tools
Despite the importance of search over content hosted on personal
webservers, searches offered by the Web’s existing search tools are
inadequate. Any search index that relies on web crawling will omit
any host that is unavailable at the time of crawling. Also, hosts that
do manage to get indexed may be down at the point of querying,
leading to dead results. Finally, a common usage of personal web-
servers is to share a document during authoring so that feedback
can be gathered and suggested changes incorporated into the docu-
ment. This causes documents to have intentionally small life-cycles
which cannot be captured by crawling. Results are therefore bound
to be stale and incomplete.

Addressing the Challenges
In this paper, we propose and describeYouSearch, an easy to use,
low cost application that seamlessly integrates with a personal web-
server. YouSearch provides fresh, fast and complete searches over
personal webserver-hosted content. A true web-based content shar-
ing system, a YouSearch-enabled webserver allows:
� Easy publishing of personal content, and
� Easily enabled web searches over published content.
Motivated by the desiderata of freshness, we opted for a Peer-to-

Peer (P2P) paradigm in designing YouSearch. In this architecture,
each webserver is enhanced with a search component consisting
of a content indexer and a query evaluator. The indexer regularly
monitors shared files, immediately updating its local index when
changes are detected. Queries are forwarded to local indexes for
evaluation at run time. Only clients that are available at query time
respond, ensuring live results.

The need for speed and completeness led us towards a hybrid
architecture in which the P2P network is augmented with a light-
weight centralized component. Peers maintain compact site sum-
maries (in the form a Bloom filter [14]) which are aggregated at a
centralized registrar. These summaries are queried so that searches

target only the relevant machines. YouSearch does not rely on
query flooding or other routing-based schemes that are subject to
network fragmentation and limited search horizons. Peers help
reduce query load on the system by caching and sharing query
results. They also cooperate to maintain freshness of the summary
aggregation. This minimizes the role of centralized resources for
low cost and graceful scaling.

Enhancing the Shared Context of Users
Users in a private network often organize themselves into groups
with a shared goal (e.g., project teams) or a shared interest (e.g.,
music). YouSearch exploits this shared context to enhance search
through inter-user cooperation. Web hosts can be aggregated into
overlapping (user-defined) groups. Searches can be restricted to
content shared by members of a group. Search results within groups
can be made persistent and hand edited by users. When a query
is re-run within a group, the group specific persistent version of
results is returned. Thus, cooperation among users is used to improve
both the efficiency and accuracy of YouSearch.

Deployment Experience
YouSearch was architected to be extremely simple to use to enhance
its acceptance by users. YouSearch was released within the IBM
intranet in mid-September 2002. Since it does not require the deploy-
ment of expensive server hardware, roll out has been practically
cost-free. At the time of writing, in less than2 months, the system
has been adopted by nearly1; 500 users and the number is steadily
increasing. Our experiences in such a real-life active usage scenario
show that YouSearch is fast and efficient, and most importantly, sat-
isfies users’ need for search on personal webservers.

Paper Overview
We begin with a survey of related work in Section 2. Section 3
describes YouSearch from an end user’s perspective. Section 4
provides YouSearch’s technical details. Section 5 evaluates perfor-
mance for YouSearch in the IBM corporate intranet. As an inter-
esting aside, we discuss our attempts at easing performance tuning
of a distributed system in Section 6. We conclude in Section 7.

2. RELATED WORK
YouSearch is a deployed application that combines several ideas

to provide an effective and coherent solution for web searching over
peer-hosted content. This section discusses the most closely related
systems and proposals.

P2P File-sharing Systems
Like YouSearch, current P2P file-sharing networks (Gnutella [3],
KaZaa [7]) support search over transient, peer-hosted content. We
eliminated these schemes as potential solutions to our problem since
they suffer from inefficiencies that limit their scalability in provid-
ing afine grainedsearch capability. Gnutella [3] performs searches
by flooding each query to all the hosts in the network reachable
within a fixedhorizonimposed by a time-to-live parameter on query
packets. Since searches rarely reach every machine when the net-
work is large, query results are often incomplete. In addition, its
bandwidth and compute requirements are excessive. Another cause
of search incompleteness in Gnutella is due to to partitioning of the
overlay topology as peers join and leave the network. KaZaa [7]
improves on this basic scheme by delegating most of the work
to super peers– machines in the network with high bandwidth
and large compute resources at their disposal. Each super-peer in
KaZaa has to assume query processing responsibilities for a large
number of ordinary peers. Though reduced, problems of fragmen-
tation and limited horizon are not entirely solved by this approach.

We believe that the success of Gnutella and KaZaa in spite of
these problems is due to their use for music and video sharing. In
such networks, the most popular songs and files are both widely
replicated and the target of most queries. Documents in corporate
environments do not follow such replication or query patterns. In
such settings, we believe that their inherent limits on performance
will prove a stumbling block.

Napster [10] provided search over peer-hosted music files by
adopting a hybrid scheme that is similar to YouSearch. Napster
required the entire song list and song meta data from each peer to
be centralized for indexing. This overhead forced fragmentation
of Napster into islands of servers whose peers could not commu-
nicate. Such centralization of the term index becomes even more
infeasible when terms arise from both file names as well as docu-
ment contents, as in YouSearch.

