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Abstract

Today’s Big Data platforms have enabled the democratization of data by
allowing data sharing among various data processing frameworks and ap-
plications that run in the same platform. This data and resource sharing,
combined with the fact that most applications tend to access a hot set of the
data has led to the development of external, in-memory, distributed caching
frameworks. In this paper, we develop online, adaptive algorithms for exter-
nal caches. Our caching algorithms take into account the workload access
pattern, and the cost of insertions in the external caching framework when
making cache insertion and replacement decisions. We provide both a de-
tailed simulation study as well as cluster experiments on IBM Big SQL, and
show that only our adaptive algorithms perform well for different workload
characteristics, are able to adapt to evolving workload access patterns, and
can approach the performance observed by optimized offline solutions.

1 Introduction
Enterprises are using the Hadoop Distributed File System (HDFS) as their central
data repository, storing all their enterprise data, including IoT and mobile appli-
cations. The new Big Data platforms, like Hadoop and YARN, enable enterprises
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to share their data among multiple frameworks. It is common for enterprises to
run their SQL applications, machine learning and advanced analytics, graph and
streaming analytics in a single platform. Moreover, none of these frameworks
own the data, instead they all work on open HDFS data formats, and share the
data. This democratization of data in the Big Data platforms, and the need to co-
exist with different applications and frameworks have brought new architectural
requirements. For example, to exploit larger memories, the current generation of
Big Data platforms [12, 30] provide external, distributed caching mechanisms to
cache HDFS data in memory. In particular, HDFS caching [13] and Tachyon [21]
are two approaches to storing data in memory.

We call these systems, external caches. These caches are shared among dif-
ferent applications, and hence are different from the traditional buffer pool mech-
anisms. Buffer pools store the data in the internal format of the database, whereas
the data in HDFS cache is stored in the original file format (e.g, Parquet, Text,
ORCFile, Sequence File), and still needs to be converted to the internal represen-
tation that is needed by the particular application. As a result, the external caches
help reduce I/O costs, but not necessarily CPU costs. Another important differ-
ence between external caches and buffer pools is that all data access is carried out
through the buffer pool in a database system. Hence, if a page (or an object) is not
in the buffer pool, it is first brought there. As a result, most caching algorithms,
such as LRU, focus on which pages to evict from the buffer pool. However, a
cache miss is handled differently in our setting. First, cache insertions are more
costly, because insertions are executed by the process that manages the external
cache, such as HDFS cache [13], which competes for resources with the applica-
tion that needs the data, such as the SQL system. In fact, in our experiments we
observed that traditional caching algorithms such as LRU which assume that all
data accesses go through the cache, might actually result in worse performance
than the performance obtained by completely ignoring the cache and reading the
data directly from secondary storage. Second, when needed data is not in the
external cache, the application can directly read the data from disk. As a result,
which objects to insert into the cache is as important a decision as to which objects
to evict from the cache.

The workload access pattern is an important factor to consider when making
data caching decisions. Most Big Data applications access only a small percentage
of the data [26]. In other words, there is a hot set of data that changes over time,
and a given application does not have to access petabytes of data at a time. Thus,
if we can figure out the hot set for each application, we can, then, cache that data
in an external cache to speed up data processing.
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In this paper, we propose algorithms to identify the hot data set to store in an
external cache by observing the workload data access pattern. Different applica-
tions have different data access patterns. A machine-learning algorithm iterates
over the same data set multiple times. For these applications, the user can ex-
plicitly pin the data set in memory. However, in many other applications like
SQL, graph analysis, and data transformations, data access patterns vary signif-
icantly. Two important parameters that determine the data access patterns are
frequency and recency of access. For example, an OLAP application may access
the same portion of the fact table frequently for a while because the analytics
works on a time window. Within this access pattern, it may also access other ta-
bles. Hence, the most-recently-accessed data items are not always the same as the
most-frequently-accessed ones.

A plethora of algorithms have been developed to address the needs of dif-
ferent applications. These algorithms optimize for various data access patterns.
For example, the LRU-K [25] method is a popular buffer pool eviction strategy,
whose behavior heavily depends on the recency of data accesses, characterizing
the most-recently-accessed data as the hot set. On the other hand, the LFU (Least
Frequently Used) method takes the frequency of data accesses into account and
does not consider the recency of data accesses when making cache replacement
decisions. In this paper, we first adapt the well-known LRU-K algorithm to work
with variable size objects and external caches. This new algorithm, SLRU-K, re-
members the last K accesses to objects to give some weight to frequency of data
accesses. But, we observe that it is not able to capture frequency properly, and em-
phasizes the recency of data accesses more, resulting in poor cache performance.

To strike a better balance between recency and frequency, we propose a novel
algorithm, EXD, which makes use of a single parameter that determines the weight
of frequency vs. recency of data accesses. This algorithm also takes into account
the cost of a cache miss, and the probability of re-access for each object. The
EXD algorithm is based on the knapsack formulation [16] and uses an exponen-
tial function to estimate the probability of object accesses. The algorithm can
perform very well under various workload access patterns if the parameter is set
correctly. However, the correct value of the parameter depends on the application,
and our goal is to support various different applications through a single external
cache. For this reason, we develop an adaptive method that observes the workload
characteristics, and dynamically adjusts the value of the algorithmic parameter.
Our adaptive algorithms are able to adapt to changes in workload access patterns,
and thus, can accommodate the needs of various applications.

Our contributions can be summarized as follows:
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• We develop online caching algorithms (SLRU-K, EXD) for external caches, which
cache popular objects based on various metrics such as frequency, recency, cost
of miss, and probability of re-access.

• The proposed algorithms selectively cache only the most significant objects to
reduce the overhead of insertion into the external cache.

• We propose parameter-free, adaptive versions of our caching algorithms (Adaptive
SLRU-K, Adaptive EXD) that are able to adjust to various workload access pat-
terns.

• We extensively evaluate our proposed algorithms, using a simulation study based
on three different workload generators, to explore the whole spectrum of data
access patterns, and show that our algorithms can adapt to various data access
patterns.

• We incorporate our caching framework in Big SQL, IBM’s SQL-on-Hadoop
offering and evaluate it on a cluster environment using a TPC-DS like bench-
mark, that has been used by multiple SQL-on-Hadoop vendors, as well as addi-
tional synthetic workloads. We show that our adaptive techniques can provide
much better performance than existing static algorithms, can approach the per-
formance observed by optimized offline solutions, and produce the best perfor-
mance for diverse workloads that contain a mix of concurrent batch and inter-
active queries.

2 Caching Problem Foundations
The task of maximizing the expected performance of a cache has been modeled
in literature as a knapsack problem [16, 14]. In this well-known formulation, it
is assumed that caching an object provides certain benefit (future accesses to the
object will be hits) and the cache policy has to maximize the total expected benefit
from the cache given that the total size of the cached objects cannot exceed the
size of the cache. Most well-known caching algorithms can be viewed as different
solutions to this knapscak problem that differentiate based on the model that they
use to estimate the probability of re-accessing an object in the future. In this work,
we also use this knapsack formulation based on which we develop our algorithms.

The number of accessed objects can be very large and the available cache
space is expected to be much smaller. For example, the on-disk data size can be
in the order of TBs or PBs, but the available cache space could be in the order of
GBs. The key challenge in such an environment is to choose the “best” subset of
objects to cache (hotset) in order to improve overall performance.
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Let the objects be denoted by i = 1, . . . ,n, denote the size of object i by si
and let Pi(t) be the probability that the object i will be referenced at time t. Let
us denote by ci, the benefit from the presence in cache (or the cost of a miss) of
object i. The benefit ci may depend on si and possibly other characteristics of the
object including its source (hard disk, SSD, etc.)

