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ABSTRACT: A broad class of sub-optimal Maximum Likelihood Sequence Estimators is
presented. This class includes receivers using a simplified metric to perform the estimation, as
well as approximate noise spectrum and channel function. The case of equalizing a channel to a
partial response channel and using a Viterbi algorithm for the equalized channel is typical; here
the sub-optimality consists in the improper handling ol the noise, treated as white by the Viterbi

algorithm. Additional sub-optimality can be present due to imperfect equalization.

The performance of sub-optimal receivers belonging to this broad class is analyzed. Several

examples are given as a guide to performance computation.



1. INTRODUCTION

This work describes some aspects of sub-optimal Maximum Likelihood Sequence
Estimators (MLSE). The sub-optimality of the MLSE is present, for example, when the channel
is equalized to a partial response (PR) channel and then a Viterbi detector is used for the PR
channel. The sub-optimality resides, first, on the equalization which looses information for it
sub-utilizes the channel, and second on the improper use of the Viterbi algorithm assuming that
the noise is white, which almost certainly is not the case after equalization. Additional

sub-optimality may be present due to the fact that equalization may not be perfect.

In this paper we will examine the performance of sub-optimal MLSEs by calculating the
probability of the receiver to choose a sequence which is different than the transmitted one. This
calculation is a good approximation to the performance in case the two sequences chosen are
likely to be confused by the sub-optimal receiver and the frequency of the error sequence is a

good percentage of the totality of error sequences allowed by the system.

2. FRAMEWORK

The data consist of finite sequences with elements taken from a finite alphabet.
Furthermore, constraints are imposed on the data sequences due to codes. The set of all
possible such sequences is imbedded into an Euclidean space A of proper dimension, which we
will call the “Data Space.” The allowed sequences, therefore, are located in a constraint set C
contained in the Data Space. The channel maps Data Space points into points of an

“Observation Space” Y, as follows:
y=Hyay+n
where ay € CcA is the transmitted data sequence, Hj is a linear map from A into Y, n e Y is an

additive noise component and y € Y is the observation. The Observation Space Y will also be

modeled as a Euclidean space, but of possibly very high dimension. The actual observations
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may be continuous processes observed over a finite time, but here we will sample these processes
at a very high rate so that the energy outside the corresponding Nyquist band can be neglected.

The reason for this is to avoid certain technicalities concerning the noise.

The noise is a normally distributed non-degenerate random process in the sense that any
finite collection of its samples has a normal density function of full rank. This implies an
invertible covariance matrix. Let Ry be the covariance matrix of the noise n, i.e., Ry = Enn’
where here n e Y is a “column” vector which is matrix-multiplied by n’, its transpose, hence a
row vector, and the symbol E indicates stochastic expectation. Notice that Ry is an operator

mapping Y into Y.

Under the above conditions, it was shown in Ref. [1] that the MLSE for the input data
sequence can be obtained from the observation y by the [ollowing operations:

I: Calculate the statistic y = H0+y, where HJ = (HyRy ' Hp)™! HoRy! is the “Zero Forcing
Equalizer” followed by a sampler at clock rate, i.e., H(T is the so-called Pseudo-Inverse
of Hy. As usual, the prime, as in Hy, indicates the transpose of Hj.

2. Pick the point in C=A4 which is closest to y under the metric induced by the quadratic
form (., HyRy ' Hy.), where (.,.) is the Euclidean dot product in A.

The above operations correspond to the optimal receiver. The invertibility and boundedness
(stationary case) oJ“(H{]RU_lHO) were also considered in Refs. [1] and [3]. For completeness,

these issues are repeated here in Appendix A.