Perhaps more important than the technical details is the philoso-
phy of use behind current P2P systems. These systems form closed
communities of users. Even people who wish to merely access
or search shared content must install special purpose software that
use proprietary protocols. As a result, each such protocol creates
a partition of shared data that is inaccessible to users of the others.
YouSearch, in contrast, is at its core web-compatible, and closely
mimics the existing user experience of conducting a web search.

P2P Research Proposals
There have been many recent proposals for P2P systems and archi-
tectures that have yet to progress into deployment and use by a sig-
nificant number of users. One such class of systems includes struc-
tured overlay networks called Distributed Hash Tables (DHTs) [22,
17, 24]. DHTs provide efficient key-value lookups across peers,
but DHTs alone do not support content search.

PlanetP [16] is a research project that proposes another search-
able P2P network. As in YouSearch, each peer constructs bloom
filters to summarize its content. PlanetP peers then gossip with
each other to achieve a loosely consistent directory of every peer
in the network. In contrast, YouSearch peers exploit a designated
lightweight registrar as a “blackboard” for storing network state.
The advantage is that registrar-maintained state is much more con-
sistent and can be more efficiently maintained. The registrar also
performs other useful functions like locating result caches that would
be impractical to provide via a gossiping scheme.

Webserving Tools
Several organizations provide webserver software that users can
install on their machines to serve their own websites [1, 9, 8]. How-
ever, most do not provide an integrated search facility, let alone
one capable of spanning many transient sites. Solutions for endow-
ing such webservers with a search facility include ht://Dig [6] and
SWISH-E [11]. The former is unsuitable in the presence of tran-
sience since it is crawl-based, the latter provides for indexing and
searching of content over just the local site running the webserver.

One webserver supporting search across transient peers is Bad-
Blue [2]. BadBlue can be used to search over a (private) network
of hosts running BadBlue or other-Gnutella compliant software. In
relying on the Gnutella protocol for searching the network, Bad-
Blue suffers from the problems already outlined above.

Collaborative Applications
Collaborative work tools such as XDegrees [12] and Groove [5]
provide secure file sharing among knowledge-workers. Groove
does not enable search over files shared by a large number of peers.
A press release at the XDegrees website mentions the ability to
search over shared content but its technical details are not avail-
able.

Bharat in [13] proposed SearchPad as an extension to the search
interface at a client to keep track of chosen “interesting” query
results. The results are remembered and used in isolation by each
individual client. The tool was found to be helpful for users in a
study conducted in a corporate setting. YouSearch enables users to
record and share results with other members in their groups. We
believe that such a shared context among group members makes
this functionality even more useful.

Caching of Resources at Peers
There have been several proposals for caching resources at peers.
CoopNet [20], Backslash [25] and PROOFS [26] are proposals
for a P2P caching scheme to address flash crowds at a host. To
the best of our knowledge, YouSearch is theonly deployedsys-
tem that exploits peer resources to cache query results. The dis-
tributed search interface of YouSearch provides a natural means for
distributing caching. Its use of a centralized registrar makes the
discovery of cache locations simple and effective.

3. END-USER PERSPECTIVE
In this section we discuss the experience of a typical end user

of the YouSearch application as it is currently deployed within the
IBM intranet. We highlight how the usage characteristics of YouSe-
arch motivate our design choices.

The Web Search Metaphor
The primary interface to the world wide web for many users is the
search form offered by any of a number of web search engines.
Because of its ubiquity, expectations of function for such an inter-
face over personal-webserver hosted content is set by what is avail-
able on the web at large. The YouSearch interface preserves these
expectations by closely mimicking familiar web search interfaces
in both appearance and function as we discuss below.

The Search Interface
Each YouSearch-enabled peer provides a search form both in its
standard “folder listing” template as well as within a dedicated
search page (Figure 1). From the dedicated search form, the user
can specify whether the search is to go across all hosts or be restricted
to the local host. In keeping with user expectation, the seman-
tics of the search form is modeled after Google [4], withphrase
match (by way of enclosing phrases in quotes), anexclusion
(-) operator, asite operator for restricting searches to a desig-
nated host, and so on.

Notice that unlike web search engines, YouSearch offers no sin-
gle centralized query form. Instead, each participating host offers
its own web-accessible search interface. Thus, our solution is an
amalgam of a P2P execution infrastructure and the user expecta-
tion of a “universal search form.”

Sharing Searchable Content
Files on the YouSearch network are searchable not only via the
keywords that appear in their filenames/URLs, but also through
the content of the files. By default, each YouSearch peer allows
searches over its publicly shared content that is not hidden behind
index.html files. Currently, access restricted content is not search-
able and we do not permit the changing of this policy. The ratio-
nale is to again preserve user expectations by mimicking behav-
ior of standard web search engines, whose crawlers only index
content accessible without passwords via browsing from the root.
Users who wish to have additional content indexed (such as content
appearing behind some index file) have the freedom to explicitly
declare directories as indexable or not indexable. Default rules are
applied only if there is no explicit user directive.