If the cache has a capacity C, then an optimal set M(t) of items to be in cache
at time t is one that maximizes the total benefit of having the objects in the cache:

∑
i∈M(t)

ci Pi(t)

subject to the capacity constraint

∑
i∈M(t)

si ≤C .

We now define the notion of weight of an object, which we later use when
describing our caching algorithms.

DEFINITION 2.1. The weight of an object i at time t is denoted by Wi(t) and is
defined as Wi(t) = ciPi(t).

Formally, using the above definition, the exact optimization problem is mod-
eled by the following integer linear programming problem (so-called the knapsack
problem), using boolean decision variables xi, which indicates the presence of ob-
ject i in the cache:

PROBLEM 2.1.

Maximize
n

∑
i=1

[ci Pi(t) ]xi =
n

∑
i=1

Wi(t),xi

subject to
n

∑
i=1

si xi ≤C

xi ∈ {0,1} (i = 1, . . . ,n) .

As shown in the knapsack formulation above, the objective is to maximize the
total weight in the cache. This problem is NP-hard [14]. However, an approximate
solution can be obtained by relaxing the integrality constraints [14], resulting in
the following formulation:
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PROBLEM 2.2.

Maximize
n

∑
i=1

Wi(t)xi

subject to
n

∑
i=1

si xi ≤C

0≤ xi ≤ 1 (i = 1, . . . ,n) .

The relaxation above gives rise to an almost-integral solution as follows. Con-
sider the ratios

Ri(t) =
ci Pi(t)

si
=

Wi(t)
si

(i = 1, . . . ,n) . (1)

If
Ri1(t)≥ Ri2(t)≥ ·· · ,

then we pick the largest index J such that

J

∑
j=1

si j ≤C

and place in cache the set M(t) = {i1, . . . , iJ}.
This solution suggests that in order to determine which objects should be

stored in the cache at a future time t, the caching algorithm should maintain the
objects in a sorted list according to the ratios Ri(t),1 ≤ i ≤ n. Then, it should
select objects with the highest ratio Ri(t) from the list, and add them in the cache
until it is full. This approximate solution, which is based on the order of the ra-
tios Ri(t), is the foundation on which our algorithms are build for making cache
insertion, replacement and eviction decisions.

The knapsack formulation presented above requires knowledge of Wi(t), and
thus Pi(t), which is the probability that the object i will be referenced at time
t. It is obvious that an online algorithm cannot know a priori the value of this
probability for each object. Our proposed caching algorithms estimate the proba-
bility values based on the object accesses observed in the past. As we will show
in the following section, different algorithms use different probability estimation
formulas.

In this work, we assume that the cost of miss ci of an object i is proportional
to the object’s size si. This is a reasonable assumption in cases where the object
represents one or more files to read from a hard disk or over the network.

6



3 Caching Algorithms
In this section, we discuss in detail our caching framework for external caches.
Our proposed algorithms build upon the knapsack formulation and the approxi-
mate solution presented in the previous section. They extend it to take into account
the state of the cache over time, and by introducing selective cache insertions to
minimize the overhead of inserting objects into the external cache. In our environ-
ment, each object can represent an HDFS file or an HDFS directory that consists
of multiple files, which are all scanned when the directory is accessed.

3.1 Caching Algorithm Properties
In this section, we present the major characteristics of our caching methods.

• Online Algorithm: Our proposed caching algorithms are online algorithms that
do not assume any knowledge of the future workload. The caching algorithm
is invoked every time an object is accessed. Upon a cache miss, the algorithm
decides whether the newly-accessed object should be inserted in the cache, and
if there is not enough free space, which cached objects should be evicted in
order to accommodate the new object.

• Estimating the probability of re-access based on the workload history: As
we discussed in the previous section, the set of objects selected to reside in the
cache at a future time t depends on the probability of accessing each object at
time t, namely Pi(t). In practice, online caching algorithms cannot know a priori
this probability for a future point in time. However, at current time u, they can
statistically or heuristically estimate the probability based on their knowledge
of the workload history up to time u. Let’s denote this probability as pi(u).
Our algorithms build on the knapsack approximation presented in the previous
section by making the assumption that Pi(t)' pi(u). Thus, we can also assume
that Wi(t)' wi(u) = ci pi(u) and that Ri(t)' ri(u) = wi(u)/si.

Moreover, our caching algorithms assume that the probability function pi(u)
has the following property:

ASSUMPTION 3.1. If pi(u) > p j(u) at a time u then pi(u+∆u) > p j(u+∆u)
for all objects i, j that have not been accessed during the interval (u,u+∆u].
Thus, if ri(u)> r j(u), then ri(u+∆u)> r j(u+∆u).
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Consider a sorted list that contains information about the objects residing in the
cache at time u. The objects in the list are sorted in ascending order of the ra-
tio ri(u) as discussed in Section 2. Let’s assume that we want to maintain the
list sorted as objects are accessed over time and their probabilities of re-access
change. The next object access happens at time u+∆u. According to Assump-
tion 3.1, the relative order of those objects in the list that were not accessed
during the time interval (u,u+∆u], does not need to change. Only the position
of the currently-accessed object needs to be updated. In this way, we can avoid
re-sorting the whole list after each object access.

• Selective Cache Insertions: Typically, caching algorithms such as the LRU-K
method, are focused on which objects should be evicted from the cache to ac-
commodate a newly-accessed object. These algorithms always insert the newly-
accessed object in the cache. However, this policy is not applicable to our set-
ting, where the cache is external, because cache insertions are performed by an
external process, which is not part of the query engine. This process competes
for resources (e.g., I/O bandwidth) with the query engine and can actually slow
down the processing of the workload. In Section 5, we present experimental
results that highlight this problem.

To overcome this problem, our caching algorithms selectively perform inser-
tions using a greedy heuristic called the weight heuristic. As shown in
the knapsack formulation, the objective function aims at maximizing the total
weight in the cache. The weight heuristic attempts to do that by inserting
objects in the cache only when the total weight in the cache would not decrease
because of the insertion operation. More specifically, upon an object access and
a subsequent cache miss, the weight heuristic compares the weight of the
newly-accessed object with the sum of the weights of the objects that need to be
evicted from the cache in order to accommodate the new object. The object is
inserted into the cache only if the replacement operation results in an increase
of the total weight in the cache.

