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ABSTRACT:

FL is intended to be a programming language in which it is easy to write clear, concise,
and efficient programs. FL is designed around a rich set of functionals, forms for combining
existing programs to construct new ones. This emphasis on programming at the function
level results in programs that have a rich mathematical structure useful in reasoning about
and optimizing programs.

FL programs directly access I/O devices and the file system using primitive history-
sensitive functions. An implicitly controlled history component provides this access without
requiring I/O “streams” as explicit arguments of interactive programs.

FL programs can be higher-order. In addition to the primitive combining forms pro-
vided, the language provides powerful mechanisms for defining new higher-order functions.
Conditional expressions and lambda expressions employ patterns. A pattern defines a
predicate and selectors for objects having the same structure as the pattern, and it may
contain arbitrary predizates for elements of that structure.

FL is statically scoped. An FL program consists of an expression together with an
environment of function definitions used in evaluating that expression. The language pro-
vides a complete set of operations for combining environments, thus enhancing program
reusability. For example, any environment may be modified to export only some of its def-
initions; this facility, together with those for building user data types, provides a powerful
technique for defining abstract data types.

FL uses a simple concept of type in which types are identified with predicates for
subsets of the value domain. The user may define new types in terms-of existing ones.
FL guarantees that all type errors are caught, although not all type errors are detected at
compile time. For example, type errors involving stored or transmitted user defined types
may be found at run time.

FL values include ezceptions in addition to normal values (i.e., atoms, functions, se-
quences of values, and user defined objects). Exceptions contain information about their
origin; they are generated when functions are applied to inappropriate arguments, and
the user may produce them with the primitive signal. All functions preserve excepiions.
The functional catch permits recovery from exceptions; it can be used with signal for
backtracking. ’

The meaning of FL programs is specified by a denotational semantics that uses an
unusually simple domain of values as its basis. This makes the denotational semantics a
useful tool for the programmer as well as for the language analyst.

'Supercedes FL Language Manual (Preliminary Version), RJ5339, 11/7/86, which is now obsolete.
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Part 1
Overview of the FL language

1 Introduction

1.1 Organization of this manual

The FL language manual consists of three parts divided into two separate doc-
uments. This is the first document, which contains Parts 1 and 2; the second
document is titled FL Language Manual, Part 3. Part 1 gives an informal expla-
nation of the main features of the FL language, with some short examples. The
more advanced features are discussed informally in Part 2; Part 2 ends with a list of
the FL primitive functions and the complete BNF syntax of FL. Parts 1 and 2 are
addressed to users. Part 3 is a formal description of the denotational semantics and
the primitive functions of FL; it is addressed to language experts and implementers.

1.1.1 Relationship to earlier FL Language Manual

The FL language described in this manual differs in many important respects from
that described in FL Language Manual (Preliminary Version), Research Report
RJ 5339 (11/7/86), therefore the latter is now completely obsolete. The language
described here is believed to be both simpler and more powerful than the earlier
version.

1.2 Goals of the FL language

FL is a language for defining functions that map values into other values. It is a
function level language, that is, it is based on the use of combining forms, operations
for building new programs from existing ones. The mathematical properties of the
combining forms generate many algebraic identities useful for seasoning about and
optimizing FL programs. One purpose of the FL project is to test two interrelated
hypotheses: (a) Can the mathematical properties of FL programs be used to compile
programs that run as fast as the best Fortran and Lisp programs? and (b) Is the
function level style of programming a powerful and flexible one (in spite of its unfa-
miliarity); does it give programs a useful structure that is helpful in understanding
and reasoning about them?

1.3 General properties of the language

Briefly, an FL program is a function. FL expressions apply functions to values to
obtain new values. A value may be an object or a function. Combining forms are
(higher order) functions whose results are functions. Special functions yield inputs
from input devices or files; others cause their arguments to be written to output
devices or files. The functions used in an expression may be defined in auxilliary
definitions in an appended where clause or they may be built from existing functions
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by combining forms. Such expressions, definitions and where clauses comprise the
basic elements of FL.

The FL language offers some enhancements to these basic elements that provide
a more readable and concise shorthand for certain constructs. Patterns specify
“shape” predicates and define functions for selecting components from values of the
designated shape. Enhanced definitions employ patterns that clarify the domain of
the defined function and define selector functions that name parts of the function’s
argument. Lambda expressions simplify the definition of higher order functions.

2 Expressions and values

Every FL ezpression has a value, which may be either a normal or abnormal value.

2.1 Normal values

A normal value may be an atom, that is, a number, a char (a character), or a
truth value (true or false). In addition to atomic values, a normal value may be
a function, a sequence of normal values, or an element of a user defined data type.
A function £ is said to be defined for a value x if the result of applying £ to x is a
normal value.

2.2 Abnormal values: exceptions and bottom

There are two kinds of abnormal values: ezcepiions and L, pronounced bottom.
Exceptions result when functions are applied to inappropriate arguments and ter-
minate, whereas L denotes the value of a non-terminating computation. Abnormal
values are persistent and cannot be elements of composite values (e.g., for any ab-
normal value abnorm and any function £, £ applied to abnorm is abnorm; a sequence
containing abnorm collapses to it leftmost abnormal value). This means that all FL
functions are strict with respect to exceptions and L (in contrast to lazy languages
in which £(L) may not be L and a sequence may have an exception or L as an
element).

Exceptions may be system-generated, i.e., the result of applying a primitive
function to an inappropriate argument, or user-generated by applying the exception-
making function signal to a normal valie. Roughly speaking, a system produced
exception contains the name of the function whose application produced it, infor-
mation about any special circumstances, and the offending argument of the func-
tion. User generated exceptions may contain any normal value and can duplicate
system-generated exceptions. Recovery from exceptions can be effected by use of
the combining form catch (see Section 17).



3 Expressions

The following sections describe the syntax and semantics of the basic kinds of ex-
pressions. The discussion of some more advanced expressions is postponed until
Part 2.

3.1 Syntax conventions

Each informal description of a form for an expression is accompanied by a BNF
description of its syntax. Italic names are non-terminals, | denotes “or”, braces
{...} are for grouping, z; denotes zero or more z’s separated by p’s and z denotes
one or more z’s separated by p’s. For example

segs == <{atom | name | seqsy* >

describes segs, sequences of constants (angle brackets <...> surround sequences);
these include the following expressions:

< <1,2> <square, 5,6> <+, <4,5>, 7>

3.2 Atoms and function names

The simplest expressions are atoms and names of functions (Section 18 gives a list
of the FL primitive functions). Thus 5.2 (a number), false (a truth value) and e
(a char, denoting e) are atoms and therefore expressions; function names, such as
t1 (tail), are also expressions.

atom = char | number | truthval

char =~ character  (backquote distinguishes chars from names)
truthval := true | false
namef::::z'dentiﬁerlA[V|H|H|+]—|*'[+]
ol=]1l]®»|«
identifier = ident_char {ident_char | digit}*

ident_char = letter | / | $ |4 |#|_|2]|t]4]=~]n

Chars are formed by prefixing a character with backquote " to distinguish them
from single-character names. Names are function names, which are either identifiers
or single-character, self-delimiting operators such as +. FL provides no mechanism
for naming a value that is not a function. Identifiers are made of letters, digits
and some special, non-self-delimiting characters; they begin with a letter or special
character.

The character pairs /* and * / always begin and end comments, thus, in an infix expression,
a name ending in / must not be immediately followed by * and a name beginning with / must not
be immediately preceded by = . Inserting a space between such a name and * delimits the end or
beginning of the name. See Comments, Section 16.1
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Characters are Roman and Greek upper and lower case letters, the decimal
digits, punctuation, brackets, special characters, plus unprintable characters that
are represented by a sequence of letters and/or digits surrounded by backslashes
(e.g., \SP\ denotes a space). Numbers are either integers or reals; 3 is an integer

and 3.2 is a real. The terms character and number are described in Section 19,
Syntax.

3.2.1 Truth values

Although true is a truth value, all the primitives of FL treat any normal value other
than false as true; therefore in the following “is true” is Synonomous with “is any
normal value other than false”,

3.2.2 Examples of function names
Here are some function names:
1L a a3 o pAbert38% /1,

Note that acb = aob since o is a self delimiting name, but, since / is not self
delimitfng, a/bis a name whereas a / bis an infix expression denoting the application
of ihe function named / to a and b. Of course the characters for self-delimiting
functions cannot be used in a multi-character name.

3.3 Applications

A composite expression may be built by application (denoted by : ); if e; and es
are expressions, then the expression ei:ez denotes the result of applying the value
of e; (a function) to the value of es. For example, the value of the expression

t1:<1,2, 3>

is the result of applying the primitive function %1 (tail) to a sequence of three
numbers, giving the value <2, 3>,

appl ::= ezpr:ezpr

3.4 Sequences

A sequence of expressions is also an expression. For example, the expression
<tli<1d, +:¢2,3,4>>

has the value
<<>, 9>

obtained by evaluating the two applications in the original expression from left
to right. Note that there is no restriction on the “types” of the elements of a
sequence. If one of the expressions in a sequence produces an abnormal value



abnorm, then evaluation stops and the whole sequence evaluates to abnorm. For
example, <t1:3, t1:<>> evaluates to the exception signal:<"t1", "argl", 3> that
results from t1:3.

seq = < expr* >

3.4.1 Strings

A string is just a sequence of chars, thus all operations on sequences can be ap-
plied to strings. For example, < a, “b, "c> is a string comprising the three chars
“a, "b and “c (chars begin with * to distinguish them from one-letter function
names; the char ~a denotes the character a). There is an alternative way to write
strings. For example, "abc" is a string that is exactly equivalent to <" a, “b, " c>; thus
tl:"abc" = t1l:<"a, b, "¢> = < b, "¢> = "bc". Similarly, "a\FF\" is shorthand for
<"a, "\FF\>, where ~\FF\ is a char formed from the coded character \FF\; both
the char and the character denote a “Form Feed” or newpage. Note that coded
characters, like \FF\, can become chars by prefixing them with .

string ::= < char* > | “character*"

4 Combining forms

FL emphasizes the function level approach to defining functions, that of building new
functions by applying combining forms to existing functions. The result of building
a new function in this way is a (function-valued) expression. Some combining forms
are used so frequently that they have a special syntactic form.

4.1 Composition

Composition (o) combines functions £ and g, giving the new function fog, defined
by

(fog):x = £:(g:x)

For example, (siotl):x selects the second element of x since t1 produces the tail
of x and the primitive s1 then selects the first element of the tail. The argument x
must be a sequence with two or more elements, or an exception results.

The symbol o is the self-delimiting function name for composition and the ex-
pression fog is an instance of an infiz ezpression that is equivalent to the expression
o:<f, g> This equivalence follows from the general infix rule:

erpry eTpr, erprs is an expression equivalent to: ezpry:<erpr,, erprz>
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4.2 Constant

The constant-valued function “x is built from the value x and the constant com-
bining form *; when applied to any normal value y it yields x. Thus, for any
expression e, “e is a function-valued expression. For example, “2:<1,5> = 2 (but
"2:abnorm = abnorm for any abnormal value abnorm).

ezpr == ... | “ezpr | ...

4.3 Condition

Condition ( - ) combines three functions P, T and g, giving the new functionp + £; g
defined by:

x if x is abnormal

fix if p:x = true (a normal value # false)
(p=f;g)x = g:x if p:x = false

exception if p:x = exception

ol Kpix=1

The condition p - £; g produces an abnormal value abnorm at x only if x = abnorm,
Or p:x = abnorm, or p:x is true and £:x = abnorm, or p:x is false and g:x = abnorm.
The condition (isseq =+ len; “0):x computes the length of x (len:x) if x is a se-
quence; otherwise it yields 0 (-0:x).

The one-arm condition p + £ is similar, except that it produces an exception if
the predicate p is false; it is equivalent to the condition

P+ 1; signale[*cond", ""larm", id]

Thus (p + £):x = £:x if p:x is true, otherwise (p - £):x is an exception containing
the value <"cond", "1arm", x>.

€ezpr = ... | expr ~ ezpr; ezpr | ezpr -+ ezpr [ ...

4.3.1 Functions as predicates

Note that the definition of condition means that any function p can serve as a
“predicate”; in the rest of this manual the words “function” and “predicate” are
used interchangeably. The phrases “p:x is true” and “x satisfies p” indicate that
p:x is any normal value other than false.