Figure 1: [YouSearch interface]A user browsing a YouSearch
enabled website can issue queries using the above form-based
search interfaces.

To ensure freshness, peers update their local index every two
minutes. For peers which share huge amounts of content, this
update interval can be increased to reduce processing load.

Viewing Search Results
After executing a search, a results page (Figure 2) is displayed as
soon as enough results are obtained from the underlying network.
While the user views the available search results, the system con-
tinues to gather additional results in the background. This provides
quick response times while preserving the web oriented interface.
While a search is underway, the results page will indicate the total
number of results found up to that point. The precise number of
results is displayed once the search runs to completion.

The hits from each individual host are appropriately ranked using
standard text search metrics. Though not currently implemented,
background rank aggregation of inter-host results [18] could cause
the most relevant (unviewed) results to percolate upwards in the
ranking even if discovered later. The ranking of already-viewed
results, however, should be frozen to preserve back and forward
semantics of web browsing.

Searching within a Shared Context
Users who share some context often know “where” information
is, but not which of a number of documents it is in. YouSearch
leverages this in two ways. First, by allowing search restricted
to local hosts, and second, by supporting user defined “groups.”
Group restriction is enabled via agroup operator that designates
a user defined subset of hosts that are to be considered (or excluded
if preceded by “-”) when searching. For example, the querypdf

Figure 2: [YouSearch results display]The results to a query are displayed as they are being gathered. Notice the “of at least” message
at the top right corner of the results page.

group:YouSearchTeamwill identify all pdf files (and files contain-
ing the termpdf) that are shared by peers in theYouSearchTeam
group. Peers are free to define and manage groups of their choice.
By leveraging the existing IBM corporate system for managing user
group memberships, users have immediate access to many group
definitions that have already been defined for other applications.

Usage Characteristics
YouSearch’s low barrier to conducting searches might be seen as
problematic by users of other P2P content sharing systems, where
users who do not share content are often barred from conduct-
ing searches and/or downloads to encourage sharing by all partici-
pants. YouServ, however, differs significantly in its usage charac-
teristics than these other networks. In YouServ, users are identified
in the URL of every file they share. This accountability, particu-
larly when deployed within a work environment, discourages the
use of YouServ for illicit purposes such as copyright infringement.
YouServ is instead regularly used for constructive purposes, such as
sharing of work-related documents and web content, sharing family
photos, creating informative web-hosts for various work tasks, and
so on. With YouServ, users typicallywantothers to use their hosts
both to execute searches and to download their content, whether or
not these others are actively sharing content themselves.

Deployment Status
At the time of this writing, YouSearch has been deployed for almost
2 months. Over the last week, nearly1; 500 people have made their
content available to the search system. The full set of functionality
described in this paper is being gradually rolled out. For example,
the initial deployment of YouSearch provided conjunctive queries,
exclusion andsite operators. A month later we provided users
with the group operator. The feature allowing sharing of user-
recommended results among group members is implemented but
not currently deployed. We intend to wait for users to familiarize
themselves with thegroup operator before its release.

4. INTERNALS OF YOUSEARCH ENGINE
In this section we detail the YouSearch architecture and its imple-

mentation. We overview the various components and then discuss
how they interact to provide the features discussed in the previous
section. We conclude with a discussion of the community’s role in
maintaining network consistency.

4.1 System Overview
The participants in YouSearch include (1)peer nodeswho run

YouSearch-enabled clients, (2)browserswho search YouSearch-
enabled content through their web browsers, and (3) aRegistrar

Indexer Summarizer

Bit IP-Address
Summary
Manager

(a) (b)

(c)

(d)

PEER NODE (Alice)

Inspector

REGISTRAR

Figure 3: [Indexing shared content]Peer processes are run peri-
odically at intervals that can be set by the end user.

which is a centralized light-weight service that acts like a “black-
board” on which peer nodes store and lookup (summarized) net-
work state.

The search system in YouSearch functions as follows. Each peer
node closely monitors its own content to maintain a fresh local
index. A bloom filter content summary is created by each peer
and pushed to the registrar. When a browser issues a search query
at a peerp, the peerp first queries the summaries at the registrar
to obtain a set of peersR in the network that are hosting relevant
documents. The peers inR are then directly contacted byp with
the query to obtain the URLs for its results.

To quickly satisfy any subsequently issued queries with identical
terms, the results from each query issued at a peerp are cached for a
limited time atp. The peerp notifies the registrar of any cache entry
it maintains. This allows peers other thanp that happen to receive
the same query to locate and return the cached results instead of
executing the query from scratch.

Peers in YouSearch use the centralized registrar as a blackboard
by posting the state of their node content for other peers to query.
This way, the registrar can be used to avoid costly and often inef-
fective flooding of queries to irrelevant peers, and also for efficient
location of relevant result caches. Though its role is important, the
registrar remains a mostly passive, and hence light-weight entity.
The peer nodes perform almost all of the heavy work in searching.