3.2 Caching Algorithm Template
In this section, we provide a template algorithm that is invoked each time an object
is accessed. Our proposed SLRU-K and EXD algorithms specialize this template by
providing their own definitions of pi(u), and thus wi(u) and ri(u) . The pseu-
docode of the algorithm is shown in Algorithm 1. We use a global integer counter
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Algorithm 1: Caching Algorithm Template
Data: Accessed Object b, Size of object b: sb , Used, Capacity, CacheState, History
Result: true if b is inserted in the cache, false otherwise

1 Time++;
2 If b is contained in History then retrieve the latest information about this object, otherwise create a new History entry for b;
3 Set object’s b last access time to Time;
4 if Object b is in the cache then

// Cache Hit
5 Remove b from the CacheState and re-insert it with ratio ri(Time);
6 return false;
7 else

// Cache Miss
8 if sb + Used ≤ Capacity then

// Object b fits in the cache
9 Insert object b in the CacheState with ratio ri(Time) ;

10 Used=Used+sb;
11 Insert b into the cache;
12 return true;
13 else

// Object b does not fit in the cache
// Evaluate whether b should be inserted in the cache using the weight heuristic

14 Compute the object’s b weight wb(Time);
15 Maintain the sum of the weights of the objects that will be evicted as sumWeights = 0;
16 Set freeSpace = Capacity - Used;
17 foreach object next in CacheState in ascending order of ratio do
18 if sumWeights + wnext(Time) < wb(Time) then
19 sumWeights = sumWeights + wnext(Time);
20 freeSpace = freeSpace + snext;
21 Add next to the Eviction List.;
22 if freeSpace ≥ sb then
23 exit the loop;

24 if freeSpace < sb then
// Haven’t found candidates for eviction

25 Object b is not inserted in the cache;
26 return false;
27 else

// Found candidate objects for eviction
28 Evict from the cache all the objects in Eviction List;
29 Insert object b in the CacheState with ratio ri(Time) ;
30 Insert b into the cache;
31 return true;

Time to simulate time which is incremented each time an object is accessed.
The algorithm maintains two data structures: the CacheState and the History.

The CacheState contains all the information about the objects that are currently
in the cache, including the ratio ri(u) at time u and their size. The CacheState is
implemented as a list sorted by ri(u) in ascending order. In practice, by making
use of a probability function that satisfies Assumption 3.1, a caching algorithm
can maintain the correct sorted order as objects are accessed, without updating the
ratios of all the objects in the cache each time.

The History contains metadata about all the objects that have been accessed
in the past, such as their size, and time of last access, and can be implemented
as a hash table keyed by the objects. Since the History grows over time, one
can restrict the number of entries in this data structure, or remove from History
objects that have not been accessed for a long period of time.
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Let us consider a cache of size Capacity. Let Used be the current size of
the cache used to store objects. When an object b is accessed, the Time counter
is incremented by 1, and if the object is contained in History then the latest
metadata about the object is retrieved. If the object b is not present in History
then a new entry is created for it (Lines 1-3).

The algorithm then checks whether the object is already in the cache (cache
hit) or not (cache miss). In case the object b is already in the cache, the algorithm
needs to update the object’s corresponding metadata, namely, its latest access time
as well as its ratio rb(Time). Note that since the CacheState is implemented as
a list sorted by the ratios of the cached objects, we need to remove object b from
the list, update its ratio, and then re-insert it to keep the correct sorted order (Lines
4-6). We would like to emphasize that if the probability function of the algorithm
satisfies Assumption 3.1, then we do not need to update the ratios of the cached
non-accessed objects to reflect the new value of the Time counter since the sort
order is correctly maintained.

If the object is not contained in the cache (cache miss), then the algorithm
checks whether there is enough free space in the cache to accommodate the ob-
ject. If so, the object is inserted into the cache (Lines 8-12). Otherwise, the algo-
rithm uses the weight heuristic to identify whether the newly-accessed object
should be cached.

As we previously discussed, the weight heuristic attempts to minimize
insertions in the cache, since they can negatively affect the workload performance.
The heuristic applies a greedy approach to maximize the total weight of the objects
in the cache each time a cache insertion decision needs to be made. Following
the approximate solution presented in Section 2, the heuristic traverses the objects
stored in CacheState in ascending order of ratios, attempting to identify potential
candidates for eviction in order to accommodate object b. The heuristic maintains
a list of potential candidate objects for eviction, namely Eviction List. At
every step, the algorithm checks whether by adding the object currently under
consideration to the Eviction List, the total weight of the candidate objects for
eviction would be less than the weight of the newly-accessed object b. In this
case, the object currently under consideration is added to the candidate Eviction
List (Lines 18-23). Otherwise, the object currently under consideration is not
added to the Eviction List, and the algorithm proceeds with the next object in
the sorted list. The heuristic terminates if enough space for the newly-accessed
object is found (Lines 22-23), or if all the objects in the list have been examined.
If the total size of the objects in the Eviction List is enough, then object b is
inserted in the cache (Lines 24-31).
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3.3 Estimating the Probability of Access
In this section, we present in detail the SLRU-K and EXD algorithms for external
caches. Both algorithms are instantiations of the template presented in the pre-
vious section but utilize different definitions of pi(u). Because of the different
nature of the probability functions, the two algorithms maintain different types of
metadata per object. More specifically, the EXD algorithm requires fewer metadata
items per object than the SLRU-K algorithm.

3.3.1 The SLRU-K algorithm

The Selective LRU-K (SLRU-K) algorithm is an extension of the LRU-K al-
gorithm that takes into account the variable size of the objects. As opposed to
LRU-K, the SLRU-K algorithm does not insert each accessed object into the cache,
but rather selectively places objects in the cache using the weight heuristic.

For each object i, the SLRU-K algorithm maintains a list of times of its K most
recent accesses sorted in descending order, namely Li = [ui1, ...,uiK] where each
ui j is equal to the value of the Time counter at the jth most recent access of the
object i. Thus, the time of the last access of the object is represented by ui1 and
the time of the Kth most recent access is represented by uiK . This list is updated
when the object is accessed, by introducing a new value (time of last access) in
the head of the list and dropping the last value, if needed, in order to keep the list
limited to at most K values.

DEFINITION 3.1. For a given object i and current time u, let Ti(u) = u−uiK +1
be the number of object accesses since object i’s Kth most recent access.

The estimate used by the SLRU-K algorithm for pi(u) is based on a model as
follows. Suppose Xu,Xu−1,Xu−2, . . . are independent and identically distributed
Bernoulli random variables, each with success probability p. Let T be the ran-
dom variable whose value is determined from ∑

T−1
i=0 Xu−i = k and Xu−T+1 = 1.

Thus, T is the cardinality of the smallest interval of consecutive random variables
Xu,Xu−1, . . . ,Xu−T+1 that contains the first K successes in the above sequence.
We wish to estimate p by observing the value of T . It follows that the maximum-
likelihood estimate of p is p = K

T . Based on this model, the SLRU-K algorithm
estimates the probability that object i will be accessed at time u+1 as

pi(u) =
K

Ti(u)
, (2)
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where Ti(u) is the total number of accesses in the interval (see above) that includes
the K most recent accesses of object i until time u.

Note that the estimate pi(u) is changing over time as more accesses are hap-
pening, and the value of Ti(u) changes. The SLRU-K algorithm takes into account
the new values of these estimates since the list of the last K accesses of each object
is updated.

PROPOSITION 3.1. The probability function of the SLRU-K method has the prop-
erty described in Assumption 3.1.

Proof.

pi(u) > p j(u)
⇔ K/Ti(u) > K/Tj(u)
⇔ Ti(u) < Tj(u)

⇔ u−uiK +1 < u−u jK +1
⇔ u+∆u−uiK +1 < u+∆u−u jK +1

⇔ Ti(u+∆u) < Tj(u+∆u)
⇔ k/Ti(u+∆u) > k/Tj(u+∆u)
⇔ pi(u+∆u) > p j(u+∆u) .

3.3.2 The EXD algorithm

In this section, we present the novel algorithm we developed for external caches,
namely, the Exponential-Decay (EXD) caching algorithm. The algorithm im-
plements the template presented in Section 2, and makes use of a single parameter
(a) that determines the weight of frequency vs. recency of data accesses. In this
section, we focus on how the EXD algorithm approximates the probability pi(u).