The above framework include, for example, the case of PAM systems like the Magnetic

Recording channel. In such system, the observation at instant t is given by

W) =) byh(s = KT) + n) (1)
k



where b € {1,0, — 1} are the components of the data sequence, h(t) is the step response of the
magnetic channel and n(t) is the noise component, assumed additive and normally distributed.
This is the NRZI formulation of the magnetic channel. In an alternative formulation, the NRZ,
the observations are given by an equation similar to (1) with the modification that b € {.5, —.5}
and h(t) is then the pulse response of the system. For finite data both formulations are
equivalent and it is possible to transform one into the other by a linear transformation, as will be

exemplified latter,

In the case of Magnetic Recording, in order to achieve stable solutions in the sense that
(HoRy IH[,)_l remains bounded as the amount of data goes to infinity, the channel have to be
formulated in terms of the NRZI sequences. The NRZI formulation has the draw back of
putting the additional constraint in the input sequence of having to alternate the signs of its
non-zero components. Although such constraint neither increases the complexity of the receiver
nor is difficult to incorporate in a trellis to compute the distances, the addition of a mapping
from the NRZI-Data Space to a NRZ-Data Space can be incorporated at the end of the
computation allowing the calculation to be performed in terms of NRZ data as will be
exemplified later. The removal of zeros from any channel function can be done in general by a

similar process.

The MLSE solution is independent of its implementation. Therefore, the performance can
be computed using the above framework, regardless of the implementation. We proceed in

formulating a fairly general sub-optimal receiver and computing its performance.

3. SUB-OPTIMAL RECEIVERS AND THEIR PERFORMANCE

The receiver derives the statistic y as in (i) above, but assuming that the channel map is H
(when it 1s, actually, /1) and that the noise covariance is R (rather than Ry). Then, the receiver
maps the data space A into a second data space B through the linear map L which is not

necessarily invertible or stable (bounded in the limit as the amount of data goes to infinity). In



the new data space B it uses a metric M to compute the distance from Ly to points in 1.C, the
image of the constraint set CcA. The map L permit, for the example of the magnetic recording
channel, to process the NRZ rather than the NRZI data, if so is desired. It also can be
identified with maps that are usually employed to “simplify” the metric, such as a “whitening”
processing. The arbitrary metric M permits the receiver to use simplified algorithms to reduce
the size of the related trellis in the computation of distances. Figure 1 illustrates the above

assumptions.

This formulation describes a broad class of receivers, including the sub-optimal receivers
analyzed in Refs. [1] and [2]. In Section 4 we will give several examples of commonly used

sub-optimal receivers fitting into this formulation.

We proceed in computing the probability that the above detector chooses a sequence a;
when the actual transmitted sequence is ay. Such error event will occur in case the statistic Ly
falls closer to La; than to Lag in the metric using M as kernel, that is, its probability is given by
(see Fig. 2):

Prob{error} = Prob{(L(y — a), ML{a; — a)) > .5(L(a) — ay), ML(a; — a;))} .
Let’s denote ¢ = a; — ;. Noting that y = Hty = H*(Hyag + n), it follows that

y—ag=H"(Hy— Hay + H'n

In the above expression, the left inverse property of the pseudo-inverse, i.e., H*Han = ay was

used (see expression for /™). Tlence, the error event becomes:

(LIT"n,MLe) > 5(Le, MLe) — (LH™ (Hy —H)ay, MLe)}



It remains to calculate the variance of the scalar (LH"n, MLe):

(LHn,MLe)* = (H*' L' MLen)(n, H* L'MLe) = (H*'L'MLe, R,H" 1’ MLe)

where R is the true covariance of the noisc and the primes denote transposes, as stated before.
Using the expression HY = (HW'R™VH)Y"1H'R™!, the final probability of error can be written

down:

—é— (e, L'MLe) — (H'R™ HY™ H'R™"(Hy — H)ap, L' ML)
Pr{error} =Q

(2)

V0, LML R H H'R™ RyR ™ HUH'R™ H) ™' L' MLe)

where

U ¢
ox) = \/g L cxpl: T ]d{ ;

Observe that the probability of error in not only a function of the error sequence, but also
depends on the actual sequence ag transmitted. This is the same feature observed in the

performance of the suboptimal receivers considered in Ref. [2].