4.4 Construction

Construction ([...]) combines n>0 functions %, .. »In giving the new function
[£1,...,£5] defined by:

[£1,-.0fa)ix = <24:x,...,.£,:2>



4.5 Combining forms without special syntax T

For example, [+,-]:<3,2> = <5,1>and [s1,t1]:<1,2,3> = <1, <2,3>>. A construc-
tion produces an exception or L if one of its functions does (the result is the first
abnormal value, evaluating from left to right).

expri=... | [expr*] | ...

4.5 Combining forms without special syntax

Construction is an example of a combining form that has special syntax (L..1) to
make it more readable. However, construction and all the other combining forms can
be written as an application of a higher order function. For example, the function
[£1,...,£5] can be written using the primitive function cons as follows:

[£1,..2a] = cons:<#y,..., .5
Similarly, there are primitive functions K and cond such that

x = K:ix
peLiE = cond:<p, f, g>

4.6 Predicate combining forms

Predicate combining forms build {total) predicates from (total) predicates. (A total
predicate is a function that yields true or false for all normal values.)

4.6.1 Predicate construction

Predicate construction [..] combines n>0 functions py,...,py (regarded as predi-
cates), giving the new predicate defined by:

Pi:x  if pj:x is abnormal (smallest i)

true  if x = <xy,..,xp> and p;:x is true
for eachi=1,..,n

false otherwise

I[Pl,---apn] X =

For example, [isnum,isseq]:x is true only if x has the form <number, sequence>;
otherwise it is false.

In addition to denoting a predicate combining form, [..] is unique in also de-
noting a pattern combining form (see Section 6) when one or more of its elements
is a pattern.

4.6.2 Some other predicate combining forms

These are the other primitive predicate combining forms:
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| Combining form [ Use of form | True only for |

seqof seqof:p sequences, all of whose elements satisfy p

eqto eqto:x values y such that x =y

A PAQ values for which both p and q are true

v PVQq values for which either p or q is true

- ~:p values for which p is false

+ pPHq non-empty sequences whose first element
satisfies p and whose tail satisfies q

= PHq non-empty sequences whose last element
satisfies q and whose tail-right
(all but the last element) satisfies p

= f=g values x for which f:x = g:x

All but one of the predicate combining forms (predicate construction) are ordi-
nary combining forms without special syntax, i.e., higher order functions that take
one or two function arguments (the latter are usually written in infix form, for ex-
ample, £rg rather than m:<f, g>). Predicate construction has the following special
syntax

ezpr ==... | Lexpr* ] |
but it can be expressed without its special form by using the primitive pcons:

[pi1,-..,Pnl] = pcons:<p1,...,pn> for all expressions p;

5 Where clauses, environments and definitions

5.1 Where clauses

An expression may be modified by a where clause that defines some free function
names used in it. For example, the expression

£:<1,2,3> vhere {def f = slotl} (1)

defines the function name £ in the expression f£:<1,2,3> to be the composition
(o) of the primitives s1 (selects the first element of a sequence) and t1, with the
result that £:<1,2,3> = (s10t1):<1, 2, 3> = s1:(1:<1,2,3>) = 51:¢2,3> = 2, The
simplest where clause consists of the keyword where followed by a list of definitions
(enclosed in braces {...} and separated by spaces). For example, in the expression

£:<1,2,3> where {def f = gotl def g =sl1}

the where clause has a list of two definitions that give £ the same definition as in (1),
since g in the definition of £ is defined as s1 in the same definition list. A definition
list containing two definitions of the same function name is syntactically ill-formed.
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5.2 Environments

A vhere clause thus provides an environment that associates function names with
the functions. An environment may hide some of the definitions it makes.

expr u= ... | ezpr where env |
env == defnlist | export(namelist) env | hide(namelist) env |
composite_env | lib(string) | PF | { env }
defnlist = {defn} .}
namelist = name?t

Export and hide environments are described below. The other environments, com-
posite environments (composite_env), library environments (1ib(string)) and the
primitive environment (PF) are discussed in Section 14.

5.3 Definitions
A definition associates a function name with a function.
defn i def name = ezpr | nrdef name = ezxpr | ...

In either of the forms def or nrdef the function name name is assigned the func-
tion that is the value of ezpr. (Other forms of definitions are discussed in several
later sections.) The keyword indicates that the definition is recursive (def) or non-
recursive (nrdef). The difference is significant only if the ezpr part of a definition
uses locally defined function names (those that are defined in the list of definitions
containing the given definition). In a def definition, free function names in expr
refer to their local definitions, if they exist; in a nrdef definition, all free function
names in ezpr refer to definitions outside of the current definition list.

For example, the following expression
last where {def last = isnullotl - g; lastotl def g = s1}

has as its value the recursively defined function last that satisfies the equation
last = isnullotl - s51; lastetl (this function is defined for non-empty sequences
and computes the last element). In contrast, the following expression uses the
primitive + in the redefinition of the function name +; it extends the function + to
sum complex numbers (cadd) as well as ordinary numbers (see Section 7.2.1 for the
definition of cadd):

e where {nrdef + = seqof:iscomplex = cadd; +}
The + on the right side of the definition refers to its definition outside of the where
clause. Uses of + in e are in the scope of the above definition and hence can be used
in the extended sense.

5.4 Scope of definitions

Let e be an expression and let ENV be an environment; then in the expression
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e where ENV

e and every subexpression of e is in the scope of ENV. If a function name £ occurs
free in e (i.e., £ is not in the scope of some environment within e that defines
f) and if ENV defines £, then its definition governs this occurrence of £. If ENV
does not define £, then the expression e where ENV must itself be in the scope
of some outer environment that defines £; otherwise the function name £ denotes
an exception-producing function. The outermost environment is by convention the
primitive environment that defines all function names as either primitive functions
or exception-producing functions.

All the names occurring in the right sides of def definitions in a definition list
DL get their definitions first from definitions in DL itself, or if they are not defined
there, from the surrounding environment. All the names occurring in the right sides
of nrdef definitions in DL get their definitions from the surrounding environment.

5.5 Environments that hide some of their definitions

An environment can prevent some of the functions defined in its definition list from
being accessible outside of the environment. The following environments

export(namelist) env
hide(namelist) env

hide some of the definitions made by env. Thus export hides the definitions of
functions made by env whose names are not listed in namelist and hide hides those
definitions whose names are listed in namelist. For example, the where clause in
the following expression

e where export(fi,f2){nrdef f; = e; def f3 = ey def f3 = e3}

exports the definitions of £; and £5, but not £3. Thus e can see £1 and £, but not
£3; e2 and e3 can see £1,f and £3; o4 can see only definitions in the surrounding
environment.

The environments hide(namelist) env and export(namelist) env are ill-formed
if namelist is not a subset of the names defined by env.

6 Patterns

6.1 Introduction

Patterns are constructs that denote predicates but also make definitions. For ex-
ample,

[x.,y.] ~ [y.xl

is a function that reverses pairs: <X,Y> =+ <Y,X>. The predicate position of the
condition contains a pattern [x.,y.]; it denotes the predicate [tt,tt] that is true
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for pairs <X, Y>, and it defines functions x and y such that x.selects X from <x,y>
and y selects Y. Thus

(Cx., y.1 = [y, x]1):<X,¥> = [y, x]:<X, T> = <y:<X, >, x:<X, Y>> = <Y, X>
since the pattern is true for pairs and defines x = s1 and ¥y = 52,

Generally, a pattern describes structures that satisfy its predicate and it pro-
duces a definition list of selector functions whose names occur in the pattern. If
a name definition, £., occupies a given position P in a pattern (the “.” indicates
that £ is being defined) and this £ is applied to a value of the same “shape” as the
pattern, then f selects an element from position P in the value. Note that, consis-
tent with other definitions in FL, pattern defined names do not name components
of arguments but rather name functions for selecting the components.

It is convenient to refer to a pattern as if it were the predicate it denotes; e.g.,
“the pattern [x.,y.] is true for pairs” or “<X, Y> satisfies [x., y.J”.

Every pattern defines at least one function and is built from elementary patterns
name.predicate or name. (and from predicates) by a primitive pattern combining
form ([..J, », 4, pand, por and pcomp) or by a user defined pattern combining
form.

6.2 Elementary patterns

The simplest patterns have the form name. predicate; the “.” after name indicates
that name is being defined. Such a pattern has the predicate predicate and defines
def name = id (id is the identity function). For example, x.isnum is a pattern that
is satisfied by numbers and defines x = id so that x selects its entire argument, since
this pattern has no substructure. Omitting the predicate is equivalent to using the
predicate tt that is true for every value. For example, the pattern x. is always
satisfied and defines x to be id.

6.3 Composite patterns

A composite pattern may be built from simpler patterns and predicates using pattern
combining forms; these forms are: [..] » P, €, pand, por and pcomp. Each of these
pattern combining forms corresponds to a predicate combim‘ng form: [..1, », #,
A, v and o. ([..] does double duty as a pattern and predicate combining form.)
The predicate of a composite pattern is just the combination of the predicates of its
constituents combined with the corresponding predicate combining form. At least
one of the components of a composite pattern must be a pattern, the others can
be predicates. For example, [x.,isnum] is a pattern that defines x = s1 whose
predicate is [tt, isnum].

The definition resulting from a name £. in a pattern depends on its “position”
in the pattern. Therefore, if a pattern is built from simpler ones with a pattern
combining form, the definitions of the new pattern all come from the definitions
made by its constituent patterns, but these are modified to reflect their “positions”
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in the new pattern. For example, the pattern [x.,y.] is built from x. and y. using
[..1. Since x. occupies the s1 position in [x., .1, its contribution to the definitions
of [x.,y.] is its original definition, nrdef x = id modified by its position, s1, in
[x.,y.], giving nrdef x = idos1. The predicate of [x.,y.] is just the predicate
construction [tt,tt] of the individual predicates of x. and y., which are both tt.

In general, if Py,...,P, are patterns, P1;- .. Pn are their predicates, DLy, ..., DL,
are their definition lists, and nrdef fij = ej; i8 any definition in DL;, then the
patterns built from the P; with each of the primitive pattern combining forms have
the following predicates and modified definitions (one definition for each function
£4; in DLy ):

| Pattern Predicate | Definitions (all nrdefs) |
L[Py,...,Pal CP1;-.-Pal | 15 = €081, si=si,s2,..
Pim»Py P1PP2 f1j = e1j0s1, f25 = @201l
PPy P1+p2 flj E @jjotlr, f25 = e2j0orl
P; pand Py P1Ap2 f1j =614, f25 = 02
P1 por P2 P1Vp2 f1j = o134, £25 = o3
Py pcomp Py | piopa f1j = e1jop2, £25 = @2

The brackets [..] are unique in that (a) they denote two different functions,
the predicate combining form that combines predicates and the pattern combining
form that combines patterns and (b) this is the only predicate or pattern combining
form that has special syntax. Thus in [X1,...,Xa], [..] represents the pattern
combiging form if any X; is a pattern, otherwise it represents the predicate combining

form. All the other predicate and pattern combining forms have distinct function
names.

A pattern built with primitive pattern combining forms (but not por) defines
functions that never fail on any argument that satisfies the pattern.

6.3.1 Examples

Here are some patterns with their predicates, their definitions, an example of a value
for which the pattern is satisfied (Xp denotes a value that satisfies p, X denotes any
value) and the results of applying the pattern defined functions to this value:



6.4 Syntax of patterns 13

Pattern Its definitions Valid argument
| Its predicate Function :: its result
[ [x.p, [y. z.q1, I x =51,y =slos2, | <Xp, <Y,Z¢>, Wr>
[p, [tt,ql, ] Z £ 52082 x:iXp, yuu¥, 2::2g
x.pry.seqof:q x=s5l,y=Etl <Xp, Y1q,Y24>
pr(seqof:q) x::Xp, yii<¥1g, Y242
x.seqof:isint<«[y.p,z.] | x = tlr,y = slorl, | <1,2,3,<Y,, 2>>
seqof:isint+ [p, tt] Zz = s2or1 x::<1, 2, 3>, y::Yp, 212
x. pand [y.,z.isnum] x=id,y =51, <¥, 3.1>
tt A [tt, isnum] z = 52 <Y, 8.1, v, 223.1
[x.,y.] pcomp si x = slosl, <<X,¥>,1,2,3>
[tt,tt] 051 y = s20sl X3E L aY

6.4 Syntax of patterns

Patterns have the following syntax:

pat = name.ezpr | name. | [ patlist] | {ezpr | pat} patop pat | -
pat patop {ezpr | pat} | name.pat | pat(espr; pailist)
patlist = {pat, | ezpr,}* pat {, pat | , expr}"
patop == ® | « | pand | por | pcomp | ezpr

User-defined pattern combining forms (ezprs used as a patop, or ezprs in the
form pat(ezpr; patlist)), patterns of the form name.pat, and patterns built with
pcomp are discussed in Section 12. Two defining occurrences of a given name (name.)
in one pattern would create conflicting definitions for that name; therefore patterns
with duplicate name definitions are syntactically ill-formed.