The algorithm maintains a score for each object. The score Si(u) of object i
at current time u is defined as follows.

DEFINITION 3.2. Denote by

ui1 > ui2 > · · ·

the time points at which object i was previously accessed, then

Si(u) = e−a(u−ui1)+ e−a(u−ui2)+ · · · ,

where a > 0 is a constant whose value is yet to be determined.
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As shown, the score of an object depends on the value of the parameter a.
The value of this parameter essentially determines how recency and frequency are
combined into a single score. The larger the value of a, the more emphasis on
recency versus frequency. The value of a can also be chosen adaptively as we will
describe in Section 3.4. The EXD algorithm makes the following assumption:

ASSUMPTION 3.2. For a given object i, at the current time u, Si(u) is proportional
to pi(u).

Notice that our proposed caching algorithm does not require exact knowledge
of the values of pi(u) of the accessed objects. It rather needs to know the relative
order of the ratios ri(u) of all different objects. For this reason, the EXD algorithm
substitutes the object’s probability function pi(u) with the object’s score Si(u) in
Algorithm 1.

It follows that at any given point in time u, the EXD algorithm needs to compute
the score Si(u) of the objects. The following proposition describes how we can
efficiently compute the score of an object at a specific point in time, given only
the time of its last access, and the corresponding score at that time. Note that,
unlike the SLRU-K algorithm which needs to maintain the last K access times for
each object, the EXD algorithm reduces the memory footprint by keeping only the
time of the last access of each object.

DEFINITION 3.3. For an object i, the score Si(ui1 +∆u) can be calculated if we
only keep the most recent time of access ui1 and the score Si(ui1).

Proof. Obviously, if object i is not accessed during the interval (ui1,ui1 +∆u],
then

Si(ui1 +∆u) = Si(ui1) · e−a∆u (3)

and if it is accessed at time ui1 +∆u for the first time after time ui1, then

Si(ui1 +∆u) = Si(ui1) · e−a∆u +1 . (4)

It follows that the score Si(u) can be calculated for any time u > ui1 before
the next object access. Furthermore, the scores decay exponentially and can be
approximated by zero after they drop below a certain threshold. This allows us to
stop maintaining history for objects that have not been accessed for a long time.

PROPOSITION 3.2. The scoring function (and thus the probability function) of the
EXD method has the property described in Assumption 3.1.
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Proof. Equation 3 implies that between object accesses, the order on the set of
objects (that have not been accessed during the time interval) implied by the ratios
does not change, i.e.,

Si(u) > S j(u)

⇔ Si(u) · e−a∆u > S j(u) · e−a∆u

⇔ Si(u+∆u) > S j(u+∆u) .

Algorithm 2: Adaptor
Data: boolean CacheHit, boolean ObjectInserted, long objectSize
Result: new value of algorithmic parameter newParameter

1 eventNo++;
2 Update the BHR(currentParameter) and BIR(currentParameter) based on the values of CacheHit,

ObjectInserted, and objectSize;
3 if (eventNo == maxEventsPerRound) then

// end of current round
4 eventNo = 0;

// Update the BHR and BIR values taking into account all the rounds so far
5 BHR(currentParameter) = weightedAverage(previousBHR(currentParameter), BHR(currentParameter));
6 BIR(currentParameter) = weightedAverage(previousBIR(currentParameter)), BIR(currentParameter));

// Select the new value of the parameter
7 Group the parameters in CandidateValues according to their corresponding BHR observed so far;
8 if (no time for exploration) then
9 selectedGroup = pick group with highest representative BHR;

10 else
11 selectedGroup = pick group with probability proportional to its BHR;

12 newParameter = pick the parameter value in selectedGroup with the minimum BIR value;
13 return newParameter to the caching algorithm;
14 else

// not the end of current round
15 newParameter = current value of the parameter;
16 return newParameter to the caching algorithm;

3.4 Adaptive SLRU-K and EXD
Both the EXD and the SLRU-K algorithms depend on parameters (a, K). The be-
havior of the algorithms can significantly change based on the values of a and K.
As we will show in Section 5, there is no single value of a (or K) that works well
across all possible workloads.

Figuring out the best value of the algorithmic parameter is difficult for two
reasons: (1) The optimal value of the parameter depends heavily on the workload
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access pattern, and (2) The workload access pattern is not stable over time. In this
section, we present an adaptive algorithm (Adaptor) that automatically adjusts
the value of the algorithmic parameter in order to improve overall performance.

The Adaptor can be used with both the SLRU-K and the EXD methods. It oper-
ates along with the caching algorithm and exchanges information with it. Each ob-
ject access is treated as an event. At every event, the caching algorithm informs
the Adaptor whether the event was a cache miss or a cache hit, and whether the
object was inserted into the cache. The Adaptor uses this information to adjust
the algorithmic parameters over time.

The Adaptor takes into account two metrics when making decisions about the
value of the algorithmic parameter. The primary metric is the byte hit ratio (BHR)
which is a standard comparative performance metric used in prior work on caching
variable-size objects [6, 29, 2, 27]. The BHR is the fraction of the requested bytes
that was served from the cache. The higher the BHR, the fewer I/O requests need
to be made, and the greater the overall performance. As in previous work, our
primary goal is to maximize the BHR.

In an external caching system, such as in HDFS cache, cache insertions com-
pete for resources with the process that needs to access the data, and thereby slow
down the workload. To quantify the overhead of each algorithm with respect to
cache insertions, we introduce a secondary metric, namely the byte insertion ratio
(BIR). The BIR is the fraction of the requested bytes that the caching algorithm
decided to insert into the cache.

In our environment, it is desirable to maximize the BHR so that the hot set is
always cached while maintaining a low BIR if possible. Our Adaptor constantly
evaluates the behavior of the caching algorithm by measuring these metrics, and
its primary goal is to maximize the BHR. From all the values of the algorithmic
parameter that maximize the BHR, the Adaptor prefers the one that minimizes
the BIR, since it reduces the cost of insertions in the cache.

The pseudocode for the Adaptor is presented in Algorithm 2. The algorithm
uses a set of pre-defined parameter values, namely CandidateValues. In case of the
SLRU-K algorithm, the CandidateValues set contains the following values for the
K parameter: 1,2,4,6,8. In the case of the EXD algorithm, the CandidateValues
set contains six a values equally-spaced in the log space with amin = 10−12 and
amax = 0.3. These values cover a large range of potential parameter instantiations
that can successfully be applied in many workload scenarios. For each potential
value of the algorithmic parameter i ∈ CandidateValues, the Adaptor maintains
the observed BHR(i) and BIR(i) achieved with the value i so far.

The algorithm operates on rounds that consist of a fixed number of events.
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After every event, the Adaptor updates the BHR and BIR values observed for
the current value of the parameter (currentParameter), based on the information
received from the caching algorithm (Line 2).

When the last event of the round is processed, the BHR and the BIR val-
ues that correspond to the current parameter value are updated using a weighted
average over the observed BHR and BIR values across all rounds, giving more
emphasis on the observations of the last round (Lines 3-6). The Adaptor then
re-evaluates the value of the algorithmic parameter. The re-evaluation process
consists of three steps. In the first step, the Adaptor groups the parameter values
of the CandidateValues set, according to their observed BHR so far. Parameter
values with BHR values within a certain threshold of each other are placed in the
same group (Line 7). Each group has a representative BHR value, which is the
average of the BHR of its members. In the next step, the Adaptor picks the group
with the highest representative BHR (Lines 8,9). Occasionally, at this step, the
Adaptor selects a group with probability proportional to the BHR of the group
(Lines 10,11). This happens so that the parameter space is explored by observing
the behavior of the caching algorithm for different values of the parameter. After
a group has been selected, the Adaptor selects a member of this group by taking
into account the BIR values that have been achieved so far by the members of
the group. More specifically, it picks the parameter value that has resulted in the
lowest BIR so far (Line 12).