Expression (2) seems formidable, but we will see that it simplifies in most applications and

its usefulness will be demonstrated by the following examples.



4. EXAMPLES

4.1 A Simplification

Let us first simplify expression (2) for the case when L is invertible. In this case, for the

following examples, we will select the metric M so that L'ML = II'R~ H, that is,
M=L""'rr7'aL™". (3)

The reason [or this is not evident at this point, but such selection leads to the optimal receiver,
. i A 4} . i . a

as will be seen. Denote HL™' = H. H is the channel function in case the input sequences are

elements of the second data space B. For consistence, call Lag = 30 and Le = 9, the sequence

and the error sequence in the B data space. Under these assumptions, (2) simplifies to:

1

% (6, AR f1e) - (H'R™(Hy— 1)4y, ¢)

J@, iR R 8)

Pr{error} = Q

(4)

4.2 An Optimal NRZI Channel

We start with some optimal receivers in order to become familiar with the approach taken
in this paper and to clarify some possible misconceptions on the use of equalization to simplify
the metric (Scction 4.4). The system considered here is the PAM system described by
Equation (1). Consider a minimum bandwidth channel (channel function within the Nyquist
bandwidth corresponding to the sampling rate; non-minimum bandwidth channels are discussed

in Appendix B) having channel function

ho(D)=1+ 9D + 2D,



Here, in addition to the regular matrix representation for the channel, we also use the channel
representation in terms of the D-transform. This representation is equivalent to the matrix
representation in case of stationary minimum bandwidth channels. Stationarity is invoked to
avoid end effects in finite sequences. The noise is white, with in band variance od. The inputs

are NRZI sequences, i.e., the elements are taken from the set {1,0,-1} with the constraint that

the non-zero entries have to alternate signs.

The receiver is an optimal MLSE, i.e., it assumes H = Hy, R=Ry= aé!, L =TI and the

metric M as in (3). Therefore, (4) reduces further to:
DY I S _ol 1
Pr{error} = Q{ 20, (e, Hylye) }— Q{ 20, IIH{,EH}

The worst error sequence occurs when a “1” is shifted to an adjacent location, i.e.,
e=..01-10.. (error sequences here have elements from the set {2,1,0,-1,-2}). Then, | Hgell can

be computed as follows:

Hy: 1 9 2
—HyD: q1 -9 -2
Hge "=" ho(D)(1 — D): I =1  uF B

As a result, [[Hyel® = (1)2 + (= 1) + (=.7)% + ( —.2)% = 1.54 yielding;

Prierror} = Q{J1.54 205} = 0{1.241/26,} .



4.3 An optimal NRZ Channel

Here we recompute the performance of the above channel, but using the NRZ description.
For that purpose, the transformation that brings the NRZI sequences into the NRZ is

L =1/1 - D. Consequently, the new channel function, as described in 4.1, is:

Hy”="(1 = Dya(D)=1— 1D — TD*— 2D" |

The error sequences, in this case, have entries from the set {1,0,-1}. The worst case is
¢=.0001000..,ie,a single error, vielding exactly the same performance as calculated in

Section 4.2.

The great advantage of using the NRZ description is that, in absence of code constraints,
the sequences, hence the error sequences are unconstrained. 1f codes are used, then the error

sequences have to be compatible with the code constraints.

4.4 Optimal Channel With Perfect Equalization

An equalizer is used with the channel described in 4.2 to change its function to 1 + D, a

PR-1 function, i.e., the equalizer transfer function is

fiD)=(1+ D)/(1 +.9D + 2D%).

At the output of the equalizer, the noise has covariance

Ro(D) = aafiDAD ™).

The optimal detector for the equalized channel is the one that uses iy(D) = | + D and Ry(D) as

above. The kernel for its metric is, then,



M(D) = ho(D™ )Ry (D)ho(D)
=05 (1+ D)1 +.9D + 2D (1 + 9D + 2D (1 + D™/(1 + D)1 + D7)

=0y (1+.9D +.2D%)(1 +.907" + 2D}

which is exactly the same as before equalization! In spite of the reduction of interfering bits,
there is no savings in the number of states in the trellis! The performance of this receiver follows

from (4):

Prierror} = Q{.5(e,Me)[\/(e,Me) } = Q{1.241/20,} .

a

The above estimate uses the worst case error sequence, e=...0 0 [ -1 0 0...