6.5 Use of patterns

Patterns can appear only in certain places: in the predicate position of a “syntactic”
condition (i.e.,in pat - £; g, but not in cond:<pat, £, g>), in the left sides of ordinary
definitions, in type definitions, in expanded definitions and in lambda expressions
(the use of patterns in lambda expressions and in expanded definitions is discussed
in Sections 10 and 11). In each case there is a definite scope associated with the
definitions made by the pattern.

6.5.1 Use of patterns in conditions

A condition with a pattern P in its predicate position is equivalent to a condition
without a pattern:

P-£f;g = p-=(f where DL); (g where DL)
P-+f = p-(f where DL)

where p is the predicate of P and DL is its definition list. The scope of the definitions
made by a pattern in a condition is the arm or arms of the condition.
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Although a pattern may appear as the predicate of a two-armed condition, for
example, as in pat + ezpry ; ezpr2, care must be taken when using a function f in
ezpr2 that is defined by pat, since €zpr2, and hence £, see arguments for which pat is
false, and these arguments may not have the shape needed for £ to have its intuitive
meaning as a positional selector. In general, good practice is to apply pattern-
defined functions only to arguments for which the pattern is true. For example, a
misleading use of the pattern-defined function x occurs in

([x.,y.0 = xot1) <X, >

The intuitive meaning of x is a selector for X from pairs <X, Y>, but here x does
not see <X, Y>. Instead it sees $1:<X, Y> = <Y>; therefore, since x = s1, it selects v:
(x0t1):<X,Y> = Y. Care must also be exercised in using a pattern built with por,
since its defined functions may fail even when applied to arguments that satisfy the
pattern.

6.5.2 Patterns and predicates on the left side of definitions

Patterns or predicates may appear on the left side of definitions to indicate the
domain of the defined function and (in the case of patterns) to define functions for
accessing parts of its argument. For example, the definition

def sum_prod ~ [x.isnum, y.isnum, z.isnmm] = (x*z) + (y*z)

indicates that sum_prod takes an argument of three numbers X, ¥ and Z in the
form <X, Y, 2> and returns the result X*Z + Y*Z. This definition is equivalent to the
following one with the pattern on the right:

def sum prod = [x.isnum, y.isnum,z.isnum]] + (x*z) + (y*z);
signale[*"sum_prod", Margl", id]

The advantages of putting a domain pattern or predicate on the left sides of defini-
tions are (a) uniform visibility of the domains of defined functions, and (b) automatic
generation of the informative exception-making function that identifies the defined
function name. If def £ =P - o is used (instead of £ «P = o), then £:x produces
an exception (when x does not satisfy P) that identifies a one-arm "cond" as the
mis-applied function, rather than ",

The above equivalence holds in general; the following two definitions define the
same function

def £ + patiern
def £

ezpression  is a definition equivalent to
pallern = ezpression; signalo [~ g%, ~sargie, id]

The same equivalence holds with an expression (i.e., a predicate) on the left:

ezpression s a definition equivalent to
€IPT = ezpression; signalo[~"£", “Margl", id]

def £ + ezpr
def £
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7 User defined types

7.1 FL types

The notion of type in FL is based on predicates. The primitive FL types are sets that
correspond to certain primitive total (i.e., defined for all normal values) predicates.
For example, isnum is true for all numbers and false for all other values, isint is true
for integers, ischar for chars, and isseq for sequences. Using predicate combining
forms, the user can write total predicates for other classes of values. For example,
seqof:isint is true for sequences of integers; [ischar, seqof:isint] is true for
pairs whose first element is a char and whose second is a sequence of integers; and
isintrisseq is true for non-empty sequences whose first element is an integer.

7.1.1 Partial ordering of types

Primitive types are partially ordered by inclusion. E.g., integer (or isint) and real
(or isreal) are disjoint types; both are subtypes of number (isnum) since isint:x
or isreal:x implies isnum:x. Composite types, built by predicate combining forms
from primitive types, inherit a partial order from the primitive types. For example,
the type [eqto:"a", seqof:isint] is a subtype of [isstring, seqof:isnum].

7.2 Type definitions

Users may introduce new kinds of objects and operations on such objects by making
type definitions. For example, a new data type of complex numbers, represented by
pairs of numbers, can be defined by

type complex = [isnum,isnum]

This type definition defines a new function mkcomplex (for makecomplex) that trans-
forms a pair of numbers <x, y> into a complex number c. Although mkcomplex:<x, y>
= ¢ is represented by the pair of numbers <x, y>, it is not this pair itself; it is a value
of type complex. For example, s1:c produces an exception, not x. Here mkcomplex
is the constructor for the type complex. This type definition also defines two other
functions for the type, its destructor, uncomplex (for un-make complex), and its
predicate, iscomplex. The constructor mkcomplex is defined only for values that
satisfy the representation predicate on the right of the type definition (i.e., only for
pairs of numbers); the type predicate iscomplex is defined for all values but is true
only for complex numbers; and the destructor uncomplex is defined only for complex
numbers and yields their representation <x,y>. Of course, many environments that
define a type will use its destructor internally but hide it externally.

7.2.1 Defining functions on a user defined type
Consider the following definition of complex addition, cadd:

def cadd + seqof:iscomplex = mkcomplex o pairadd o a:uncomplex
where {def pairadd +seqof:[isnum, isnum] = a:+o trans}
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The left side of this definition assures that cadd is defined only on sequences of
complex numbers. The right side first turns a sequence of complex numbers into
a sequence of pairs of numbers by applying uncomplex to each complex number
(a:uncomplex), then adds the sequence of pairs elementwise (pairadd), and finally
turns the resulting pair of numbers into a complex number (mkcomplex). The argu-
ment of pairadd here is a sequence of real-imaginary pairs; trans (transpose) turns
this into a pair of sequences, the first containing all the real parts, the second con-
taining all the imaginary parts; a:+ then adds each of these two sequences, yielding
the real and imaginary parts of the resulting complex number.

(The earlier Section 5.3 on Definitions, used cadd to extend the operator + to
sum complex numbers as well as ordinary numbers. The predicate isnum can be
similarly extended to include complex numbers.)

7.2.2 Patterns in type definitions

It might be desirable to define selector functions real and imag on complex numbers,
where real:c is the real part of the complex number ¢ and imag:c is its imaginary
part. For example, one could write

def real = siouncomplex
def imag = s2ouncomplex '

Since it is common to want such selectors, FIL allows a pattern (instead of a predi-
cate) on the right side of a type definition to accomplish the same goal. In the type
definition

type complex = [real.isnum, imag.isnum]

mkcomplex, iscomplex and uncomplex are defined as before, and real and imag
are defined as above — the functions defined by the pattern are composed with the
destructor of the type, uncomplex. The representation predicate is the pattern’s
predicate, [isnum, isnum]. ‘

7.3 Local and global types

Two type definitions in different scopes can define two types with identical names.
Although the scope rules prevent any ambiguity in the use of the identically named
type functions that result, the scope rules do not prevent functions of one type from
being applied to objects of the other type. To prevent type errors from arising in
this circumstance, the constructors defined by two identical occurrences, Ty and Ta,
of the type definition type t = p, must produce different objects, even when these
are built from the same base ob Ject x. This means, for example, that applying the
destructor unty of Ty to an object mkty:x (built with the constructor of T2) will
produce an exception, not x.

However, when type definitions occur in library environments (see Section 14.2)
they become global type definitions and multiple copies of such environments result
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in copies of these definitions that produce identical type functions. To summa-
rize: type definitions that are not in library environments are local type definitions;
the constructors defined by two identical local type definitions (in different scopes)
produce different objects from identical arguments. Type definitions in library en-
vironments are global type definitions; the constructors defined by two copies of a
global type definition produce identical objects from identical arguments. For more
discussion of local and global types and of type safety, see Section 13.

7.4 Syntax of type definitions; functions defined by them
The syntax of type definitions, typedef, is
typedef := type name = { ezpr | pat}

A type definition of this form defines mkname, unname, isname, plus all the func-
tions defined by the pattern pat, if the right side is a pattern. The function mkname
is defined for any x for which the representation predicate on the right (the expres-
sion or the predicate of the pattern) is true and yields an element of type name .
The function isname is defined for all normal values and is true only for values of
type name. The function unname is defined only for values of type name and yields
values for which the representation predicate is true. Any function name defined by
pat is defined for any value of type name and yields the corresponding element of
its representation.

7.5 Example of a complete type definition: Stack

This section presents an annotated example of the definition and use of a new
type, stack, along with definitions of some functions on stacks. One possible type
definition for stack is

type stack = isseq

in which stacks are represented by sequences. The constructor mkstack converts
any sequence into a stack; the type predicate isstack is true for all stacks and false
for all other values; the destructor unstack converts any stack into the sequence
that represents it.

7.5.1 Definitions of isemptystack, top, pop, push, mkemptystack

def isemptystack+ isval = isstack ~ isnullounstack; FF

Defined for all values, since isval, the domain predicate, is always true
and isstack is total. True only for the empty stack.

def top +isstack A n:isemptystack = slounstack
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Defined only on non-empty stacks; produces the top of a stack. The do-
main predicate on the left side is redundant since unstack fails on non-
stacks and s1ounstack fails for empty stacks; however, its use guarantees
a "top" exception rather than a "cond" exception if top is mis-applied
(although compile-time type checking will normally indicate potential er-
rors); see Section 6.5.2. It is good practice to use the left side of definitions
to indicate the domains of defined functions in a standard way.

def pop + isstack A 7iisemptystack = mkstackotlounstack

Deletes the top of a non-empty stack.

def push+ [a.isval, stack.isstack] = mkstackoalo [a, unstackostack]

Argument = x = <value, stack>. Appends a:x = s1:x = yalue on the left
of the sequence that represents stack:x = s2:x = stack (append left, al,
is the primitive such that al:<1,<2,3,4> = <1,2,3,4>). The resulting
sequence is converted to a stack.

def mkemptystack+ isval = mkstack o []
Produces an empty stack when applied to any argument.

In normal practice the definitions of type stack might be enclosed in a where
clause that hides the definitions of unstack and mkstack and exports the definitions
of isstack, mkemptystack, isemptystack, push, top and pop (see Section 5.5).

8 Input, output and persistent files
8.1 The (Value, History) semantics of FL

FL treats operations on external (1/0) devices and persistent files as real events
that take place in a definite chronological sequence. To treat these operations this
way and at the same time to require that FL programs be functions means that FL
programs must have a different functionality (i.e., domain and range) than has been
indicated in the discussion up to this point.

So far, FL functions have been presented as if they simply mapped values into
values, but this is not the whole truth. Actually, every FL function £ maps a pair
(value, history) into another such pair; however, the history component is implicit
and not accessible to the user, thus at each point in the evaluation of an expression
there is a unique history. The history component models the state of 1 /0 devices
and the file system. However, most FL functions £ do not involve I /0 and hence are
independent of the history component, i.e., for any value x there is a y such that,
for all histories h:

£(x, h) = (y,h)

In that case, one can think of £ as mapping values into values, as if £:x = ¥, even
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though this equation is really shorthand for: for all h, £:(x,h) = (¥, h). (The no-
tation in this equation is not part of the language; in the following, all notation
involving a history h is not part of the FL language.) Even when a function £ does
1/0,

£(x,h1) = (y, h2)

one may informally think of £ as mapping x, with the history hy, into y with the
side effect of changing hy into the result history hy that records the new 1 /0 status.
Every function £ that depends on the history also changes it by adding a record of
the event.

8.1.1 Order of evaluation of expressions

Since the evaluation of an application may have a side effect, evaluation must take
place in a definite order. All expressions are evaluated from left to right; in non-1/0
expressions that do not fail this order is not important, but in expressions that do
1/0 or produce an exception the order is important. For example, in evaluating

[in, in, in]:"kbd"

the first step yields <in:"kbd", in:"kbd", in:"kbd">; this is evaluated from left to
right, giving <“ ¢4, ~“c2, “¢3>, where "¢ is the first char from the keyboard, ~c3 the
second and " c3 the third (thus the result is a string and could be written "c4 cac3").
More precisely, the evaluation of <in:"kbd", in:"kbd", in:"kbd"> starting with the
history h takes place by evaluating in("kbd",h) = (“c1,hs) and then in("kbd", hy)
— 1 c2,h2) and finally in("kbd", hz) = (" &3, h3).