After the value of the parameter has been selected, the Adaptor informs the
caching algorithm of the new value (Lines 13,16). The caching algorithm, then,
updates the ratios of the objects in the History and the CacheState to reflect the
new value.

4 System Implementation
In this section, we briefly describe the implementation of our caching algorithms
in Big SQL [5], IBM’s SQL-on-Hadoop offering, which is part of the IBM®

InfoSphere® BigInsightsTM data platform. We use the HDFS cache mechanism
that is part of the HDFS file system, and is supported by the platform.

Big SQL [5] leverages IBM’s state-of-the-art relational database technology
to execute SQL queries over HDFS data, supporting all the common Hadoop file
formats; text, sequence, Parquet and ORC files. The Big SQL coordinator com-
piles and optimizes the query. The database workers read HDFS data directly and
execute relational operations.
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A fundamental component in Big SQL is the scheduler service, which as-
signs HDFS blocks to database workers for processing on a query by query basis.
The scheduler identifies where the HDFS blocks are, and decides which database
workers to include in the query plan. The assignment is done dynamically at run-
time to accommodate failures: scheduler uses the workers that are currently up
and running. In case of partitioned tables, which are common in SQL-on-Hadoop
environments, selection predicates are pushed down to the scheduler to eliminate
partitions that are not relevant for a given query. As the scheduler is aware of
which data objects are accessed for each query, we incorporated our caching al-
gorithms in the scheduler service.

The caching algorithm operates at the level of table partitions, considering un-
partitioned tables as consisting of a single partition. While each partition may
itself consist of multiple HDFS files of different sizes, the caching algorithm
maintains metadata (see Section 3) per-partition rather than per-file to minimize
memory footprint. For every scan operation in a query, the Big SQL scheduler
first eliminates unnecessary partitions, and then invokes the caching algorithm to
decide which partitions to insert into the HDFS cache. The scheduler uses the
appropriate HDFS APIs [13] to instruct HDFS to cache a partition. Note that
HDFS performs the actual cache insertions, not Big SQL. The Big SQL sched-
uler runs a separate thread for the Adaptor, in case of adaptive algorithms. This
thread communicates with the thread running the caching algorithm to exchange
the necessary information (see Section 3.4).

The HDFS cache [13] implements its own algorithms to decide which replica
of a given block will be cached, and in which DataNode. During query execution,
the Big SQL scheduler always attempts to assign data to worker nodes optimizing
for data locality in a best effort fashion, giving priority to memory locality, and
then disk locality. More specifically the scheduler, gathers the locations of all the
replicas of a given block that will be accessed by the query, and attempts to first
assign the in-memory replicas to the workers that host them, then assigns the local
on-disk replicas, and finally incorporates accesses to remote replicas.

Data on HDFS may occasionally change. For example, deletion of files, file
appends, or file additions in a table or partition can be performed without going
through the Big SQL interface. For this reason, the caching algorithm maintains a
timestamp for each partition (table) in the cache. The timestamp is the time of the
latest modification of all the files that comprise the partition (or table). When the
partition (or table) is accessed again, the algorithm checks the latest modification
time for this data to identify potential data changes since the last time this data
was accessed. In case there has been a change, the algorithm compares the new
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size of the data with the size of the previous access. If the new size is smaller
than the one stored in the metadata, then one or more deletion operations have
been performed and some files would no longer reside in the HDFS cache. This
is because, when a cached HDFS file is deleted, HDFS automatically removes
it from the HDFS cache. In this case, the caching algorithm only updates its
metadata (latest modification time, new size of the data). In case of file appends
or additions, the partition (or table) is removed from the cache, and we try to
re-insert it into the cache with its new data size.

5 Experimental Evaluation
In this section, we provide a comprehensive evaluation of our proposed algo-
rithms with state-of-the-art caching policies. We begin with a simulation study
which demonstrates how well our algorithms adapt to various data access patterns.
Simulation studies, while admittedly artificial, give us fine-grained control on the
workload pattern, and allow us to reason about the comparative performance of the
algorithms without being clouded by incidental system implementation or hard-
ware details (e.g., CPU efficiency, I/O and network bandwidth). For this reason,
simulation studies have been extensively used to evaluate caching algorithms in
prior work [23, 25, 18, 6, 20, 31, 17, 27]. We, then, back up these findings with
experimental results running IBM’s Big SQL on various workloads in a cluster
environment in Section 5.2.

5.1 Simulation Study
5.1.1 Simulator Design

To evaluate our algorithms under various scenarios, we implemented a simulation
framework that generates synthetic workloads accessing data objects whose sizes
are drawn from various distributions. The simulator framework is similar to the
one used in [10] in the context of Map-Reduce, but is extended to accommodate
objects of different sizes.

The simulator framework consists of a data object generator and three work-
load generators. The data generator creates a database D, consisting of objects
with different sizes, drawn from various distributions such as fixed (constant), uni-
form, log-normal, and log-uniform distributions. The workload generators gener-
ate sequences of accesses to these objects.
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The frequency-based workload generator Wf emphasizes the frequency of ob-
ject accesses. For example, in a partitioned table in a SQL-on-Hadoop system,
it is likely that the last year’s partitions will be more frequently accessed than
partitions from a decade ago. Wf generates a workload in which objects from a
predefined subset, namely, the coreSet, are accessed more frequently than the re-
maining objects. The Wf generator either picks an object at random, uniformly,
from the coreSet (with probability p f ), or uniformly from D (with probability
1− p f ).

The recency-based workload generator Wr emphasizes the recency of object
accesses. More specifically, Wr keeps a sliding window, called the stickiness win-
dow, over the sequence of object accesses. The stickiness window size determines
the number of recently-accessed objects that are more likely to be accessed again
in future requests; the larger the stickiness window size, the longer an object will
persist in the workload. The Wr generator either picks an object at random, uni-
formly, from the stickiness window (with probability pr), or uniformly from D.
In the latter case, the selected object will be inserted into the stickiness window,
applying an LRU eviction policy if necessary.

The hybrid workload generator Wh generates a workload with both frequency
and recency characteristics. Given a probability parameter ph, to generate each
access, Wh invokes either Wr with probability ph or Wf with probability 1-ph. In
this case, the hotset evolves over time based on the recent accesses, but it also
contains some objects, which are accessed more frequently than others.

5.1.2 Evaluation

In this section, we present our results using our simulation framework. We now
present our experimental setting:
• Data: We generated a database of size 1M, using objects whose sizes were

drawn uniformly from the range [1,1999].1 This distribution allows us to eval-
uate scenarios with a wide range of data object sizes. In the interest of brevity,
we omit similar results that we obtained by varying the distribution width, and
choosing other size distributions such as log-normal or log-uniform.

