

RJ 7100 (67163) 10/26/89
Computer Science

FL Language ~anualt , Parts 1 and 2

John Backus
John H. Wiams
Edward L. W i e r s
Peter Lucas
Alexander Aiken

IBM Almaden R~search Center
San Jose, CA 95120

ABSTRACT:

FL is intended to be a programming language in which it is easy to write clear, concise,
and eflicient programs. FL is designed around a rich set of functionals, forms for combining
existing progra&s to construct new ones. This emphasis on programming at the function
level results in programs that have a rich mathematical structure useful in reasoning about
and optimizing programs.

FL programs directly access 110 devices and the file system using primitive history-
sensitive functions. An implicitly controlled history component provides this access without
requiring I /O Lcstreamsn as explicit arguments of interactive programs.

FL programs can be higher-order. In addition to the primitive combining forms pro-
vided, the language provides powerful mechanisms for defining new higher-order functions.
Conditional expressions and lambda expressions employ patterns. A pattern defines a
predicate and selectors for objects h a ~ g the same structure as the pattern, and it may
contain arbitrary predi-ates for elements of that structure.

FL is statically scoped. An FL program consists of an expression together with an
environment of function definitions used in evaluating that expression. The language pro-
vides a complete set of operations for c o m b i i g environments, thus enhancing program
reusability. For example, any environment may be modified to export only some of its def-
initions; this facility, together with those for building user data types, provides a powerful
technique for defining abstract data types.

FL uses a simple concept of type in which types are identified with predicates for
subsets of the value domain. The user may define new types in rerms,of existing ones.
FL guarantees that all type errors are caught, although not all type errors are detected at
compile time. For example, type errors involving stored or transmitted user defined types
may be found at run time.

FL values include ezceptions in addition to normal values (i.e., atoms, functions, se-
quences of values, and user defined objects). Exceptions contain information about their
origin; they are generated when functions are applied to inappropriate arguments, and
the user may produce them with the primitive signal. All functions preserve exceptions.
The functional catch permits recovery from exceptions; it can be used with signal for
backtracking.

The meaning of FL progams is specified by a denotational semantics that uses an
unusually simple domain of values as its basis. This makes the denotational semantics a
useful tool for the programmer as well as for the language analyst.

tSnpercedes FL Language Manna1 (Preliminary Version), RJ5339, 11/7/86, which is now obsolete.