The order of evaluation and the nature of the 1/0 primitives assure that there
can be only one history at any point in the course of evaluation.

8.2 Primitive functions for I/O and file access:_in, out, get, put

There are four primitive functions concerned with 1 /0. The first two provide in-
put and output to external devices: in:devicename returns the next input from the
named device, out:<devicename, x> returns <devicename, x> as its value and trans-
mits x to the named device. The last two functions are similar but are concerned
with accessing and storing files in a persistent file system; the value of get: filename
is the named file (which can be any value), put:<filename, x> returns <filename, x>
as its result and makes x the value of the named file. Devicename and filename are
strings. Files are just FL values, e.g., a text file might be a sequence of strings or a
value of type text.

8.2.1 Example of a program with I/0

Consider a program, prompt, where the value of prompt:message is the character
typed at the keyboard in response to the appearance of message, which prompt
places on the screen.
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def prompt ~msg.isstring = ino “"kbd" o out o [*"scr", msg]

The pattern on the left side assures that prompt fails unless it gets a string; it defines
msg = id. Here is a sample evaluation:

prompt:"type a char"
= (ino""kbd"oouto[“"scr", msg]):"type a char"
(ino*"kbd"oout):<"scr", "type a char">
since msg = id
= (ino""kbd"):<"scr", "type a char">
and "type a char" appears on screen
= in:"kbd"

-

c

Il

the char for the character typed at the keyboard

Part I1
Other features of FL

Part 2 describes features of the language that have not been fully discussed up to
this point. None is essential; some provide important conveniences and notation for
writing programs in a more readable and type-robust form; others provide certain
technical features that will be of interest only to more experienced FL programiners.

9 Additional notation for expressions

9.1 Infix notation

As an aid to readability the FL language provides a uniform infix notation. For

example 3+4 is a valid expression whose value is +:<3,4> = 7. In fact, 3+4 is just

shorthand for +:<3,4>. Similarly fog is an infix expression that is shorthand for

o:<f,g>. In general, for any three expressions, ezpr,, ezpr,, expr,, the following is

an infiz ezpression:
€IPTy €IPTy €IPTj B

and has the same meaning as the expression
ezIpra:<erpry, eTpry>

- The infix rule is overloaded to deal with infix patterns (written with binary
pattern combining forms):

Py expr P,

denotes a pattern if Py and P are patterns or expressions and at least one is
a pattern. (Recall that patterns are syntactically distinct from expressions.) The
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infix rule asserts that this form is equivalent to the following pattern (whose meaning
is fully explained in Section 12.1)

pat(ezpr; Py, P3)

This pattern denotes the result of combining Py and P, with the pattern combining
form denoted by ezpr.

9.2 Prime and lift-

It is convenient to be able to transform a function £ that operates on a sequence of
objects into a function £’ that operates on a sequence of functions, where

Ty, oy = folfy,...,fn]

The arguments of £’ are then the functions that produce the arguments of £. Priming
a function expression e accomplishes this transformation: e’ abbreviates lift:e,
where 1ift is a primitive combining form that has the following effect:

£i<E . > = lift:f:<fy,.. ., 0> = fo[£y,...,£,]

Thus 1ift:f:x = £ o cons:x. Priming provides convenient function level infix ex-
pressions based on the standard interpretation of infix:

(f op’ g):x =£:x op gix

This property of primed infix operators follows from the standard interpretation of
infix expressions:

(g £' h):x = (£':<g,h>):x = (£o[g,h]):x = f:<g:x, hix> = (g:x £ h:x)

In general, if e is an expression, then e’ is an expression that abbreviates 1ift:e.
And if x, y and z are expressions, then x vy’ z is an expression equivalent to yo [x, z].
Priming of expressions is also useful in abstracting variables from an expression (this
is discussed in Sections 10.1 and 10.3 on lambda expressions).

9.3 Raised operators

It is convenient to have some operators behave either as unlifted or lifted functions,
depending on whether their arguments are ob jects or functions. For example, it is
desirable to have both 3+4 and (s1+s2):<3,4> produce 7. However, since s1+s2
is just shorthand for +:<s1,s2>, + needs to be defined to lift its arguments when
applied to functions. This is accomplished by defining + to be

def + = seqof:isfunc A -:isnull - lift:add; add

where add sums sequences of numbers.

Functions £ that can be applied either to a sequence of objects or (in its lifted
form) to a sequence of functions, such as +, are called raised functions and can be
expressed as £ = raise:g where g is some function that is defined only on sequences
of objects (i.e., non-function values). The functional raise satisfies
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raise:f = seqof:isfunc A n:isnull - lift:f: £

See Section 10.3 for the definition of raise. The primitive raised functions of FL
are the following:

* - * + le ge 1t gt

where le, ge, 1t and gt are, respectively, less than or equal, greater than or equal,
less than, and greater than.

9.4 Special primed forms; multiple primes

A few combining forms F may be written using special forms in addition to the
standard form F:<f£y,...,£,>. These are construction: [..] = cons:<..>, predicate
construction: [..,pj,..] = pcons:<..,p;,..>, condition: p-£f; g = cond:<p,*,g>,
and constant: “x = K:x. The use of prime with these special forms is permitted
for clarity and uniformity. (See Sections 10.1 and 10.3 for examples of their use.)
Thus, for example, cons’:<£, g> may be written as ['t, g], pcons’:<£, g> as ['t,gl,
cond’:<p,f,g> as p +'£; g, and K':x as ~'x (although K':x = 1ift:K:x is meaningful
only if x is a sequence of functions: K':<£y, .. wIad® = Ko[£1,...2a]).

The application symbol : may be primed. Colon : may be thought of as an
abbreviation for apply, since f:x = apply:<f,x> = £ apply x. Therefore

(£:'g):x = (£:x):(g:x)
since (£:'g):x = (apply’:<f,g>):x = (applye[f, gl):x = apply:<f:x, g:x>.

If P is a pattern, then P +' £ g is ill-formed, since <P, £, g> is not an expression,
hence cond’:<P, £, g> is not either. Similarly, ['.,P,..] is ill-formed if P is a pattern.

Multiple primes are possible both for the standard and non-standard forms of
functions: if e is any expression, 80 is e’ = 1ift:e, thus £” = (£')' = 1ift: (Lifsre).
Therefore ["f,g] = cons":<f,g>, p +"' £; g = cond™:<p, £, g%, anfl *'w =K,

10 Lambda expressions

10.1 Why does FL have both combining forms and lambda ex-
pressions?

The function level style (using patterns and condition) is often hard to use for
defining new combining forms (higher order functions). Of course the object of this
style is to provide an initial set of combining forms that is suitable for ordinary
programming. Defining new combining forms can therefore be thought of as meta-
programming, or extending the basic FL language. But it will often be desirable to
define new combining forms for new data types.

It is hard to define higher order functions in FL because one must abstract
arguments. For example, consider the question of defining the combining form a,
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apply-to-all (a:f applies £ to every element of a sequence argument). For any
function £ the following equation should hold

(1)  a:f =isnull =~ []; alo[fosl, (a:f)otl]

The goal of abstraction is to eliminate £ and obtain an expression for a alone. Recall
that al (append left) appends its first argument onto the left of the sequence that
is its second argument. Here is the corresponding abstracted equivalent of (1):

(2) a=r-isnull +'~[]; "alo' ['ido’“s1, a o' “t1]

The reader can check that a:f as given by (2) reduces to the right side of (1).
(Recall the effect of prime (‘) and constant (“): (p +' q; r):f = p:f + q:f; r:f and
[..g.1:f = [.,g:f,..] and (go'h):f = g:f o h:f and “c:f = c.)

Although it is possible for the user to perform this abstraction, the resulting
definition of a is not as clear and simple as one would like. (Furthermore, (2) needs
a delay operator to be correct.) Lambda expressions are provided for defining
higher order functions so that the user does not need to do abstraction himself.
Compare (2) with the definition of a using a lambda expression:

(3) def a=A(£.)(isnull =+ []; alo[fosl, delay:a:fotl])

The effect of applying the lambda expression on the right to an argument g is to
replace occurrences of £ by g. (The full meaning of lambda expressions is given
below.) The definition of a in (3) also deals with the strictness issue (equations
(1) and (2) ignore that issue). The function delay has the effect of preventing the
evaluation of a:f until it gets an argument, i.e., delay:a:f is a normal form (no
reduction rule applies to it) and delay:a:f:x = q:f:x. (Without the use of delay,
(2) defines a to be ~L.) :

10.2 The general form and meaning of lambda expressions in FL
A lambda expression has the form:
A(pattern) expression

The value of a lambda expression is a function. It is always in normal form, even if
ezrpression is not.

If x satisfies the pattern P, the result of (A(P)E):x is Ef-¢.x, which is E with
each occurrence of a name f defined by P replaced by £:x, i.e., by the part of x
that £ selects. If x does not satisfy P, the exception signal:<"lambda", "arg", x> is
the result; but if P’s predicate p produces an exception p:x, then that is the result.
Since a lambda expression, A(P)E, fails when applied to an argument that does not
satisfy its pattern P, the functions that P defines never fail in computing Eg-¢.x
(provided that P is built with primitive pattern combining forms other than por).
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10.3 Examples

Suppose one wishes to define map2 such that map2:<f,g,h> = [fog, foh]. A possible
definition using a lambda expression is:

def map2 = A([£.,g.,h.]) [fog, £foh]
Here is the evaluation of map2:<r, s, t>:

map2:<r,s,t> = (A([f.,g.,h.])[fog, foh]):<r,s,t>
= [fi<z,s,t>0g:i<r,s,t>, fi<r,s, t>oh:<r, 5,t>]
= [xos, rot]

The pattern [£.,g.,h.] defines £ = s1, g = s2, h = s3, and it is satisfied by <z, s, t>.

As another example, consider the definition of raise, the function that lifts its
argument function when its second argument is a sequence of functions:

def raise = A(f.isfunc)(seqof:isfunc A =:isnull) - lift:f; £

A final example: suppose one wishes to define the primitive function C (“Curry”)
such that for any function £ and values x and y:

C:f:xiy = £i<x,y>

(Application associates to the left.) Without lambda expressions it is necessary to
abstract away all three arguments, yielding

C=Ko"["K, “("id)]
This combinatorial abstraction can be avoided by using lambda expressions:
def C = A(f.isfunc)A(x.)A(y.)f:<x,y>

This definition requires C’s first argument to be a function. The evaluation of
C:g:3:4, where g is a function, proceeds as

C:g:3:4 = ((A(f.isfunc)A(x.)A(y.)f:<x,y>):g):3:4
(ACx)A(y.)g:<x,y>):3:4 since g is a function
(A(y.)g:<3,y>):4

= g:<3,4

The patterns in the lambda expressions of C define £ = x = y = id; thus £ is replaced
in A(x.)A(y.)£:<x,y> by £:g = id:g = g. If g is not a function it fails to satisfy the
first pattern, and the first step produces an exception (which persists). The last two
patterns are satisfied by any value.

10.4 Lambda patterns on the left side of definitions

In a style similar to the use of patterns on the left side of definitions, there is an
alternative form for the above definition of map2 which puts the lambda information
on the left side (but without the A):
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def map2([f.,g.,h.]) = [fog, foh]
Similarly, using the alternative form for the definition of C:
def C(f.isfunc)(x.)(y.) = £:<x,y>

10.5 General form of definitions
In general, a definition can have the form
def £(P1)(P2)...(Py) #Pnty1 =E

for n>0, where £ is a function name (or a pattern — see the next section), each P;
is a pattern (but Pp44 may be a predicate) and E is an expression. All the following
definitions are equivalent:

def £(Py).. -(Pn) “Pnyi =E
def £(P1)...(Pp) =Pny1 # E; errp
def £(P1)...(Pa_1) = Py = Ay (Pp) (Pn+1 # E; errpi1); erry

def £ =Py + Ag(P1)(...(Py = Ay(Pp)(Ppt1 # E; €rTyi1); OTTy)...); erry

where y4(P)E is the same as A(P)E except that no test is made that the argument
satifies P, and the exception-producing functions err,.1,...,errs are the following
for each i=1,..,n+1:

err; = signalo[™"f", *“argi", id]

11 Expanded definitions

The definitions discussed up to this point provide for left sides that (a) indicate the
domain of the defined function (def f « {pattern | ezpr} = ezpr) and (b) indicate
the domain with lambda abstraction of one or more variables (def f(pattern) =
ezpr). Expanded definitions provide for left sides that include these facilities and
also allow the user to: (c) indicate the range of the defined function (a predicate
that must hold for its results) and (d) make parallel definitions of several functions.