4.2 Indexing Shared Content
We now describe the indexing process in detail. An indexing

process (Figure 3) is periodically executed at every peer node. The
process starts off with anInspectorthat examines shared files in
accordance with a user specifiedindex access policy. Each shared
file is inspected for its last modification date and time. If the file is
new or the file has changed, the file is passed to theIndexer. The
Indexer maintains a disk-based inverted-index on the shared con-
tent. The name and path information of the file are indexed as well.
Our implementation uses the engine described in [15] for index-
ing local node content, which provides sub-second query response
times, efficient index builds, and excellent results ranking.

TheSummarizerobtains a list of termsT from the Indexer and
creates a bloom filter [14] from them in the following way. A bit
vectorV of lengthL is created with each bit set to0. A specified
hash functionH with rangef1; :::; Lg is used to hash each termt
in T and the bit at positionH(t) in V is set to1.

Notice that bloom filters are precise summaries of content at a
peer. Suppose we want to determine if a termt occurs at a peer
p with a bloom filterV . We inspect the bit positionH(t) in V .
If the bit is 0, then it is guaranteed that a document with termt

does not appear atp. If the bit is 1, then the term might or might
not occur atp since multiple terms might hash to the same value
thus setting the same bit inV . The probability that such conflicts
occur can be reduced by increasing the lengthL. Conflicts can
also be reduced by constructingk > 1 such filters withk indepen-
dent hash functionsH1; H2; :::; Hk and inspecting that bit posi-
tionsH1(t); H2(t); :::; Hk(t) are all set to1.

Thek bloom filters are sent to the registrar when a peer becomes
available, and whenever changes in its content are detected. The
Summary Managerat the registrar aggregates these bloom filters
into a structure that maps each bit position to a set of peers whose
bloom filters have the corresponding bit set.

4.3 Querying Indexed Content
We now describe the querying process in detail. Any browser

(Bob) visiting a YouSearch enabled website (Alice’s peer) has a
query interface from which he can search the network.

4.3.1 Querying Global Content
Suppose Bob wishes to search all of YouSearch enabled content

(Figure 4). Bob’s query is received by Alice’s peer node via a web
interface and is forwarded to aCanonical Transformerthat con-
verts the query into a canonical form consisting of sets of terms
labeled with the associated modifier. For example, a query ofpdf
group:YouSearchTeamwill be converted tofhkeywords; fpdfgi,
hgroup; fY ouSearchTeamgig. The canonical query is forwarded
to theResult Gatherer.

The Result Gatherer sends the canonical query to the registrar
where theQuery Managercomputes the hash of keywords to deter-
mine the corresponding bits for each of thek bloom filters. The
registrar looks up its bit position to IP address mapping and deter-
mines the intersectionR of peer IP address sets. The setR is then
returned to the querying peer (Alice).

The Result Gatherer at Alice’s peer obtainsR. If the query con-
tained special modifiers (e.g.,site, group), the setR is further
filtered to contain only peers that satisfy the modifier. It then con-
tacts each of the peers inR and obtains a list of URLsU for match-
ing documents. The results are then passed toResult Displaywhich
then appropriately formats and displaysU . In order to reduce the
latency perceived by Bob, the Result Display shows its results even
as Result Gatherer is collecting them.

Note that the use of bloom filters as summaries of shared content
implies thatR is guaranteed to contain all peers that have a match-
ing document (nofalse negatives). This ensures result complete-
ness. However,R can havefalse positivesin which case Alice will
receive0 answers from some of the peers it contacts. The chances
of such false positives can be reduced by increasing the lengthL of
a bloom filter or the numberk of bloom filters used.

4.3.2 Querying Local Content
Suppose Bob wishes to limit his search to Alice’s node alone.

The query is received by the web interface at Alice’s peer, trans-
formed into a canonical form and forwarded to Result Gatherer
as before. The Result Gatherer recognizes the query to be a local
query and looks up its local index to find documents that match the
query. The index returns a list of ranked URLsU for the match-
ing documents. The ranked list is sent to Results Display which
formats and displays results as before.

4.4 Caching Query Results
As the network matures, a significant fraction of the queries will

be repeated. Indeed, it has been widely reported that queries have a
zipfian distribution and individual queries are temporally clustered

Web Interface

Result Display

Canonical Tx

Result Gatherer

Query Manager(a)

PEER NODE (Alice)

(b)
http://alice.youserv.com/yousearch

CLIENT BROWSER (Bob)

(c)
(d)

(e)

(f)

(g)(h)
Query QueryBit Host Peer

Search all of YouServ

Search Alice’s content

Search persistent results

Peer Results Caching Peer

 Host peers
REGISTRAR

Figure 4: [Querying global content]The registrar uses its global summary to determine a set of peers that could have documents
matching the query. Alice’s peer then contacts each of these peers to obtain the results.

[27]. Caching search results enables a search solution to reduce
costs by reusing the search effort.

Since YouSearch has abundant resources (the computing and stor-
age resources of all peers in the network) at its disposal, it is extremely
aggressive in its use of caching. Every time a global query is
answered that returns non-zero results, the querying peer (Alice’s
peer node) caches the result set of URLsU . The peer then informs
the registrar of the fact. The registrar adds a mapping from the
query to the IP-address of the caching peer (Alice) in its cache
table.

Each cache entry is associated with a (small) lifetime that is mon-
itored by the caching peer node. The caching peer itself monitors
and expires entries in its cache, and informs the registrar of any
such changes.