4.5 Sub-Optimal Channel with Perfect Equalization

We now consider the above equalized channel, but we use a standard Viterbi detector,
which assumes white noise at the output of the channel. Since the noise is assumed white, the
metric in this case is M(D) = 0‘2(1 + D)(1 + D7), hence the number of trellis states is reduced
from 4 to 2. The value of 2 is the value of the noise variance at the output of the equalizer
(02 = [.190{2]. This value, however, will not be needed). The Viterbi algorithm assumes

h(D) = hg(D) = 1 + D and R(D) = o*I. Hence, the performance can be computed from (4):

Prierror) = Q(.5(e,Me)l</ (e, 'R~ RyR ™" He) } .

Let’s compute Pr{error} for the same error event, (D) = 1 — D. The numerator of the argument

of the Q function is easily computed as the coefficient of D? in the expression
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e(D)e(D ™ Yro(DYho(D ™ )fo” == (1 + D)1 + D)1 = D)(1 — D7)

a

or, equivalently, as the sum of the squares of the coefTicients of the expansion

(1+ D)1 = D)jo* =L (1= DY

a

ie.,

(e,Me) = 2/02 ‘

This quadratic is the standard (distanc:c/sigma)2 traditionally used in the performance evaluation

of the Viterbi algorithm. It only holds for the optimal receiver, i.e., when the channel is actually

I + D and the noise is actually white.

The quadratic in the denominator is calculated here as the coefficient of D? in the power

series expansion of

e(DY(D)Ry(D)R(D ™ Ye(D™")/o*

2

Tp

4
a

(1=D)Y1+ DY+ D™ Y1 =D )1+ 9D+ 2D + 907" + 2D}

yielding

2

(] -1 =] UO
(e, /I’ R™' RyR™' He) = 2.75 2

a
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For the above evaluation the IBM symbolic language SCRATCHPAD was used. The
computation can also be done in the frequency domain by putting D = ¢ 7“7, carrying out the
operations and integrating. This technique will be used subsequently (see Appendix C for

details).

As a result,
Prierror} = Q{2/2042.75 } = Q{1.21/2a;} .

Note: It must be emphasized here that the choice of the error sequence e was arbitrary and, due
to the complex argument of the Q function in (4), there is no systematic approach (other
than exhaustive search) to find the worst error event. The same observation also apply to

the following example.

4.6 Sub-Optimal Receiver with Misequalized Channel
In this example, an attempt to execute the sub-optimal receiver described in 4.5 is made.

However, the equalizer’s transfer function turns out to be:

g(D)=1D""+ 1+ D +.1D*/1 + .9D + .2D*

rather than f{D) as in Section 4.4. Hence, its output to a step is

ho(D) =AD"+ 1+ D+.1D%.

The noise after equalization is, then,

Ro(D) = aog(D)g(D ™).
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A receiver that assumes Ry and Ag(D) will be optimal and perform as in 4.2 or 4.4. Here, the

receiver proceeds as in 4.5 assuming
AD)=1+D

R(D)=o"T=1.19021 .

The performance of such sub-optimal receiver is given by (4):

3 (e, 'R He) — (H'R™\(1ly — Hay, )

Prierror} =Q
Je, PR™'RyR™ He)

We proceed computing the various dot products in the above expression. The quadratic

(e,H' R~ He) was already computed, yielding, for e(D)=1— D,
(e,H'R™"He)=2/q" .

The last term in the numerator is a dot product which depends on gy as well as on the error

sequence e. First note that
(H'R™\(Ily — May,e) = (ag,(Hy — IR He) .