The syntax of an expanded definition is

exdef := exdef pat argezp = ezpr
argezp u= empty | (patd)t | (pat)*+{pat | ezpr}

Here pat is a pattern; argezp is the same as for ordinary definitions and may be
empty, or have zero or more lambda patterns (pat) possibly followed by « pat.
The expanded definition

exdef pat argezp = ezpr

is equivalent to a list of definitions, one for each function name £ defined by pat:
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def f argezp = (pat - £; signalo[~"f", “"range", id] )oezpr

Each of these definitions checks that the result of ezpr satisfies pat and if so it
selects the part of ezpr’s result from the position that £. has in pat; this is the value
of £ for this definition (note that the £ on the right is defined by pat; it selects
the appropriate part of the result of ezpr and is not the function £ being defined
on the left). If the result of ezpr does not satisfy pat, the result is an exception
indicating a range error for £. For example, the following defines £ = s10[r, s] and
g = s2o[r, s]; if r and s are always defined and have no side effects, then £ = r and
g = s8.

exdef [f.,g.] = [r,s]

Since the pattern defines £ and g, this expanded definition is equivalent to the two
following definitions:

def f = ([£.,g.] - £; signalo[""f", ““range", id])o[r, s]
def g = ([f.,g.] ~ g; signalo[~"g", “"range", id])o[z, 5]
These are not recursive definitions; e.g., the £ on the right side of the definition of

f is defined to be s1 by the pattern [f.,g.1. After eliminating the patterns and
replacing the functions they define by their definitions, these become

def £ = ([tt,tt] = s1; signalo[~"f", ““range”, id])o [z, s]
= slo[r,s] since [tt,tt] always true if [r,s] defined
def g = ([tt,tt] = s2; signalo[~"g", “"range", id])o [z, s]

n

s20[r, s]

(The primitive tt always produces true.)

11.1 Using expanded definitions to indicate the range of a func-
tion

Expanded definitions can be used to define a function £ = expr in which its domain
and range are both succintly expressed in a way that guarantees that £ yields an
exception if it is applied to an argument outside of its domain or if its result is outside
of the stated range. (For example, one might expect expr to receive an integer and
produce a char; one might want £ to fail if it did not.) I pgom and prenge are
the desired domain and range predicates, the following expanded definition enforces
them:

exdef f.Prange ¥ Pdom = ©XpTr

Since the pattern £.p on the left defines only one function, £, this expanded definition
is equivalent to the single definition

def f ¢ pyom = (f-Pranye =+ f; signalo ["‘f", ““range", id] )OGIPI

The £ after the - is defined by the pattern f.ppgng. t0 be id; thus the definition is
equivalent to
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def £+ Paom = (Prange # id; signalo [*"£", “"range", id])oexpr

The function £ produces signal:<"£", "argi® x> if its argument x does not satisfy
Pdom OT signal:<"f", “range", expr:x> if expr:x does not satisfy Prenge:

11.2 Using an expanded definition to make multiple definitions

It is sometimes convenient to condense several definitions into one. Expanhded defi-
nitions express such multiple definitions. For example,

exdef f.m»g. = [r, s, t]
is equivalent to the definitions

def f = (f.wg. - f; signalo[*"f", “range", id])o[z,s, t]
def g = (f.»g. - g; signalo [*“g", ““range", id])o[r, s, t]

These definitions are equivalent to the following after eliminating patterns and re-
placing the functions they define by their definitions:

def £ = (ttrtt + s1; signalo[-"f", ““range", id])o[r, s, t]
def g = (ttrtt - t1; signalo[™g", ““range", id])o[r, s, t]

The predicate tt=tt must be true whenever [r, s, t] is defined (prqis true for non-
empty sequences <xj,...,x,> for which pixy and q:<xj,..., x> are both true). It is
easy to see that £ = s1o[r,s,t] and g = tlo[r,s,t] and that £ = r and g= [8,%]
if r, s and t are always defined and have no side effects.

12 Other forms of patterns

There are several kinds of patterns that have not been discussed so far. To describe
the predicate and the set of definitions associated with each of them, in the fol-
lowing let PAT be a pattern and let Py,...,P, be either patterns or predicates (i.e.,
expressions) with at least one being a pattern, let Pred(PAT) and Pred(P;) be the
predicates corresponding to PAT and P; (where Pred(P;) = P; if P; is a predicate),
and let Defs(PAT) and Defs(P;) be the definitions made by PAT and P; (where
Defs(P;) is empty if P; is a predicate).

12.1 The general form and meaning of patterns

A pattern combining form Fp,¢ is a function that can combine patterns/predicates
Pi,...,Py to form a new pattern PAT that is denoted by the construct

P_aE(Fpat 3 P1,...4Pp)

This new pattern PAT makes definitions that are modifications of the definitions
made by Py,...,P,. Its predicate Pred(PAT) and the modifier functions modifier;
needed to modify the definitions of each P; are computed by applying the pattern



RJ 7100 (67163) 10/26/89
Computer Science

Research Report

FL LANGUAGE MANUAL,
PARTS 1 AND 2

John Backus

John H. Williams
Edward L. Wimmers
Peter Lucas
Alexander Aiken

IBM Almaden Research Center Dept. K53/803
650 Harry Road
San Jose, CA 95120

FILE COPY

=T E : ivision . . .
= z ﬁgﬁﬁig\ig ﬁég;hts, New York ® San Jose, California = Zurich, Switzerland
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combining form Fpa¢ to the sequence <Pred(Py),...,Pred(Py)> (Fpat cannot be ap-
plied to the patterns themselves since patterns are not first class values):

Fpat:<Pred(P1),...,Pred(Py)> = <Pred(PAT), <modifiery,..., modifierpy>>
where, if def f1; = e;; is a definition belonging to Defs(P;), then
def f; = e;jjomodifier;

is a definition belonging to De£s(PAT); of course, if Py is a predicate, then Defs(P;)
is empty and contributes no definitions to Defs(PAT).

12.1.1 Example

Recall that the pattern x.p#y.q is true for sequences that satisfy prq (non-empty
sequences whose first element satisfies p and whose tail satisfies q) and defines x = s1
and y = t1. Therefore the pattern combining form = can be defined as follows:

def »([f.isfunc, g.isfunc]) = <frg, <si,t1l>

Thus »:<r,s> = <rms, <s1,t1>>. For example, the pattern f.isnume>g. is equiva-
lent, by the pattern infix rule, to the pattern

pat(®; f.isnum, g.)

The pattern combining form » applied to the predicates of the two constituent
patterns yields:

®:<isnum, tt> = <isnumptt, <si, t1>>

Thus the pattern £.isnumsg. has the predicate isnumrtt, and it makes the defini-
tions

nrdef f = idosi
nrdef g = idotl

since £.isnum defines £ = id and g. defines g = id.

Since ® is just the function [+, "<s1,t1>], the pattern f.isnumsg. could
be written as f.isnum [~,“<s1,41>] g.. The infix rule for patterns treats this as
pat([#, "<s1,%1>]; f.isnum, g.), which yields the same pattern as above.

12.1.2 User defined pattern combining forms

Since pattern combining forms are just functions, they may be defined by the user,
e.g., for a new data type. Having defined an n-ary pattern combining form Fpat, it
can be used to build a new pattern with the form pat(Fpat; P1,...,Ppn), Or if Fpat
is a binary pattern combining form, it can be used in an infix pattern expression:
P3 Fpat Pa.

An n-ary pattern combining form Fpat must map a sequence of n functions into
a pair whose first element is a function (the predicate of the new pattern) and whose
second element is a sequence of n functions (the modifier functions).
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12.2 Patterns of the form name.pattern

A pattern may have the form name.pattern; if £.PAT is such a pattern, then its
predicate is Pred(PAT) and its definitions are def £ = id plus Defs(PAT). Of course,
this means that pattern must not define name; otherwise name.pattern would define
name twice. Patterns of this form allow one to “name” the whole as well as its parts.
For example, if x, y and z are defined by the pattern x.[y.,z.] and are applied to
a pair X = <Y, Z>, x selects its argument X, y selects Y, and z selects Z.

12.3 The pattern combining form pcomp
The primitive pattern combining form pcomp may be defined as follows:
def pcomp( [f.isfunc, g.isfunc]) = <fog, <g, id>>

Since Py pcomp P2 = pat(pcomp; Py, P2), this means that Pred(P; pcomp P3) =
Pred(P;)oPred(P;) and Defs(Py pcomp P3) = definitions of Py modified by Pred(Ps)
plus the definitions of P;. Usually P is just a function g, thus Pred(P2) = g and
Defs(P3) is the empty set. For example, [x.,y.] pcomp s1i is a pattern whose pred-
icate is [tt,tt]osl (true if the first element of its argument is a pair); it defines
x = slosl and y = s2osl.

13 Type safety; local and global types

The type analysis system of FL is guaranteed to indicate, either at compile time or
run time, that a function is being applied to (or could be applied to) an inappropriate
argument. Although there is no guarantee that all potential type errors will be
detected at compile time, it is expected that most type errors will be found then.

Two user defined types can have the same type name t; however, their type
definitions must then be in different scopes, otherwise there would be two clashing
definitions of the constructor mkt, and the program would be ill-formed. The scope
rules prevent any ambiguity about uses of these identically named functions just as
they do for all function definitions; however, the scope rules do not apply to the
objects of the new types. Thus, for example, the destructor function unt of one type
definition can be applied to an argument constructed by the mkt function of another
type definition (both defining different types named t):

((unt where {type t = isvall})o(mkt where {type t =p})):x (1)

For type safety to be preserved, an application of this kind must produce an excep-
tion, otherwise functions of one type could access the representation of another.

To enforce the above considerations about type safety, distinct instances of FL
type definitions that are not global (see the section on global types below) create
distinct functions, and their constructors produce distinct objects; even two identical
instances of the type definition type t = p define different sets of functions and their
mkt functions produce different results for the same argument.
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Type definitions in a library environment become “global”, and when the library
is used more than once in a program or in different programs these global definitions
produce identical functions. See Section 14.2 on library environments.

If mkt; and mkt, are the constructors generated by two identical local type
definitions, then, for all X, mkt;:x and mkty:x are both defined or both undefined,
and when defined (untjomkt;):x = x and (untgomkts):x = x. But (untgomkt):x
and (untjomkt,):x are exceptions and (istsomkt):x = false = (istjomktsy):x.
(Subscripts merely distinguish identically-named, but different functions; the actual
names are mkt, unt, ist.)

13.1 Type “tags”; storing and transmitting elements of abstract
types

The required distinctions between types can be made by associating a unique “tag”
with each type definition. If n1 and n2 are distinct tags associated with the two types
in (1) above, then the application (untyjomktys):x can be seen to be a type error at
compile time. If compile time type analysis fails (and it often does when objects of
user defined types are stored in persistent files or transmitted over communication
channels), objects are tagged with their type and checking is done at run time.

13.2 Global types

When a type definition is installed in a library environment (this may be done by
a system command that is not part of the FL language), it is assigned a unique
tag that accompanies each use of the definition. Therefore all instances of a global
definition generate identical functions, i.e., constructors generated by each use all
produce objects with this tag, and the other functions of the type all test for this
tag (unless compile time type analysis eliminates the tagging and testing). Thus
global types can be used by different programs to communicate and store objects of
a common user defined type.

14 Primitive, library and composite environments
Recall the syntax of environments:

env = defnlist | export(namelist) env | hide(namelist) env |
composite_env | lib(string) | PF
defnlist == { defn} e ¥
namelist = namet

14.1 The primitive environment

The environment PF is the primitive environment; it defines all the primitive function
names to be the corresponding primitive FL function and all other function names to
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be appropriate exception-producing functions. For example, PF assigns the function
append left to the function name al and it assigns the function

signalo[ "*miranda", “'No Such Function", id]

to the function name miranda'. In the environment PF, miranda:3 evaluates to an
exception containing the three values: "miranda" (the function name), "No Such
Function" (the explanation), and 3 (the argument).