Suppose Bob asks a global query at Alice’s peer node that has
been cached at other peer nodes in the network. The Result Gath-
erer at Alice’s node sends the query to the Query Manager at the
registrar. The Query Manager at the registrar looks up its cache
mapping for the query and determines the set of peers that are
caching the query. The registrar picks one of them (Ted) at random
and asks the Result Gatherer at Alice’s node to obtain the cached
results from Ted’s peer node.

4.4.1 Querying Recommended Results
Suppose Bob searched for a query that he expects others in his

group to be interested in (e.g.,how to install a printer, location
of weekly meetings,etc.). Since peers in a group share a context,
Bob expects that results they are interested in will be similar to his
own interests. It would be convenient for them if Bob could persist
his efforts in inspecting the results to determine the most relevant
answer to his own query.

YouSearch provides a mechanism by which such information
can be shared by members in the group. Each global query result is
displayed with a check box that allows Bob to indicate if he found
the result relevant and would like to recommend it. If Bob opts to
do so, the query and the selected result are sent to the registrar who
maintains such mappings from query to the recommended URL. If
Bob is signed in, the result is stored as a recommendation of Bob,
otherwise it is recorded as an anonymous recommendation.

Bob can also query the recommended information. The query
is evaluated as before except that the Result Gatherer obtains the

result set of URLs directly from the registrar. The results displayed
by Result Display are grouped into three categories: recommended
by Bob himself, by anonymous users, and by identified users. Bob
can also delete a result from the recommended information that was
set by Bob himself or by an anonymous user. Thus the informa-
tion pool is editable, allowing peers to modify and augment shared
information.

4.5 Role of the Community
Peers take it on themselves to keep the network state consistent

by absolving the registrar from actively having to maintain its store
of bloom index and cache mappings. Each peer informs the regis-
trar of any changes in its index or cache entries. Whenever a peer
leaves the network, it asks the registrar to remove its entries from
the index and cache tables.

If a misbehaving peer (Carol) neglects to inform the registrar of
its changes, the mappings at the registrar become inconsistent. In
such a case, the registrar would include Carol’s peer node in its
set of hints of peers to contact for a particular query. The peers
are designed to handle and report such inconsistencies. A query-
ing peer (Alice) will try to retrieve answers from Carol who is no
longer in the network causing the request to time out. Alice then
informs the registrar that Carol is unreachable. The registrar ver-
ifies the information and removes entries for Carol from its map-
pings. Thus, the registrar in YouSearch serves just as a repository
of state, changing the state at the explicit direction of the peers
themselves.

5. PERFORMANCE ON A REAL-WORLD
DEPLOYMENT

YouSearch has been deployed as a component of the YouServ
personal web-hosting application within the IBM corporate intranet
since September 16, 2002, with a limited beta release preceding
it a week before on September 9, 2002. This section provides a
look at the usage trends of YouSearch compiled to date. We show
how these trends support YouSearch’s design principles and our
assertion regarding the importance of search within such a network.

5.1 Peer Lifetimes
A peer enables content sharing by starting the YouServ client,

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

100 200 300 400 500 600 700 800 900 1000

Nu
m

be
r o

f s
es

sio
ns

Time (minutes)

PEER SESSION DURATIONS (AUG --- NOV 2002)

MEDIAN
AVERAGE

Figure 5: Distribution of session durations of YouServ peers.

0

100

200

300

400

500

600

700

800

900

US UK DE CA NL FR IN CH AU IE DK SE IT AT ES

Nu
m

be
r o

f p
ee

rs

GEOGRAPHIC DISTRIBUTION OF PEERS

Figure 6: The top 15 of 43 countries with YouSearch users.
Although USA constitutes the dominant fraction, the YouSe-
arch enabled web is distributed across the world.

and disables it when the client stops. The interval between start
and stop of a YouServ client is defined as a YouServsessionfor that
peer. Figure 5 shows the distribution of session durations observed
among the3; 055 YouServ peers that were active between July 1,
2002 and November 9, 2002. As can be seen, most of the sessions
are short, with half of the sessions being than3 hours long. The
dotted arrow in the figure points to the average session duration of
684 minutes.

YouServ offers the ability for replicating content across trusted
peer nodes so that peer transience need not necessarily translate
into content availability transience. The idea is that as long as some
peer hosting the content is online, the content remains available,
and through the same URLs. Although users are aware of this fea-
ture, only a small fraction (171 of the3; 055) of the peers made use
of it. Thus, result freshness remains an important concern.

5.2 Geographical Layout of Peers
Figure 6 shows the distribution of YouSearch-enabled peers within

the IBM intranet. Although the dominant fraction of peers is located
within the USA, YouSearch is being used actively in43 countries
across the world. The different time zones of its users combined
with short session durations causes the YouServ web to be in con-
stant churn, rendering centralized crawling impractical.

5.3 Perceived Value-Add of YouSearch
The proliferation of YouServ peers on the IBM intranet shows

that people want a simple and effective means of sharing content
using the web. Recent usage statistics indicate the value-add of
YouSearch. Figure 7 shows the number of unique users who actively
used YouServ sometime during the week before each plotted point.