• Evaluation Metrics: We evaluate various caching algorithms using the byte hit
ratio (BHR) and the byte insertion ratio (BIR) metrics (see Section 3.4). When
comparing algorithms, our primary goal is to maximize the BHR. Among all the
algorithms that maximize the BHR, we prefer the one that minimizes the BIR,

1The unit of data size does not affect the results.
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Figure 1: Comparison of the BHR various caching
algorithms using the Wf generator

since it minimizes the cost of cache insertions.
• Caching Algorithms: We evaluate our proposed EXD and SLRU-K algorithms

for various values of the parameters a and K, as well as their adaptive ver-
sions, namely, Adaptive EXD and Adaptive SLRU-K. The well-known LRU-K
method extended to accommodate variable-size objects has been evaluated in
the context of web caching [6] only when K = 1. We further evaluate the ex-
tended LRU-K algorithm for multiple values of K. We note that, the main dif-
ference between the LRU-K and the SLRU-K algorithms is that the former inserts
every accessed data object into the cache whereas the latter performs selective
cache insertions. Finally, we evaluate the GreedyDual-Size (GDS) algorithm
[6]. The GDS algorithm is developed for web caching, is parameter-free, is able
to accommodate various file sizes and has been shown to outperform various
algorithms for web caches [6]. To the best of our knowledge, the GDS algo-
rithm is the state-of-the-art algorithm for variable file sizes in the context of
web caching.

Frequency-based workload In our first experiment, we use the Wf workload
generator. The coreSet contains 10% of the data objects in D. The probabil-
ity p f is set to 0.2. We also performed experiments setting the coreSet size to
1%,2%,5%,20% of the data objects and p f to 0.1, 0.3, and 0.5. These values
produced similar results, hence are omitted.

Figures 1 and 2 present the byte hit ratio and byte insertion ratio for different
caching algorithms, and cache sizes. Regarding the BHR metric, we observe the
following:
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Figure 2: Comparison of the BIR various caching
algorithms using the Wf generator

1. The value of K significantly affects the behavior of both the LRU-K and the
SLRU-K with greater values of K providing higher BHR. This is because the
lower the value of K, the more emphasis is given by the algorithm on the re-
cency than the frequency of data accesses, which is the focus of the Wf gener-
ator.

2. The LRU-K and the SLRU-K algorithms have very similar BHR for the same
value of K, since both algorithms use the same probability function, and thus
identify similar hotsets. However, the performance of the two algorithms dif-
fers with respect to the BIR metric as we discuss next.

3. The performance of the EXD algorithm with respect to the BHR metric varies
significantly as the parameter a varies. More specifically, the lower the value
of a the better the BHR since a lower a gives more emphasis on the frequency
of object accesses.

4. The GDS algorithm has similar BHR values to the LRU-1 and EXD(0.3) algo-
rithms, both of which give emphasis to recency.

5. Finally, the parameter-free Adaptive EXD and the Adaptive SLRU-K algo-
rithms are able to identify the correct values of K and a that result in high BHR
for all cache sizes. Notice that the Adaptive EXD provides slightly better BHR
values.

Regarding the BIR metric, we can observe the following:
1. The SLRU-K algorithm has significantly lower BIR than the LRU-K algorithm

for the same value of K due to the weight heuristic that attempts to avoid
unnecessary insertions whereas LRU-K performs an object insertion for every
cache miss.
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2. As the value of K decreases, the BIR of the SLRU-K metric decreases. When
the value of K is small, the algorithm gives more emphasis on the recency of
data accesses, trying to maintain the most recently accessed data in the cache,
thus incurring a large number of cache insertions. Obviously, this behavior is
not desirable for workloads generated by the Wf generator.

3. The performance of the EXD algorithm with respect to the BIR metric varies
with the parameter a. More specifically, the lower the value of a, e.g., 10−12,
the better the BIR since a lower a gives more emphasis on the frequency of
object accesses, and less on the recency of accesses.

4. The GDS algorithm has similar BIR values to the LRU-1 and EXD(0.3) algo-
rithms, both of which give emphasis to recency.

5. The adaptive Adaptive EXD and the Adaptive SLRU-K algorithms are able
to identify the correct values of K and a that result in low BIR for all cache
sizes. Notice that the Adaptive EXD can provide better BIR values than the
Adaptive SLRU-K.

6. Another observation is that the trends for the BIR metric are not the same across
different algorithms. Some algorithms, like LRU-K have a very high BIR at
small cache sizes, which decreases as the cache becomes larger. This is because
the larger the cache size, the more objects fit in the cache and thus cache in-
sertions are avoided. However, other algorithms such as EXD and SLRU-K have
very low BIR for small cache sizes. The reason is that the weight heuristic
that these algorithms use, identifies that it is not worth to keep replacing objects
in the cache when the hotset does not fit in the cache, but it is more beneficial
to maintain a few popular objects in the cache. This policy results in slightly
higher BHR than LRU-K for small cache sizes, and much lower BIR.
Overall, we observe that the Adaptive EXD and the Adaptive SLRU-K algo-

rithms learn the correct values of the parameter, and thus produce high BHR, and
low BIR for all cache sizes.

Recency-based workload In the next experiment, we use the Wr workload gen-
erator and set pr to 0.2 . The stickiness window contains 10% of the data objects
in D. Other values produced similar results, and hence are omitted.

Figures 3 and 4 present the BHR and the BIR values for various caching
algorithms and cache sizes. In this case, the algorithms that value recency more
than frequency in their caching decisions (such as LRU-1, EXD(0.3), GDS) exhibit
the best BHR performance. Notice that these algorithms also have the highest BIR
values. This is not surprising since insertions are necessary in order to keep up
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Figure 3: Comparison of the BHR various caching
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with hotsets that are based on the recency of data accesses. In other words, in
order to observe high BHR values on workloads with hotsets that mainly include
the most recent data accesses, an algorithm must not avoid insertions; otherwise,
accesses on the hot data will result in cache misses. Note however, that a high BIR
value does not necessarily mean that the “correct” data is actually cached. For
example, the LRU-2, LRU-6 algorithms have lower BHR than LRU-1, although
they have similar or higher BIR value. This is because they give less emphasis on
the recency of data accesses.

Another observation is that the Adaptive SLRU-K and the Adaptive EXD al-
gorithms are able to achieve very good BHR values. The BIR values of these
algorithms are very low for small cache sizes, and then significantly increase for
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Figure 5: Comparison of the BHR various caching
algorithms using the Wh generator
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Figure 6: Comparison of the BIR various caching
algorithms using the Wh generator

cache sizes greater than 5% of the database size. The reason for this behavior is
that when the hotset is much larger than the available cache space, the adaptive
algorithms make the decision to cache a small set of objects and do not replace
them frequently. In this way, they are able to get a higher BHR than algorithms like
EXD(0.3), which generally behaves very well for recency-based workloads. As
the cache size increases, and more hot data can be accommodated in the cache, the
adaptive algorithms do not avoid insertions in order to always cache the evolving
hotset. In summary, the adaptive Adaptive EXD and the Adaptive SLRU-K al-
gorithms produce high BHR for all cache sizes by making correct cache insertion
decisions.
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Hybrid workload In our final experiment, we use the Wh workload generator.
In this example, the coreSet as well as the stickiness window contain 10% of the
data objects in D, and their corresponding probabilities p f and pr are both set to
0.2. Initially, the coreSet and the stickiness window contain different objects. We
set the cache size to 10% of the database size (other cache sizes produced similar
results), and vary the probability of using the Wr generator (ph).