14.2 Library environments; global types

A library environment 1ib(string) is an environment E that has no free function
names and whose type definitions have been made “global”. Library environments
are stored in an FL system with the name given by string. The use of 1ib(string)
in an expression or composite environment is equivalent to the use of a copy of the
environment E to which it refers, except that its type definitions are global. A
global type definition differs from an ordinary type definition only in that it has
been assigned in advance a unique type tag that accompanies every copy, so that
every copy defines exactly the same type. (Recall that this differs from ordinary,
local type definitions; identical copies of these receive different tags and hence define
different types. See the preceding Section 13.)

An environment without free function names can be made a library environment
by the use of a special system command (not part of the FL language) that stores it
in the system with a specified name; the process of storing it includes the assignment
of type tags to its type definitions, thereby making them global.

14.2.1 Example

Let the environment 1ib(“ex") contain the type definition type t = P. Then the
function

[(mkt where 1lib("ex")), (mkt where lib("ex"))]

will produce a pair <y, y>, where y is of type t, when applied to any argument that
satisfies P. But the function

[(mkloc where {type loc = P}), (mkloc where {type loc = P})]

will produce a pair <z,w>, where z has type locyy arising from the first occurrence
of the definition type loc =P and w has type lociz from the second definition
type loc = P (t1 is the tag assigned to the first definition, ¢2 is that assigned to
the second).

14.3 Composite environments s

A composite environment can be built from other environments with one of four op-
erations: uses, where, union and rec(namelist), and environments can be grouped

'Note: miranda is not the name of a primitive function in FL
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with braces:

composite_env = env uses env | env where env | env union env |

rec(namelist) env | { env}

As with hide(namelist) env and export(namelist) env, rec(namelist) env is
ill-formed if namelist is not a subset of the names defined by env.

An environment without braces, e.g., X opy Y op, Z, is equivalent to one having
left-associated braces, e.g., {X op; ¥} op2 Z.

An environment E defines a set of defined names D(E); it has a set of free
names F(E) that occur on the right sides of definitions and have not been defined
by some definition within E. To describe a composite environment Z built from
environments X and Y, one must describe:

1. the set of names D(Z) that Z defines (and, if both X and Y define a name,
which definition to use),

2. the set of free names F(Z) of Z in terms of the defined and free names of X
and Y, '

3. the set of free names in X or ¥ that become bound in Z, and how they are
bound.

The following section precisely describes each of these three sets for each kind of
environment (where X and Y are arbitrary environments).

Briefly, X uses Y defines all the names defined in X and ¥ and if both define
a name, its definition in X prevails; free names in X can see their definitions in Y,
if they exist. In X where Y the situation is the same except it defines only the
names defined in X. X union Y defines all the names defined by X and Y, but
there must be no duplicate definitions; no free name in X can see a definition of
that name in ¥ and vice versa. In rec(namelist) X free names in X that occur in
namelist can see their definitions in X; every name in namelist must be defined by
X.

14.4 Defined names, free names and bindings for environments
The primitive environment PF.
D(PF) = the set of all function names

F(PF) = the empty set
PF has no free function names.
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A definition list environment. Let L be a definition list, defnlist. Then

D(L) = the set of names defined by the definitions in L.
F(L) = (Free(L) = D(L)) U Fronrec(L)
where

F,..(L) = free names on the right sides of def definitions in L
Fronrec(L) = free names on the right sides of nrdef definitions in L

The free names in F,..(L) are bound to their definitions in L, if they
exist.

The environment X uses Y.

D(X uses Y)= D(X) U D(Y).
If X and Y both define a name, its definition in X prevails.

F(X uses Y) = (F(X)-D(Y)) U F(Y)

The free names of X are bound to their definitions in Y, if they exist.
The environment X where Y. .

D(X where Y) = D(X) _

F(X where Y) = (F(X)-D(Y)) U F(Y)

The free names of X are bound to their definitions in Y, if they exist.
The environment X union Y.

D(X union Y) = D(X) U D(Y)

F(X union Y) = F(X) U F(Y)

No names are bound by union. X union Y is ill-formed if D(X) and

D(Y) have any names in common.

The environment rec(namelist) X

D(zec(namelist) X) = D(X)

F(zec(namelist) X) = F(X) — namelist

The free names of X are bound to their definitions in X, if their names
occur in namelist (if a name occurs in namelist, it must be defined in X).

The environment hide(namelist) X

D(hide(namelist) X) = D(X) — namelist
F(hide(namelist)X) = F(X)

No_free names in X are bound in hide(namelist) X. Every name in
namelist must be defined by X.
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The environment export(namelist) X
D(export(namelist) X ) = namelist
F(export(namelist) X) = F(X)

No free names in X are bound in export(namelist) X. Every name in
namelist must be defined by X.

14.5 Examples

Consider the following two environments built from the environments X , Y and U,
with the restriction that X and ¥ do not both define any given name.

E; = X where {Y uses U}
E; = {X union Y} uses U

The environment E; defines the names that X defines; free names in X see their
definitions in Y, if they exist there, if not, they see their definitions in U, if they exist
there, otherwise the free names of X must be defined in the surrounding context.
The free names of Y see their definitions in U if they exist there, otherwise in the
surrounding context.

The environment F, defines the names that either X or Y defires and that U
defines; a free name in X cannot see a definition of that name in Y, but can see its
definition in U, if it exists there, otherwise it must be defined in the surrounding
context. The situation is symmetrical with respect to X and Y.

There are several identities that govern these operations on environments; here
are three that hold for any environments X, Y and Z:

{X union Y7} where Z = {X where Z} union {Y where Z}
X uses {Y uses Z} = {X uses Y} uses Z

Both sides of the first identity are ill-formed if X and Y define the same name. The
second shows that uses is associative.

15 Precedence of operators in expressions

To avoid the need to write fully parenthesized expressions there are conventions
about the precedence of various operations. Expressions can be fully parenthesized
by the user to make clear their intended parsing. Alternatively, he may rely on
the precedence rules of the language to indicate where parentheses should be. For
example, the FL expression

p=q -+ £+ g; hoa:f
means the same as the fully parenthesized expression:

((p=q) = (£+g); (ho(a:£)))
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since the precedence of the operators in the expression is the following (from the
tightest binding to the weakest):

o + = -+

Every expression is implicitly fully parenthesized by an algorithm that uses the
following precedence table; when in doubt, the programmer is always free to use
parentheses to enhance clarity.

15.1 Precedence table

The following list gives expression forms in the order they are parenthesized by
precedence. When in doubt, the user should write explicit parentheses. In this
list P, Py, P2 denote patterns or expressions (as appropriate), e, ey, ez, e3, any
smallest (or already parenthesized) expressions, env, any environment, and £n, any
function name or left side of a definition. Within a level parentheses associate to
the left except for condition, which associates to the right; e.g., £:x:y = (£:x):y but
Paf;gh;r+s=(p-£;(g~h; (r~5s)))

Precedence table
]

e
“e

e1:e7

name.e or name.p

941089

e * e or 91 + ©2

e1+es or ©1-02

e1=e3

e1Hep or €4 Hep

P1#Py or P1 4Py

81 Aea or e1 Veg

1 €2 63 (Il‘lﬁx)

P-+ei; e or P-eq only condition associates to the right
e1lez

e where env

A(P)e

fn=e

16 Comments, assertions and signatures

Comments allow the user to annotate a program with any text at any point. As-
sertions and signatures serve as more formal comments; they have a formal syntax
and allow the user to make precise but possibly undecidable statements about a
program. Some FL compilers may issue guidelines indicating classes of assertions
and signatures that the compiler expects to be able to check; others may treat them
as comments.
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16.1 Comments

A comment is simply some text enclosed in /*...*/. It can be placed in any
whitespace in an expression and has no effect on its meaning. Comments can be
nested. The character pairs /* and */ are always used to delimit the beginning
and end, respectively, of comments and must occur in nested pairs (except within
strings).

Since slash (/) is a character that can be used in names, an ambiguity can occur
when the last character of a name is / and that name is immediately followed by
the self-delimiting operator *, or when a name beginning with / is immediately
preceded by *. For example, x/*y.. might be parsed either as x followed by a com-
ment that begins with y or as the infix expression x/ * y (followed by something),
which is equivalent to * :<x/, y>... This ambiguity is resolved in favor of comments
by the rule:

Except within a string, the character pair / * denotes the beginning of a
comment and the character pair * / denotes the end of a comment.

16.2 Assertions

An assertion is a comment with formal structure; it asserts that two expressions
have the same value. An assertion can appear anywhere a definition can; it has no
formal effect on the expression containing it, although some compilers may attempt
to check its validity.

An assertion has the form:
asn ezpry = ezpry
Its intuitive meaning is that the two expressions denote equal values (for all possible
histories), including function values.
16.2.1 Example

The following assertion expresses the law that asserts that for all functions £,
tt+f=sf

asn A(f.isfunc)tt-+f = A(f.isfunc)f

16.3 Signatures and meta-predicates

A signature is a comment with formal struciure; it asserts that an expression has a
property described by a meta-predicate (mpred). Meta-predicates include ordinary
FL predicates but also include some non-computable predicates over functions, and
predicates with universally quantified function variables.

A signature has the form:

sig expr :: mpred
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where

mpred = ezpr | meta(ezpr) | ~:mpred | (mpred) |
L mpred*]1 | mpredwmpred | mpred»mpred |
seqof:mpred | mpred A mpred | mpred v mpred |
mpred = mpred | forall (namelist) mpred

If M(x) denotes the truth value of a meta-predicate M at x, then the intuitive meaning
of the signature sig ezpr :: M is the assertion that M(ezpr) is always true when
evaluated starting with any possible history (typically, ezpr is a function name).
A signature can appear anywhere a definition can; it has no formal effect on the
expression containing it, although some compilers may attempt to check its validity.
See Part 3 for the precise semantics of meta-predicates.

16.3.1 Examples
The meta-predicate
[isnum, isnum] = isnum i

is true for all functions £ such that, whenever the argument is a pair of numbers,
the result is a number. Thus + satisfies this meta-predicate, but < does not (since
+:<1, 0> is an exception, not a number).

The following signatures are valid:

sig + seqof:isint = isint

sig + [1 = eqto:0 indicates that +:<> =0
E + seqof:isfunc = isfunc since + is a raised function
Eg al : [tt,isseq]] = isseq
;-':E tl = ttrisseq = isseq
E al = forall (p,q)([p, seqof:ql = prseqof:q)
sig t1 : forall (p,q)(prseqof:q = seqof:q)

17 Exceptions: generation and recovery

17.1 User generated exceptions; the primitive signal
The primitive function signal produces an exception that contains its argument:
signal:x = an exception containing x

With signal the user can produce exceptions (a) that reproduce system gener-
ated exceptions and/or (b) that can be caught with catch (see the next section).
For example, signal:<"al", “argi", <3>> is an exception that is the same as the
result of al:<3>, since <3> is an inappropriate argument for the primitive al (ap-
pend left) and therefore the exception produced by the system contains the value
<"al", "argl", <3>> of the form <name_string, ezplanation_string, argument>. All
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system generated exceptions contain similar sequences of length 3 whose first two
elements are strings. The user may produce other exceptions that could never be
system generated. For example, signal:"fail" is an exception that contains the
string “fail". Any exception (system or user generated) can be caught by catch
(next section).

17.2 Recovery from exceptions; the primitive catch

All FL functions are strict with respect to exceptions; this means that £:ezc = ezc
for any function £ and any exception ezc. Nevertheless FL provides a simple, purely
functional means for recovering from or “catching” an exception, through the use
of the primitive combining form catch, where

% if x is an exception
catchi<f, gmx = T if £:x is not an exception
g:<x,y> if f:x = signal:y for some y

Thus, when £:x is an exception, signal:y, then the result of catch:<f, g>:x depends
on the function g and both x, the original argument, and the exception value y. If
one wishes to catch an exception, the function that produces it must be contained
in a catch construction; strictness makes an exception produced outside of a catch
“uncatchable”.

Together, signal and catch can be used to program backtracking and error
recovery algorithms.