1340

1360

1380

1400

1420

1440

1460

1480

1500

1520

1540

-42 -28 -14 0 14 28 42

Nu
m

be
r o

f a
ct

ive
 p

ee
rs

Days since YouSearch release

YouServ WEEKLY USAGE (AUG --- NOV 2002)

Figure 7: The number of YouServ peers that are active during a
week has been increasing rapidly since YouSearch was released.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

Fr
ac

tio
n

of
 b

its
 s

et

Rank of peer

(a) BITS PER PEER

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2^{4}

Fr
ac

tio
n

of
 p

ee
rs

 w
ith

 b
it

se
t

Rank of bit

(b) PEERS PER BIT

Figure 8: Characteristics of bloom filters from approximately
340 peers.

Note that a significant growth in this usage metric coincides with
the day YouSearch was released. Another sign of demand for search
is the fact that thebetarelease alone (interval[�7; 0] in Figure 7)
was downloaded and used by nearly one hundred users.

5.4 Characteristics of Bloom Filters
In our IBM intranet deployment, the length of each bloom filter

is a mereL = 64 Kbits and the number of bloom filters is set
to k = 3. The three hash functionsH1; H2; H3 are computed as
follows. An MD5 [23] hash of each term at a peer is determined.
An MD5 hash is16 bytes long from which three16 bit hash values
are extracted and used as keys in the bloom filter. Note that the
use of MD5 ensures that the hash is strongly random and that the
resulting bloom filters are independent.

As mentioned in Section 3, only publicly shared files at each peer
are indexed. Users can also explicitly declare specific directories to
be indexable or not. For each indexable file, the Indexer indexes
keywords that appear in the URL of files. In addition, the contents
of HTML and text files at a peer are also indexed.

We observed that for the above parameter settings and usage
trends as indicated earlier, the average number of false-positive
peers in the result sets of a query was only1:4. Most of these false
positives were likely due to the few peers in Figure 8(a) that have a
large (two-thirds) fraction of their bits set. In addition to increasing
network traffic, these peers could face high query processing loads.
A relatively simple solution to this problem is to create partitions of
content at such peers, with distinct bloom filters summarizing each
partition instead of each node.

Figure 8(b) shows that most of the bits in the bloom index are
highly selective, though a few bits that correspond to the most fre-

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400

Un
its

Rank of query

TIME TO GATHER ALL RESULTS

MEDIAN (8.18s)

MAXIMUM (354.20s)

Time (sec)
Peers (count)

Figure 9: Time taken to gather all results. Note that the
response time seen by a browser is a small fraction of this time.

quently occuring words (about24) are set by almost80% of peers.
YouSearch could be made to filter stop words to reduce this effect.
However, their presence has not proven problematic.

5.5 Time to answer queries
To evaluate overall query performance, we recorded the time

taken to gather answers at a peer for global queries asked at that
peer. We collected statistics for1; 500 such queries and ranked
them in the order of decreasing time. Figure 9 shows that more
than half the queries were answered in less than10 seconds. Nearly
10% of the queries took more than a minute to be answered. Note
that these times are not the response times seen by the browser. As
discussed in Section 3, the results are displayed to the user while
they are being gathered.

We also plotted the number of peers that were contacted for
answers to the corresponding query. Not surprisingly, the curve for
number of peers contacted follows the time curve closely. The jitter
in this curve can be attributed to the geographic distance between
peers and the fact that even on the IBM intranet, nodes have vastly
different bandwidth and latency characteristics (some connect via
dialup VPN, for example). We note that the current implementation
probes peers sequentially. Parallelizing such probes by contacting
� nodes simultaneously will result in proportional improvements
in gather times. A factor of ten in improvement is easily feasible
and will bring the median gather time to a sub-second range.

Not surprisingly, the longest queries were also observed to have
large answer sets. For these queries, the collection of results were
in fact collected faster than the speed at which a user is likely to
inspect them.

5.6 Query Characteristics
We examined a sample of1; 500 queries asked by YouSearch

users. A large fraction of queries were simple keyword queries
with 5:53% (83 of the1; 500) involving an advanced feature like
site or group search. About70% of the queries had at least
one result. We believe that the users are still adjusting to the avail-
ability of search, with a significant amount of content remaining
unindexed due to YouSearch’s default behavior of leaving content
unindexed should it be hidden behind index files. As users become
more familiar with YouSearch, more data will be made available
for searching, and the fraction of successful queries will increase.

Of the successful queries,3:54% of them were served from peer
caches. This value will increase as the system grows due to higher
query loads. Additionally, we have been very aggressive in clear-
ing caches: the default cache lifetime is set to5 minutes. Increas-
ing this default parameter will lead to improved cache hit rates,

0

10

20

30

40

50

60

70

80

10 20 30

Ti
m

e
to

 g
at

he
r r

es
ul

ts

Rank of query

GAINS FROM CACHING

Network
Cached

Figure 10: Time to gather results with and without caching.

though with a slight penalty in result freshness. Indeed, nearly a
third (31:31%) of all queries in our sample were asked more than
once.