Figures 5 and 6 show the BHR and the BIR values for various values of ph.
When ph = 0, only the Wf generator is invoked and thus the algorithms that value
frequency such as LRU-6, SLRU-6 and EXD(10−12) produce the best BHR val-
ues. As the value of ph increases, and thus the Wr generator also gets invoked,
the performance of these algorithms with respect to the BHR becomes worse
and algorithms such as GDS, EXD(0.3) start becoming better. When ph = 1, the
frequency-based algorithms have the worst behavior, whereas the recency-based
algorithms produce the best BHR. An interesting point is that the Adaptive EXD
and Adaptive SLRU-K methods are able to adjust the values of K and a so that
they can produce good BHR results irrespective of the value of ph. None of the
other algorithms exhibit this adaptive behavior, as they are only optimized for spe-
cial workload characteristics. Similarly, the adaptive methods adjust the number
of insertions they perform in order to get the best result. When ph is high, the
adaptive methods perform insertions in order to keep up with the recency char-
acteristics of the hotset. Finally, we again observe that the adaptive SLRU-K and
EXD algorithms have lower BIR values than the non-adaptive algorithms when that
does not negatively impact the BHR values.

5.1.3 Summary

Our simulations use a variety of workloads, varying the extent to which the ac-
cess pattern of objects is affected by frequency and recency of past accesses to
them. Overall, we observed that the basic SLRU-K and EXD algorithms for differ-
ent parameters achieve high BHR and low BIR for different workloads, but none
of them individually performs well on all of them. However, the adaptive algo-
rithms, especially the Adaptive EXD algorithm, achieve the best balance between
BHR and BIR, effectively producing the lowest BIR without negatively affecting
the BHR. Finally, none of the traditional algorithms can consistently outperform
our Adaptive EXD algorithm across different workload patterns.
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rithms using the TPC-DS like workload

5.2 Cluster Experiments
In this section, we present experiments in a cluster environment using IBM Big
SQL and three different workloads.

5.2.1 Experimental Setting

For our experiments, we use a cluster of 10 nodes. One of the nodes hosts the
HDFS NameNode, the Big SQL coordinator, the scheduler, and the Hive Meta-
store. The remaining 9 nodes are designated as “compute” nodes. Every node
in the cluster has 2x Intel Xeon CPUs @ 2.20GHz, with 6x physical cores each
(12 physical cores total), 8x SATA disks (2TB, 7k RPM), 1x 10 Gigabit Ethernet
card, and 96GB of RAM. Out of the eight disks, seven are used for storing HDFS
data. Each node runs 64-bit Red Hat Enterprise Linux Server 6.5. We use the im-
plementation of the caching framework described in Section 4, using InfoSphere
BigInsights 3.0.1 enterprise release, and test end-to-end system performance.
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5.2.2 TPC-DS Like Workload

In this section, we present cluster experiments using a workload inspired by the
TPC-DS benchmark2. This workload is published by Impala developers3, and
has previously been used to compare the performance of various SQL-on-Hadoop
systems (e.g., [28], [11]). The workload consists of 20 queries that include multi-
way joins, aggregations, and nested sub-queries. The fact table is partitioned,
whereas the small dimension tables are not partitioned. We use a 3TB TPC-DS
database, and a 300GB HDFS cache.

We compare the different caching algorithms with a theoretically optimal ref-
erence algorithm, which we call the Prophetic prefetcher. Before running
each query, this algorithm uses prior knowledge of the entire workload trace to
prefetch as much of the data accessed by the next query as fits in the cache. As a
result, all but 2 of the 20 queries ran entirely in memory. Further, the evaluation of
Prophetic prefetcher only measures the execution time of the queries, ignor-
ing the time to prefetch the data into memory4. For each algorithm, we performed
the experiment 3 times using a warm HDFS cache, and report the average over the
3 runs.

Figure 7 shows the geometric mean of the running times of various caching al-
gorithms normalized to the running time of the offline Prophetic Prefetcher.
As shown, the adaptive algorithms achieve the best performance. The Prophetic
prefetcher was only about 15% faster than the Adaptive EXD algorithm even
though it had a priori knowledge of the entire workload. The remaining algo-
rithms were not as efficient as the adaptive algorithms. For example, the LRU-1
algorithm achieved 63% of the Prophetic Prefetcher’s performance.

The workload’s total elapsed time was 2713 seconds when using the LRU-1
method and 2556 seconds with the LRU-2 method. The total elapsed time using the
Adaptive EXD algorithm was 1711 seconds. This is an important difference, es-
pecially if we consider that the best possible performance that can be achieved by
an offline algorithm is 1544 seconds (Prophetic Prefetcher). Figure 8 shows
the runtime of each query normalized to the query runtime using the Prophetic
Prefetcher. Ideally, a caching algorithm should produce query runtimes close
to the ones produced by the Prophetic Prefetcher. As shown in the figure, the
adaptive algorithms generally resulted in query runtimes close to those observed

2http://www.tpc.org/tpcds/
3https://github.com/cloudera/impala-tpcds-kit
4Recall that reading the data into the cache incurs additional cost that needs to be paid by

external caches
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Figure 8: Normalized Query Runtime for the
TPC-DS like workload

when the Prophetic Prefetcher was used. The LRU-1 algorithm, on the other
hand, did not perform as well as the adaptive methods. When comparing the best
performing online algorithm (Adaptive EXD) with the LRU-1 algorithm, we ob-
serve that all but one of the queries experienced speedups ranging from 1.03X to
2.3X , and the geometric mean of the speedups was 1.34X .

We also performed experiments with other values of the parameter K. The be-
havior was similar to the LRU-2 and SLRU-2 methods and these results are omitted
in the interest of space. Our results show that: (1) the adaptive algorithms grace-
fully adapt over time to produce the best performance results, and (2) the perfor-
mance achieved is close to the one achieved by a hypothetical offline algorithm
that prefetches the data needed by each query.

5.2.3 Hotset experiment

The goal of this experiment is to show which algorithms are able to correctly
identify the workload’s hotset, and how performance is affected. Our evaluation
compares the various caching algorithms with the HotSet Prefetcher, an algo-
rithm that has a priori knowledge of the entire workload, prefetches and caches
the hotset of partitions.

The TPC-DS like queries that we used in the previous experiment access a
wide range of data that keeps evolving over time making it difficult to identify
the workload’s hotset, and use the HotSet Prefetcher to upper-bound the per-
formance. 5 For this reason, we created a workload that operates on the 1TB
store sales TPC-DS fact table, and has a clear hotset. In this way, we can

5This is the reason we use the the per-query Prophetic Prefetcher to upper-bound perfor-
mance of the TPC-DS like workload.

28



evaluate which caching algorithms are able to identify this hotset.
Our workload consists of 50 queries that contain selections, projections and

aggregations. We have observed that corporate users of Big SQL and Hadoop
tend to frequently access their recent data, and more rarely their older/historical
data, while creating summaries for reports. Thus, the workload’s hotset consists
of the 250 most recently created partitions. Each query in our workload accesses a
subset of the table’s partitions. A partition is accessed either from the most recent
250 partitions uniformly at random with probability 0.5 (hotset), or uniformly
from the set of the remaining 1550 older partitions (coldset). The total size of
the 250 most frequently accessed partitions is approximately 170GB. We used a
170GB HDFS cache so that the hotset fits entirely in the cache.

Figure 9 shows the performance of the algorithms that we tested. The chart
plots the geometric mean of the running times of the algorithms normalized to
the running time using the HotSet Prefetcher. As shown in the figure, the
EXD(10−12) algorithm provided almost the same performance as the HotSet Prefetcher.
This is expected as this workload is essentially the best use-case for this algorithm,
which gives emphasis on the frequency of the data accesses as presented in our
simulation study. However, other values of a produce different (worse) perfor-
mance (e.g, EXD(0.3)). The parameter-free, adaptive methods were able to achieve
about 95% of the performance of the HotSet Prefetcher.