17.3 Example

Suppose one has a program P in which there are many unchecked divisions (<) and,
if any divide-by-zero exception occurs in evaluating P:X, one then wants to evaluate
P1:X instead of P:X, where P1 prevents division by zero. The following program
accomplishes this:

catch:<P,G> where
{def G+ [x., [eqto:"+", eqto:"argl", [isnum, iszero]]] = Plox}

thus
([ P:X if P:X is not an exception
P1:X if P:X = signal:Yand Y =
gran, "argl", <nﬂmber, o>>
catch:<P, G>:X =«

signal:Z if P:X = signal:Y and
Y is not of the above form

{ where Z = <"G", "argl", <X, Y>>

If P:X is a divide by zero exception — for example, it might arise from an at-
tempt to divide 3 by 0: thus P:X = signal:Y and Y = <"+", "argl”, <3,0>> —
then in G:<X,Y>, G’s domain predicate is true and the result is (Plox):<X,¥> =
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(Plos1):<X,Y> = P1:X. I Y does not come from a divide by zero exception, then
G:<X, Y> fails because G’s predicate is false; the resulting exception indicates that G
failed on <X, Y>.
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18 List of FL primitive functions

FL is intended to have an extensive set of primitive functions that will simplify pro-
gramming in many areas. The following list of primitive functions gives an informal
indication of what each function does; however, indications are seldom given of the
exceptions produced when a function is applied to an inappropriate argument. The
functions are grouped into the following categories: predicates, boolean, comparison,
arithmetic, combining forms, predicate combining forms, pattern combining forms,
sequence combining forms, sequence functions, input/output/file, miscellaneous.

All primitive function names consist of all lower case letters except the names
of three combining forms — K (constant), C (Curry) and A (make filter). Names
are case sensitive. The only one-character primitive function names are the self-
delimiting names (A, vV, ®, @, +, =, *, = o, = |, ®», &) plus the one-character
identifiers K, C, A and a.

18.1 Predicates

All primitive predicates yield either true or false for all normal arguments.

Y

Predicates for numbers
Function/examples Function true only for; Comment

isint:5 = true, isint:3.2 = false integers; integers are not reals

isreal:3.2 = true, isreal:5 = false reals;

isnum:3.2 = true, isnum:<6> = false | numbers = integers or reals;

ispos numbers greater than 0;
isneg numbers less than 0;
iszero 0 or 0.0;

Predicates for other atoms, functions and user types

Function/examples Function true only for; Comment

isatom numbers, truthvalues and chars;

isbool true or false;

ischar: a = true chars;

ischar:"a" = false : "a" = <"a> is a string

isutype elements of any user defined type;

isfunc functions;

isobj objects; = closure of atcms under
sequence-formation
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Predicates for sequences

Function/examples Function true only for; Comment
isnull:<> = isnull:"" = true ﬁempty sequence or string;
ispair:<2,3> = ispair:"ab" = true sequences of length 2;

isseq:<3> = true, isseq:"a" = true | Sequences; strings are sequences
isstring:< a, "b> = true strings; isstring =
isstring:"abcd" = true . isseq + and o a:ischar; ff

Identically true and false predicates

Function/examples Function true only for; Comment

£f never true; identically false T

isval all normal values including functions and user types;
tt all normal values; tt = isval

18.2 Boolean and comparison functions

The Boolean primitives treat any normal value other than false as true. All the
Boolean and comparison functions except not take sequences of any length as ar-
guments. Users will often prefer to use the lifted or higher order versions of the
Boolean functions (i.e., A for and, v for or, - for not) and the raised versions of
the comparison functions (e.g., = for eq, 1t for less, le for lesseq, etc.).

All the FL atoms are completely ordered — in ascending order: false, true,
numbers in their usual order, chars in the order given by the ISO standard DP 10646
for characters. Any atom is less than any sequence, and sequences are ordered lexico-
graphically; thus for any two objects x and y, (i.e., values that belong to the closure
of the atoms under sequence-formation) either x<y or y<x or x = y. Functions
and user defined types are not ordered. This is the ordering that is recognized by
primitives such as less (less than). For example, “a less <1>, <1>'less <1,2,3>,
"abc" less "ef" and <1,2,3> less <2> are all true.

Any primitive comparison function yields an exception when comparing func-
tions or elements of a user defined type; however these primitives can be extended
by the user to compare elements of a user defined type. Although direct comparison
of functions and/or user defined types gives an exception, comparison of sequences
containing such elements may succeed if the result does not depend on comparing
two of these incomparable elements. For example, even if x and y are elements of
_a user defined type, <1,x,3> is less than <2,y> since 1 is less than 2, and in the
lexicographical ordering of sequences it is therefore not necessary to compare x and
y. Similarly, if £, g and h are functions, <£> eq <g,h> is false; since sequences of
different lengths cannot be equal, it is not necessary to compare their elements. But
<£> less <g,h> is an exception because ordering these sequences requires comparing
two functions, £ and g.
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Boolean functions
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Function/examples

Function true only for; Comment

and:<true, true, true> = true

and:<1,2, 3,4> = true
and:<1, 2, false> = false
and:<> = true

any sequence not containing false;

not:false = true

the value false;

or:<false, false, 1> = true

or:<> = false

any sequence with an element that is
not false;

See also the combining form (i.e., lifted) versions of and, or and not under
Predicate Combining Forms; these are A, v and .

Comparison functions (see also raised comparison functions)

Function/examples

Function true only for; Comment

eq:<1,1,1> = true
eq:<1,1,2> = false
8q:<> = true
eq:<id,id> = exception

eq:<id> = exception
eq:<id, "a> = false
eq:<<id>, <id, id>> = false

sequences of identical objects;

no comparison of functions or user types (unless
eq is extended for a user type)

id is not an object
a function is not equal to an atom or a sequence
sequences of unequal lengths are not equal

neq:<1,1,2> = true

sequences for which eq is false;

less:<1,2, "a, <>> = true
less:<1,1> = false
less:<> = true

less:<3> = true
less:<id,id> = exception
less:<id> = exception
less:<<>,<id>> = true

sequences of strictly ascending order;

incomparable

<> is less than any other sequence

greater:<3,2,1> = true

sequences of strictly descending order;

lesseq:<1,1,2> = true

sequences of non-decreasing order;

greatereq:<2,1,1> = true

sequences of non-increasing order;
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Raised comparison functions (compare objects or combine functions to

form a comparison function)
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Function/examples Comment 1
=:<E 1> = true = =_ra.ise:eq

=:<f, g h>= 8qo [11 g, h]

(f=g):x = fix oq g:x

1t:<1,2,<>> = true
1t:<f,g,h> = lesso[f, g, h]

1t = raise:less; less than
(£ 1t g):x = £:x less g:x

gt:<f, g, h> = greatero[f, g, h]

gt = raise:greater

le:<f, g, h> = lesseqo[f, g, h]

le = raise:lesseq

‘ge:<f,g,h> = greatereqo[f, g, h]

ge = raise:greatereq
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18.3 Arithmetic functions

This group of functions includes the basic arithmetic operations (e.g., add); most
users will use their raised versions (e.g., +) instead of these. All arithmetic functions
are defined for both integers and reals; if the argument contains only integers the
result is an integer (except for div, whose result is always a real); otherwise the
result is a real (except for £loor and ceiling, whose results are always integers).
Some (add, mul) are defined on sequences of numbers of any length; some (sub, div)
are defined only on pairs of numbers, others (neg, floor, ceiling, abs) are defined
on single numbers.
Arithmetic functions

@ction/examples Domain; Comment
[addi<1,2,3,4> = 10 sequences of numbers; all integers to integer
add:<1.3,4,-5> = 0.3 result, otherwise: real result
add:<> =0
sub:<4,5> = -1 pairs of numbers; integers to integer result
sub:<4, 3.0e2> = -296.0 otherwise: real result
sub:<7,2,1> = exception
mul:<1,2,3,4> = 24 sequences of numbers;
mul:<1.2,5> = 6.0
mul:<> =1
div:<4,2> = 2.0 pairs of numbers; result always real

divi<5,2> = 2.5
div:<2.7,-3> = -0.9

neg:3 = -3 numbers;

neg:5.3e-3 = -.0053

floor:3 = 3 numbers;

flo0r:3.7 = 3 result = largest integer < argument.
floor:-3.7 = -4

ceiling:3 =3 numbers;

ceiling:3.7 =4 result = smallest integer 2 argument
ceiling:-3.7 = -3

abs:3 =3 numbers;

abs:—3=3 result = absolute value of argument

abs; — 3.7 = 3.7
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Raised arithmetic functions (do arithmetic on numbers or combine fune-
tions to form an arithmetic function)
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Function/examples J_Comment

+:<1,2,3>-= 6 " [+ = raise:add

+:<f,g,h> = addo[f, g, h] (f+glix = dixbigx

-:<f,g> = subo[£, g] - = raise:sub, (f-g):x = £:x - g:x
* :<f,g,h> = mulo[£f, g, h] * = raise:mul

+:<f,g> = divo[£f, g] + = raise:div
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18.4 Combining forms

Each combining form is presented as a higher order function. The first line for
each combining form gives the equivalent special syntax for the form, if it has one.
The second line (or the first, if there is no special form) shows the application of
a combining form cf as follows: (cf:argl):arg2 where argl is an argument of the
combining form function (which must be in the stated domain) and arg2 is an

18 LIST OF FL PRIMITIVE FUNCTIONS

argument of the function resulting from cf:argl.

Combining forms

| Function/examples | Domain; Comment
syef, g, ixx = 2 gi{hix)) sequences of functions;
orkd = id infix: fog = o:<f,g>

|:<£, g, h>:x = h:(g:(£:x))

sequences of functions; | = coreverse

cons:<f,g,h> = [£f,g,h]
[£, g b]:x=<f:2, g:x, h:xy
[J:x = cons:<>:x = <>

sequences of functions;

cond:<p,f,g>=p-+f; g
(p2E;ghix=2:x
(p=2; g)ix= g%
(p~1£; g)ix = exception
(pdzpyog = L

triples of functions;

if p:x is true

if p:x is false

if p:x is exception

if p:x is non-terminating

apply:<f,x> = f:x

pairs satisfying [isfunc, isval];

'.f":<g, h> = fo[g,h]

Kix = "x values; K = A(x.)A(y.)x
Xiy=x except “X:exception = exception
lift:f = ¢ functions;

1ift = Ko”"“cons =
A(f.isfunc)A(x.) (f o cons:x)

C:fix:iy = £:<x,y>

functions; C is curry
C = A(f.isfunc)A(x.)A(y.)f:<x, y>

raise:add:<f,g>:3 =
add:<£:3, g:3>
raise:add:<3,4> =7

functions defined on sequences of

objects;

raise = A(f.isfunc)(seqof:isfunc
A -:isnull - 1ift:f; £)

catch:<signalo™err", id>:<3, 4>
= <<3, 4>, "err'>
catch:<add, id>:<3,4> =7

pairs of functions; catch:<f, g>:x
is £:x if not an exception, o.w. it is
g:<x, v> where v is the value in

the exception f:x

delay:f:x:y = f:x:y

functions; delay:f and delay:f:x are
normal forms;
delay = A(f.isfunc)A(x.)A(y.)f:x:y
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18.5 Predicate combining forms

Predicate combining forms

| Domain; Comment

| Function/examples

peonsi<fy,...fn> = [£1,..., 5] | sequences of functions;
peons:<fy,...,fp>:x = true

[isint,tt,tt]:<3, "a", 0> = true
[1:<> = pcons:<>:<> = true

iff x is a sequence <xj,...,xp>
and £;:x; is true for alli = 1,..,n

true only for <>

=:<f,g>:x
f=g = =:<f, g>
(len="1):<5> = true

pairs of functions; true iff £:x = g:x
infix

seqof:p:x

seqof:ff:<> = true

seqof:isint:<3,4> = true

p a function; true iff x = <x4,..., x>
and p:x; is true foralli = 1,..,n

lenis:0:<> = true

eqto:x:y x an object; equal to true iff x = y
0qt0:<3>:<3> = true a curried version of eq
lenis:x:y x an integer; length is true iff

y a sequence of length x

LE LG R, B, T

PAq= A:<p,q>
A:<>:3 = true

£; functions; true iff £;:x is true
foralli,i =1,..,n

infix

Vi<fy,..,fx>:ix

PVq= V:i<p,q>
V:<3:ix = false

£; functions; true iff £;:x is true
for somei,i = 1,..,n

infix

(isseqH(eqto: x)):"bex" = true

nipix p a function; true iff p:x = false

=:isint:3 = false 7:p = notop :

H:<p, g>:x domain = pairs of functions; true iff
X = <Xj3,...,Xp>, 0>1, p:x; and
q:<X2,... Xp> are true

prq = p:i<p,qg> infix

(isnumptt):<3,<>, 1> = true

+:<p, g>:x domain = pairs of functions; true iff
X = LXfy vow XnPy D21,
p:<X1,...,Xa—1> and q:x, are true

pHg = +:<p, q> - | infix

47
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18.6 Pattern combining forms

A pattern combining form F maps n predicates (of the n patterns being combined)
into a pair <p, <my,..,my>>, where p is the predicate of the new pattern and m; is
the function that modifies the definitions of the ith pattern being combined to form
the definitions of the new pattern. In the following table Py, ..,P, denote patterns
or predicates, with at least one being a pattern, and p;, .., p, denote the predicates
of P1,..,Py (where p; = P; if P; is a predicate). See Section 12.1 for a description of

the general form pat(ezpr; P1,..,Py) for patterns.