To better quantify the effect of caching on performance, we issued
a sample of25 queries at one peer, and then repeated these same
25 queries at different peers in the network. The second time a
query was executed, results were gathered from a cache instead of
gathered from scratch. Figure 10 shows the times taken in the two
invocations. Clearly caching improves performance, often by an
order of magnitude.

5.7 Load on Registrar
Recall that YouSearch utilizes a centralized registrar for provid-

ing an aggregated bloom filter index. In this section we analyze
the communication and processing demands required of this com-
ponent.

Suppose there aren peers participating in the network. Each
of then peers will send theirk bloom filters of sizel bits every
T seconds if their content has changed, whereT is the period at
which crawls occur at each peer. Letf be the fraction of peers
whose content changes in an interval ofT seconds. The registrar
thus has an average inbound traffic off � n � k � l bits everyT
seconds.

In the current YouSearch deployment,k = 3, l = 65; 536
and T = 300 seconds. We optimistically set the frequency of
site changes,f , to 20%. With such settings, assuming the regis-
trar has a T1-line bandwidth of1:54M bits per second, of which
20% is consumed by networking overhead, the registrar could sup-
portn = 80%�1:54Mbps�T

k�l�f
= 9,856peers. Assuming a corporate

private network with a T3 line capacity of44:736Mbps, the reg-
istrar could supportn = 286,310peers. These are rather loose
upper bounds given our optimistic setting of site-modification fre-
quency. Bandwidth could be further reduced by having peers send
only changed bits [19] instead of re-sending the entire bloom filter
with each change. The current design nevertheless easily supports
the current and projected user bases within the IBM deployment.

Let us now consider the processing costs at the registrar. For any
reasonable number of peers, the registrar can easily maintain the
three mappings of Section 4 in main memory. For each query, the
registrar perform a small number of simple lookups on these data
structures which amount to easily-optimized bit-vector operations.
This design permits even modest hardware to scale to tens if not
hundreds of thousands of users and their queries.

6. TUNING PEER DEPLOYMENTS
We realized that tuning peer deployments for optimal perfor-

mance would be a difficult job. The difficulty stems from the end

user’s reluctance in downloading new releases of a software that is
already providing a desired level of satisfaction. In this section we
present a simple solution that we designed in response.

6.1 Challenges Unique to P2P Networks
While every client-side software deployment suffers from simi-

lar end-user inertia, the problem is especially severe for P2P net-
works. A P2P network draws its benefits from havinglarge num-
bersof peers participate to form asingle communityof users. The
large numbers of peers directly translates to a large number of indi-
vidual software deployments that need to be tuned. More impor-
tantly, the single community constrains that such tuning be simul-
taneous across all peers: the success of the community relies on all
peers using the same protocol.

EXAMPLE 6.1. Suppose that we released YouSearch with the
size of individual bloom filters asL = 512b. We might have found
that a significant fraction of the community sets most of the bits.
Each query would then be mapped to all the peers in the network
causing the Result Gatherer phase to degenerate into a broadcast
of the query over the entire network.

The correct thing to do would be to increase the size of the bloom
filters to 1024 bits. However, the problem is not solved by just
rolling out a new version of the software. If the new and the old
versions co-existed, the same term would be hashed to adifferent
bit position in both these versions. Thus the same query would be
represented differently at different peers.

While the problem could be temporarily solved by maintaining
two different filters at the Registrar (one each for512 bits and
for 1024 bits), the complexity of the code would increase. Fur-
ther, each such tweak would result in more filters being created and
maintained for backward compatibility. 2

Similar to the size of bloom filters discussed in Example 6.1,
there are several parameters in the code that need to be tweaked
based on the usage patterns of peers (e.g., the number of bloom
filters to create at each peer, the frequency of sending bloom filters
to the Registrar from each peer, the duration of time-outs while
contacting a peer to gather results, etc.) We label such parameters
that arise from an implementation of the conceptual designtunable
parameters.

6.2 Addressing the Challenges
We programmed YouSearch to allow distributed tuning. Each

YouSearch peer is enabled with aTuning Manager. The Tuning
Manager works with a centralizedAdministrator to receive and
affect the changes pushed out by the Administrator. The Man-
ager creates a local state file on disk at the peer during the installa-
tion process. Signed messages received from the Administrator are
interpreted, acted upon and persisted in the state file by the man-
ager. The rest of the application reads the maintenance state to
respond to the changes pushed out by the Administrator.

The various parameters that need to be tuned in the code are
identified and set to values read from the maintenance state file at
application launch. Changes to the values of these tunable parame-
ters can be sent to the Maintenance Manager by the Administrator.
The Manager merely overwrites the values for these parameters in
the state file to affect the changes. Thus, we can simultaneously
change the settings for tunable parameters of as many peers as we
like, allowing us to experiment and tune the network as it evolves.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we addressed the challenge of providing fresh,

fast and complete search over personal webserver-hosted content.

Because of the transient availability of personal webservers and
their rapidly evolving content, any crawl-based search solution suf-
fers from stale and incomplete results. Our solution,YouSearch,
is instead a hybrid peer-to-peer system that relies primarily on the
webservers themselves to keep pace with changing network state.
It scales gracefully and costs little since its centralized resource
requirements are small.