Then compute:
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ho(D)— k(D) = (1D + 1+ D +.1D>) = (1 + D)= .1D"" + .1D?
h(D)e(D)=(1+ D)1 —D)=1—- D>,
Hence,
(ho(D™") =h(D™)A(D)e(D)/R(D) = (1D + 1D 7)1 = D)o’
(D e L I B 1B Yl

Since we are looking for the worst situation, i.c., a sequence gy yielding the largest possible dot

product with the sequence
..000.10-1.10-1000...,
as described above, we choose

ap="Xxx10-110-1xxx...,

a valid sequence il no further code constraints is imposed in the input sequences. The x's in the
above sequence indicate don’t care entries, since they are multiplied by zeroes. Ilence,
ag = D 2—1+D—D? + don't care terms, yielding

(ag,(Hy —H)'R™'He) = 4]a” .

The numerator of the argument of the Q-function is then,
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(1= .4))o” = .6/¢>.

The denominator is computed as in 4.5, with the new Ro(D), yielding:

[, 'R R,R™' T1e) =2 /1779
\/ e, 0 (4 = 7 v .
a

The final result for the performance is, then,

Priervor} = Q{1.2/20¢1.79 } = Q{.897/20,} .
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APPENDIX A

The Invertibility of H'R™'H = M,

Let a # 0 be an arbitrary non-null sequence in A. Mj is invertible if, and only if
(Ha,R™'Ha) = (a,H'R™' Ha) = (a,Mya) > 0 .

Here R is assumed positive definite, hence the above quadratic is always non-negative.

Expanding the above quadratic (see also Appendices B and C),

o
r n2

My(w)lag+ ajz + - + a2 | “dw
T

(a,Mya) = ZZakagmk_f = -—22".
k ¢

~3

where z = ¢ 7T ;4 1 is the dimension of A,

T
T w
my, = -%J. _ Mo(w)e,f; “Tdw

7
e 2am
T

o IH
Mn(w)=%m=z_m R( ) =0 we(-—%,i;:-).

2mm
w — =

T

Here, H(w) is the Fourier Transform of h(t) and R(w) is the average power spectrum of the

noise.

Then, a sufficient condition for (a,Mya) # 0 for arbitrary a # 0 is My(w) # 0 in some set S of

i T s il
non-zero measure inside (— _ = ) T'his is because

r'T
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is a polynomial in z, hence can have at most n roots in S, 1.e., cannot vanish identically there.

Although this condition is sufficient for the cxistence of the inverse of My, this inverse may
become “ill conditioned” when the dimension of A is large, i.e., n—o0 may cause (H'R~' i)~ o

become “unbounded.” A necessary and sufficient condition for a bounded inverse is that

1/My(w) be integrable, w e (— % , ——’;— ) To see the sufTiciency, note that

_Trf"' dw
f My(w) ~°

T
T

imply that My(w) can be zero only in a set of measure zero, hence, the previous sufTicient
condition for the existence of the inverse for finite sequences is satisfied. For any n, consider the

problem

mijl(lfa,R_t!{a) subject to ay 2 (a, ¢) = 1
ae

where ¢; is a sequence of all zeros except for a “1” at position “0”. The uniformly boundedness
of MO_' 1s equivalent to the fact that the above minimum is uniformly bounded away from zero

as n—oo. The minimum value of (/7a,R ™! Ia) is obviously decreasing with n.

Since we already established the existence of My ! for every n, the above minimization yields
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-
nﬁjl(Ha,R“]Ha) = (e0, My 'ep)
ae

Hence, (eg, Mﬁ“leg) increases with n. It’s limit, as n—oo, is

This is so because the Fourier transform of the rows of My!, as n—o0, converges to

1/Mpy(w) as can be easily verified.