Pattern combining forms

Pattern

Equivalent pat form

patcons:<pjy,..,pp> =
<pcons:<pi, .., Pn>, <81,..,sn>>

Function/examples Domain; Comment
[P1,..,Pyl pat(patcons; Py,..,Py)

nonempty sequences of functions;
defs of P; modified by si

P1®»Py
=:<p1,P2> = <p1 Hps, <s1,t1>>

pat(®; Py,P2)
pairs of functions;
defs of Py modified by s1, of P, by t1

Py <Py
<:<p1,P2> = <p3 Hp2, <tlr,rid>>

g?-_'_t_( <; Py, Pz)
pairs of functions;
defs of Py modified by t1r, of P, by ri

P;i pand Py
pand:<pj3, p2> = <pj A p2, <id, id>>

pat(pand; Py,P3)
pairs of functions;
defs of Py and P, not modified

Pi por Po
por:<pi,p2> = <pj V p2, <id, id>>

pat(por; Py,P3) .

pairs of functions; defs not modified;
caution: defined functions may fail on
objects that satisfy pattern

P; pcomp Py
pcomp:<pj, p2> = <pjopa, <p2,id>>

pat(pcomp; P1,P3)
pairs of functions;
defs of P14 modified by p;
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Sequence combining forms

| Function/examples

| Domain; Comment

JLiix> = x
f1eid:<1, 2, 3% = 41,95, 3>

/1:£:<xq, .., Xp> = f:?/l:f:<x1, v K] Py X >

/1:£ not defined for <>
/1 = sl insert left

functions £ defined on pa.zi:rs;

[r:ifi<x> =x
/r:8ub:<1,2,3,4> = ~2

12322421, oy Tp> = £:<xyg; [r2B:<TD, iy Xgd>

/r:f not defined for <>
/r = sl insert right

functions £ defined on pairs;

tree:f:<xy,.., x> =

fi<tree:fi<xy,..,Xy>, tree:fi<Xy 1, .., Xn>>

functions £ on pairs; for

n>1 where k = ceiling:(n+2)

tree:fi<xy> = x4 for n=1
tree:id:<1,2,3,4> = <<1,2>,43,4>> tree:f not defined for <>
XLy vy Xp? = Eigen 3L B> functions f£; '
a:isint:<1, 3.2> = <true, false> a = apply to all

merge:f:<x, y>
=X0ry
= ali<xj, merge:f:<tl:x, y>
= al:<yj, merge:f:<x, tl:y>

nmerge:1t:<<1,7>,<2,4,9>> =<1,2,4,7,9>

functions f£; x, y sequences
ifyorxis<>

if £:<x4,y1> is true

if £:<x1,y1> is false

18.8 Sequence functions

Sequence functions

| Function/examples

Domain predicate; Comment

al:<x, <y1, .., Yn>> = <x,¥1, --Jn;_
al:<1,<2>> =<1,2>

[tt,isseqll; append Teft

ari<<X1y ..y Xn>, ¥> = X1, .0y X, ¥>

[isseq,tt]; append right

cati<xy,.,Xp> =Yy
cat:<<1>,<2>> =<1, 2>

seqof:isseq; y is the
concatenation of the x;s

distl:<x,<y1,..,yn>> =
<<x, ¥12, .. <X, Yn>>
dist1:<3,<4,5>> = <<3,4>,<3,5>>

[tt, isseq]; distribute left

distri<<xy,..,Xp>, ¥> =
<<X1, ¥, .y <Xp, y>>

[isseq, tt1; distribute right

intsto:mn = <{,...,n>

isint A n:isneg; integers to

len:<xq,..,Xp> =1

isseq; length

TOVOrse:<Xi, .. Xn> = <Xp,..,X1>

isseq;

sel:<i,<xy,..,Xp>> = x5
sel:<3,<1,2>> = exception
sel:< — 2,<3,4,5,6>> =5

Fisint, isseqA (s1 le lenos2)];
i negative: count from right;
0.w., from left. sel = select

(Continued, next page)
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Sequence functions, continued
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| Function/examples ~

| Domain predicate; Comment

transi<xy, .., Xp> = <¥1, .y ¥m” B

seqof:isseq A eqoa:len; transpose
y; is sequence of jth elements of x;s

Selector functions si, for i=1,2,..
53:<x4, X3, X3, X4> = X3

isseq A (len le “i); select left, ith
si:x = sel:<i, x> for i=1,2,..

Selector functions ri, for i=1,2,..
rl:<x1,X2,X3,X4> = X4

isseqA (len le “i); select right, ith
ri:x = sel:i<neg:i, x> for i=1,2,..

£1:<X1, XDy 00y Xn® = €X2y 0y P

ttHRtt; tail

tlri<x1, .3 Xn—1,X¥n> = <Xq, o0y Xn—1>

ttHtt; tail right

18.9 Input, output and file functions

Input, output and file functions

Function/examples

Domain predicate; Comment

in:devicename = input

in:"kbd" = ¢

isstring; input = next input from de-

vice devicename

¢ = next character typed at keyboard

out:<devnm, x> = <devnm, x>

out:<"scr", "hello"> =
<"SCI‘", “"hello'>

[isstring,tt]; x to device devnm
"hello" appears on screen

get:filename = file

isstring; file = value stored at
filename (= a string)

put:<filename, x> = <filename, x>

[isstring, tt]; x is stored as the
file named filename

18.10 Miscellaneous functions: id, A, signal

Miscellaneous functions

Function/examples Domain predicate; Comment —I
idix =% isval; the identity function

Apx=x if p:x true | isfunc; A:p =

A:p:x = exception  otherwise p - id; signalo[*"Delta", “"arg2", id]

signal:x = y = exception

f:(signal:x) = signal:x

isval; exception y contains x
see combining form catch
for all functions £ and values x
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19 The Syntax of FL

19.1 Syntax conventions

Symbol | Interpretation ]

italics | non-terminals
I “Ol.”
{..} | grouping, as distinguished from {..} (FL characters)

z; | zero or more z’s separated by the separation mark s
e.g., 1,2,3 and abc are values for ezpr* and character*

z} | one or more z’s separated by the separation mark s

z? | z followed by zero or more primes ' where z is one of:
L -+ : - E.g., +"is an instance of -*
construct | small italics identifies “construct” when the latter has not

smell italics | heen named by a non-terminal. E.g,, ezpr:? ezpr indicates
that ezpr:?ezpr is an application application

For example,

segs := < {atom | name | “character*" | seqs}* >
string

describes sequences of constants (one of whose elements may be a siring, a row of
characters enclosed in quotes); these include the following expressions:

< <1,2> <square,5,6,"1+ab"> <f, <1, "abec">, """ beta>

19.2 Syntax of FL expressions

See the next section, Lexical Structure, for the definitions of character, identifier,
name and number.
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Syntax of FL expressions

ezpr = atom | name | seq | ezpr :? expr | (ezpr) |
application
ezpr where env | expr' | “Pezpr | [? ezpr*] |
primed ezpr constant construction
[? expr*1 | cond | expr ezpr ezpr | A(pat) ezpr
predicate constr infiz expr lambda ezpr
atom = "character | number | true | false
a “char” truth values

seq u= < ezpr*> | string
string u= “character*"

cond = ezpr -P expr; expr | expr <P expr |
pat + expr; expr | pat = expr

pat =" name. | name.ezpr | [ patlist] | pat_ezpr expr pat |

elementary patterns pat construction infiz pat
pat expr pai_ezpr | name.pat | pat(ezpr; patlist)
infiz pat general pattern
patlist = {pat_ezpr,}* pat{, pat_ezpr}*
pat_expr = pat | expr
env u= {defn}, .} | export(name’) env | hide(name?’) env |
defn list = export(namelist) env = hide(namelist) env

lib(string) | PF | env uses env | env where env |

env union env | rec(name't) env | {env}
= rec(namelist) env

defn = def name argezp = ezpr | nrdef name argezp = expr |
exdef pat argezp = expr | type identifier = pai_erpr |
asn ezpr = expr | sig ezpr :: mpred
assertion - signature
argezp == empty | (pat)t | (pat)* « pat_ezpr
mpred = ezpr | meta(ezpr) | mpred = mpred | Lmpred*] |

mpred «mpred | mpredvmpred | seqof:mpred |
mpred A mpred | mpredV mpred | ~:mpred | (mpred)

forall(name') mpred
= forall(nemelist) mpred
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19.3 Lexical structure of name, identifier, number, character, comment
In this section ( z ) denotes an optional z.

Lexical structure

name u= identifier | A | V | w4 | p |+ | - | * | + |
o= 1] »]|«

identifier = ident_char {ident_char | digit}*
ident.char u= letter | / | $ | % | # | _|2|t]4] |
number = (+ | - ) digit* (. digit* )( ezponent ) |
sign
. digit* ( ezponent )
ezponent = {e | E} (+ | - ) digitt
character = letter | digit | special_char
letter == { see note below }
digit == 0|1]2|3|4|5|6|7]|8]9
comment = [x* {text} */

within fezt / * and * / must be nested

The set of letters and special characters is not fixed but must contain the first
128 in the ASCII set. A full implementation should include the upper and lower
case Roman and Greek letters plus the following special characters:

Special characters

special_char = wvisible_char | code_char

visible.char = {characters listed without “ | "}:

- Tt e # $ % - & * ()
- - =+ | {3} [ 1 ]
’ < 5 > Y A -+ L I T

] # A v t 1 A = + C 2
N U o < > £ 2 => » @

l

\code\ | \\ | \"\
code u= {letter | digit | -}t

code_char
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The set of meaningful code characters ( code_chars) is not fixed but includes all
the ASCII codes such as \CR\ (carriage return or newline). The code character \\
denotes \ and \"\ denotes . The code characters built with integers, \n\ , up to
some limit, are codes for the characters in some set of characters. Other codes may
be assigned meanings at a later time.

Comments may appear any place in an expression that whitespace can appear.
They have no effect on the meaning of the expression.

19.4 ASCII representation of expressions

Many FL function names and symbols are not in the ASCII set of symbols. The
following table presents a transliteration of full FL into ASCIL. Some operators,
e.g., +, are translated into compound ASCII symbols, ->, thus some self delimiting
operators must be delimited by spaces to avoid ambiguity, e.g. in ASCII - and >
must have a space between them, else -> is a right arrow.



19.4 ASCII representation of expressions

| Symbol ASCIT Description (FL symbol :: ASCII character(s)) |
EESEEEE——— —

() ) parentheses
- - tilde
<> <> sequence brackets
B " double quote
i . back quote
) ) comma
; H semicolon
application sign :: colon
period '
[] - construction brackets :: square brackets
= = equal
+ * add :: plus sign
= - subtract :: minus sign
* * multiply :: asterisk
FL symbols with different ASCII representations

! »

prime :: right single quote
/ divide :: slash

Q composition :: “at” sign

1

| Teverse composition :: exclamation point

A lambda lambda :: reserved word “lambda”

C1 Ll 1] predicate construction :: square brackets with |’s
= == definition symbol :: pair of =’s

+ -> right arrow :: - with >

+ <- left arrow :: < with -

B [-> predicate append left :: | and - and >

“ <= predicate append right :: < and - and |

A /\ and :: slash and backslash

v \/ or :: backslash and slash

5 Not not :: function name “Not”

= [=> pattern append left :: | and = and >

& <=| pattern append right :: < and = and |

= =f=> function meta-predicate :: = and £ and = and >
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19.4.1 FL keywords and their reserved words in ASCII

The FL keywords have the following corresponding reserved words in AS CII, which
are used without underlines in an ASCII version of FL; one ASCII reserved word
corresponds to the FL symbol lambda. The reserved words are listed alphabetically.

asn  def exdef export false hide lambda lib  nrdef
pat PF  rec sig true type union uses where