The total elapsed time of the workload with the Adaptive EXD method was
about 615 seconds, while the total elapsed time with the offline HotSet Prefetcher
was 549 seconds. Note that the adaptive algorithms occasionally re-evaluate the
parameter space, and thus, pay some exploration cost. Nevertheless, they are able
to perform very well under various workload patterns.

Another interesting point is that some algorithms like LRU-1 and EXD(0.3) re-
sulted in higher total elapsed time for this workload (934 seconds and 885 seconds
respectively) than a system that does not use the HDFS cache at all (837 seconds).
The reason is that these algorithms perform multiple cache insertions that com-
pete for resources with the query engine, essentially slowing down the workload.
Setting an algorithmic parameter incorrectly can result in unexpected system be-
havior. When comparing the Adaptive EXD algorithm with the LRU-1 algorithm,
we observe that all but seven of the individual queries experienced speedups rang-
ing from 1.08X to 6.02X , and the geometric mean of the speedups was 1.44X .
This result shows that not all caching algorithms are suitable for external caches,
and highlights the need for parameter-free adaptive algorithms.
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Figure 9: Comparison of various caching algo-
rithms using the synthetic workload

5.2.4 Concurrent Workload

In this experiment, we evaluate our algorithms using a complex workload with a
diverse mix of concurrent batch and interactive queries. Our goal is to investi-
gate how the performance of interactive workloads that have low response time
requirements gets affected by long running analytics workloads, such as batch
queries used for reporting, running concurrently for various caching algorithms.
In particular, we run batch analytics queries (the TPC-DS like workload described
in Section 5.2.2) concurrently with parallel streams of interactive queries. The
interactive queries are continuously executed using three parallel streams until the
TPC-DS like workload finishes. We, then, evaluate how the average response
time of the interactive queries gets affected by the batch queries and how the total
elapsed time of the TPC-DS like workload varies with the caching method.

The interactive queries are aggregations over a single partition of a large, 1T B
table. The table is a copy of the TPC-DS fact table used in the previous experi-
ments (Section 5.2.3). We created a separate table for the interactive queries in
order to force the batch and interactive queries to access different data sets, and
thus compete more aggressively for the cache space. We used the same access
pattern for the partitions of the table as in the previous experiment. More specif-
ically, the interactive queries access a partition either from the most recent 250
partitions uniformly at random with probability 0.5, or uniformly from the set of
the 1550 older partitions. Our total database size is 4T B and our HDFS cache size
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Figure 10: Comparison of various caching algo-
rithms using the concurrent workload

is 470GB.
To evaluate our results, we collect performance metrics for both the batch

queries and the interactive queries. Figure 10 shows the total elapsed time in
seconds for the TPC-DS like workload (left y-axis) as well as the average response
time in seconds of the interactive queries across the three concurrent streams (right
y-axis) for different caching algorithms.

As shown in the figure, the adaptive, parameter-free algorithms resulted in the
lowest elapsed time for the TPC-DS like workload. Whereas the TPC-DS like
workload ran for 3468 seconds with LRU-1 algorithm, it completed in just 2145
seconds with the Adaptive EXD algorithm (1.6X speedup). In fact, all but two
of the individual queries experienced speedups ranging from 1.06X to 2.21X , and
the geometric mean of the speedups was 1.47X .

Moreover, it is remarkable that the higher performance for the TPC-DS work-
load did not come at a cost of performance for the interactive queries. On the
contrary, while the interactive queries ran for an average of 12.15 seconds using
the LRU-1 algorithm, they ran in about 6.8 seconds using the Adaptive EXD algo-
rithm, an effective performance gain of 1.78X . A similar trend was also observed
for the Adaptive SLRU-K algorithm.

Our results show that the parameter-free, adaptive algorithms, especially the
Adaptive EXD algorithm, can provide the best performance for both the batch
queries and the interactive queries. Our findings confirm that the proposed algo-
rithms can deliver high performance for diverse concurrent workloads.
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6 Related Work
There is a lot of work in cache replacement policies developed in various con-
texts. For brevity, we point the reader to [23, 6] for a more comprehensive survey
of the existing literature. Instead, we highlight the most closely related work to
place our current work in the proper context. In the context of relational databases
and storage systems, there is extensive work on page replacement policies such
as the LRU-K [25], DBMIN [8], ARC [23], LIRS [17], LRFU [20], MQ [31] and
2Q [18] policies. There is also recent work on SLA-aware buffer pool algorithms
for multi-tenant settings [24]. Unlike our proposed algorithms, these policies op-
erate on fixed size pages since they mainly target traditional buffer pool settings.
Moreover, these policies assume that every accessed page has to be inserted into
the buffer pool, thus selective cache insertions lie beyond their remit. We also
note that our algorithms focus on caching raw data, unlike approaches like se-
mantic caching [9].

Many caching policies have been developed for web caches that operate on
variable size objects. The most well-known algorithms in the space are the SIZE [2],
LRU-Threshold [1], Log(Size) + LRU [1], Hyper-G [2], Lowest-Latency-First [29],
Greedy-Dual-Size [6], Pitkow/Recker [2], Hybrid [29], PSS [3] and Lowest Rel-
ative Value (LRV) [27]. The work in [6] has extensively compared various web
caching algorithms, and has shown that the GDS algorithm outperforms them. In
this paper, we presented experiments that compare GDS with our proposed meth-
ods, and have shown that our adaptive algorithms outperform GDS.

Self-tuning and self-managing database systems have been studied in various
contexts [7, 22]. In the context of caching, the ARC method [23] adapts its behav-
ior based on the data access pattern. Unlike our algorithms, ARC operates only
on fixed size objects and its adaptive design strongly depends on this assumption.

Exponential functions have been used before to model different types of be-
havior. For example, the work in [4] uses a power law with an exponential cuttoff
to model consumer behavior in various setttings. Our proposed Adaptive EXD
algorithm makes use of a parameterized exponential function to predict object re-
accesses but adapts the function based on the workload access pattern. To the best
of our knowledge, this is the first time that a caching algorithm makes use of an
adaptive exponential function.

In the context of Hadoop systems, Cloudera [15] and Hortonworks [13], two
major Hadoop distribution vendors allow the users to manually pin HDFS files,
partitions or tables in the HDFS cache in order to speedup their workloads. The
Impala [19] developers claim that the usage of HDFS cache can provide a 3X
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speedup on SQL-on-Hadoop workloads [15]. In the Spark ecosystem [30], Spark
RDDs can be cached in Tachyon [21], a distributed in-memory file system. To
the best of our knowledge, these systems do not use automatic algorithms that
identify the hotset but rather rely on the user to manually cache the data.

7 Conclusions
In this work we propose online, adaptive algorithms for external caches in the
context of Big Data systems. We experimentally show, through simulations and
cluster experiments, that our methods are able to adjust to various workload pat-
terns, and outperform a variety of existing static algorithms. Our experimental
results show that it is essential to use an adaptive algorithm that can automatically
adjust its behavior based on the workload characteristics. Because it is almost im-
possible to know the global system workload a priori, to identify the hotset over
time, to pick the correct algorithm, and its corresponding parameter value (e.g.,
K, a).
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