The integrability of 1/My(w) is also necessary, since the existence of a bounded M(]'l implies that

1 T dw
27 )_x Mo(w)
R

= ((’0, MU—IR{,) < oo,
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APPENDIX B

Non-Minimum Bandwidth Systems

The expressions for the computation of the probability of error involve inner products of
sequences in the data space A. They can be readily computed in the frequency domain (see
Appendix C) from the polynomial representation of the sequences and Toeplitz matrices involved
in the inner products. However several maps from A to A appearing in the expressions are
resultant of mapping first A into Y then Y back into A. The maps from Y to A can be identified
by the transpose operation. We now will show how the entries of these total maps from A to A,
matrices, can be expressed in terms of the Fourier Transforms of the channel function and noise
spectrum in the stationary, time invariant case, and then as D-polynomials. This is
accomplished by the use of the Poisson formula (the transpose operations involve sampling). In
the examples of section 4 this was not necessary since the systems were assumed to be of
minimum bandwidth, that is, the spectra involved where confined within the Nyquist band and

hence the channel function could be identified with its samples at clock rate.

We proceed by giving, as an example, the expression for the entries of the matrix mT'R'H,

as well as the Poisson formula, allowing us to represent the operations involved in terms of

D-polynomials as in the case of minimum bandwidth systems. Other matrices are treated in a

similar way.

Let a and b e 4, H mapping A into Y as in (1) and R mapping Y into Y. We will compute
(Hbh, R~V I11a) = (b, IR~ Ha), the first inner product being taken with time functions in Y and

the second with sequences in A.

Let's compute first g = R~ Ha:
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g(0)=(R™'Ha)())= ) a| ML~ kDRt = 0aL.
k —00

Now, let's calculate the inner product of g(t) with /b = Y.b,.h(t — k'T) and using the
kf

transposition to calculate (b,H'R™! Ia):

[o2s]

(Hbg) 2 f £(0)) beht — kTt =) bya j I h(t — k' TYR™(t — QR — KT)drdC .
k' kk —00

Hence, the Toeplitz matrix M = H'R™!H has entries

My = j j it — K DR™(t — O — kT)ddl .

The integral above can be computed in the frequency domain, yielding:

‘ ( 2nf )
_ x| o |Hlow-— T
iz —Jaw Tk — r
my = —2_1:,[ | H(w) ' ZR I(m)e et k)dru - %.[ ™ Z 2nf
‘ i —F| ¢=—c0 R(w o= ";-r_ )

Therefore, the operator /'R~ = M can be represented as a D-polynomial using Poisson’s

formula:
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and

M(D) = kal)k a

Poisson’s formula can be easily verified by multiplying both sides of the above expression by

and integrating from — ~’-;- to 37}— ;

efcuk T
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APPENDIX C

Computing Inner Products in the Frequency Domain

The computation of inner products of sequences using their frequency representation was

exemplified in Appendix A. Here we will describe the computation in more detail.

Let a, b, and ¢ be sequences in A and let M be a Toeplitz matrix mapping A into itself. Let

the kk’ entry of M be m;,_,,. Define A(w) as

Alw) = Zake“jwkr .

I

Notice that A(w) is obtained from the D-Polynomial representation of the sequence a by putting
D =e¢7*T, The components of the original sequence a can be obtained {rom A(w) by the

Inverse Fourier Transform as follows:

Z

a, = % ! A(u))ejwkrdw .

A
T

Let now b = Ma. Its transform B(w) 1s M(w)A(w) where M(w) is defined in a similar way as

A(w) taking into account the Toeplitz nature of M. Indeed,

k4

T [T jokT , T J' i oo TUe—k'—k'")
g J_ iM(w)A(w)e dw = o kéknak.mk., ) dwe
- ~F

= ka-—k'a}c' = by
I

~
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Similarly, (b,Ma) can be computed as (ollows:

(b,Ma) = QL B ()M(w)A(w)dw = Zakmk__kn‘)k. ‘
kK

-1|=!

As an example,

_L 1
(bR H) == | " doo| L

o R
- - R(w—fz—;F)

(11
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LC
LY

(- M)

Figure 1. The maps and metric of the sub-optimal receiver: HT, L and M.
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L7

Figure 2. Condition for error occurrence: ag is sent and Ly falls closer to La; than to

Lay.