YouSearch also enhances the shared context among its users.
Personal webservers can be aggregated into overlapping, user spec-
ified groups, and these groups searched just as individual nodes.
Any group member can persist result recommendations so that oth-
ers can draw upon its knowledge.

Within two months of its deployment, YouSearch has already
been adopted by nearly1; 500 users. Our study of its usage in this
real-life setting showed that YouSearch performs well and, most
importantly, satisfies user needs.

Future work might consider allowing authenticated peers to search
secured in addition to public content. Other useful extensions would
include having a peer generate snippets of matching body text for
its (cached) search results, exploit social networks (defined by exist-
ing group definitions) for personalized inter-host ranking, and even
actively maintain cached results for the most popular queries (instead
of simply timing them out to avoid staleness). Unlike purely cen-
tralized search architectures, the plethora of compute, storage, and
bandwidth available to the set of YouSearch peers as a whole puts
few constraints on further enhancement.

Acknowledgements
We thank Rakesh Agrawal for many insightful comments on this
draft and YouSearch in general. We also thank Dan Gruhl for
designing the YouSearch logo. Finally, we acknowledge the many
users of our internal YouSearch deployment for their valuable feed-
back. Mayank also thanks Amit Somani for introducing him to the
YouServ project.

8. REFERENCES
[1] Apache’s HTTP Server Project.

http://httpd.apache.org/ .
[2] BadBlue — The P2P File Sharing Web Server.

http://www.badblue.com/ .
[3] The Gnutella Network.http://www.gnutella.com/ .
[4] Google — The Web Search Engine.

http://www.google.com/ .
[5] Groove Networks, Inc. Desktop Collaboration Software.

http://www.groove.net/ .
[6] ht://Dig – Internet Search Engine Software.

http://htdig.org/ .
[7] The KaZaa Media Network.http://www.kazaa.com/ .
[8] Mac OS X: Personal Web Sharing.

http://www.mac3d.com/ .
[9] Microsoft’s Personal Web Server and Peer Web Services.

http://www.microsoft.com/ .
[10] The Napster Company.http://www.napster.com/ .
[11] SWISH-E: Simple Web Indexing System for Humans -

Enhanced.http://swish-e.org/ .
[12] The XDegrees Company.

http://www.xdegrees.com/ .
[13] K. Bharat. SearchPad: Explicit Capture of Search Context to

Support Web Search. InProc. 9th Intl. World Wide Web
(WWW) Conference, 2000.

[14] B. Bloom. Space/time Trade-offs in Hash Coding with
Allowable Errors. InCommunications of ACM, volume
13(7), pages 422–426, 1970.

[15] D. Carmel, E. Amitay, M. Herscovici, Y. Maarek,
Y. Petruschka, and A. Soffer. Juru at TREC 10 - Experiments
with Index Pruning. InProc. 10th Text REtrieval Conference
(TREC), 2001.

[16] F. M. Cuenca-Acuna and T. D. Nguyen. Text-Based Content
Search and Retrieval in Ad Hoc P2P Communities. InProc.
International Workshop in Peer-to-Peer Computing, 2002.

[17] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger,
R. Morris, I. Stoica, and H. Balakrishnan. Building
Peer-to-Peer Systems with Chord, a Distributed Lookup
Service. InProc. 8th Workshop on Hot Topics in Operating
Systems (HotOS), 2001.

[18] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank
Aggregation Methods for the Web. InProc. 10th Intl. World
Wide Web Conf. (WWW), pages 613–622, 2001.

[19] M. Mitzenmacher. Compressed Bloom Filters. InProc. 20th
ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), pages 144–150, 2001.

[20] V. N. Padmanabhan and K. Sripanidkulchai. The Case for
Cooperative Networking. InProc. 1s Intl. Peer-to-Peer
Systems (IPTPS) Workshop, 2002.

[21] R. J. Bayardo Jr., A. Somani, D. Gruhl and R. Agrawal.
YouServ: A Web Hosting and Content Sharing Tool for the
Masses. InProc. 11th Intl. World Wide Web Conf. (WWW),
2002.

[22] S. Ratnasamy, P. Francis, M. Handley, and R. Karp. A
Scalable Content-Addressable Network (CAN).Proc. of
ACM SIGCOMM, 2001.

[23] R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm.
Technical report, Network Working Group, 1992.

[24] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed
Object Location and Routing for Large-scale Peer-to-Peer
Systems. InProc. IFIP/ACM Intl. Conf. on Distributed
Systems Platforms (Middleware), 2001.

[25] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer Caching
Schemes to Address Flash Crowds. InProc. 1st Intl.
Peer-to-Peer Systems (IPTPS) Workshop, 2002.

[26] A. Stavrou, D. Rubenstein, and S. Sahu. A Lightweight,
Robust P2P System to Handle Flash Crowds. InProc. IEEE
Intl. Conf. on Network Protocols (ICNP), 2002.

[27] Y. Xie and D. O’Hallaron. Locality in Search Engine Queries
and its Implications for Caching. InProc. 19th IEEE
Infocom, 2000.

