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ABSTRACT
The need for incremental algorithms for evaluating database
queries is well known, but constructing algorithms that work
on object-oriented databases (OODBs) has been difficult.
The reason is that OODB query languages involve complex
data types including composite objects and nested collec-
tions. As a result, existing algorithms have limitations in
that the kinds of database updates are restricted, the oper-
ations found in many query languages are not supported, or
the algorithms are too complex to be described precisely.

We present an incremental computation algorithm that can
handle any kind of database updates, can accept any ex-
pressions in complex query languages such as OQL, and can
be described precisely. By translating primitive values and
records into collections, we can reduce all query expressions
into ones composed of only one kind of operation, namely
comprehension. This makes the problems with incremental
computation less complicated and thus allows us to describe
the algorithm precisely. Our incremental algorithm consists
of two parts: one is to maintain the consistency in each com-
prehension occurrence and the other is to update the value
of an entire expression. The algorithm is so flexible that
we can use strict updates, lazy updates, and their combina-
tions. By comparing the performance of applications built
with our mechanism and that of equivalent hand written
update programs, we show that our incremental algorithm
can be implemented efficiently.

1. INTRODUCTION
Incremental computation has been studied in many fields [19].
The underlying idea is that we can improve the performance
of a function by computing an output using the result of a
previous computation whose input is slightly different from
the current one. Incremental computation is also receiving
attention in the database community [11]. It is normally
cheaper to compute the changes to a query answer in re-

sponse to changes to the database than to compute the en-
tire answer from scratch.

Although many incremental algorithms have been proposed
for relational databases (RDBs) [12], we cannot directly
apply them to object-oriented databases. The reason is
OODBs must be able to handle complex data structures in-
cluding composite objects and nested collections while RDBs
handle only flat tables. Queries of OODBs are also different
from those of RDBs in that they are recursively composed
of sub-queries so that they can traverse the complex data
structures.

Since OODBs must support complex data types and oper-
ations, which can be composed recursively, incremental al-
gorithms for OODB queries are inherently complicated. A
straightforward implementation would produce infinite com-
binations of cases. Thus existing incremental algorithms suf-
fer from the following deficiencies: (1) the kinds of database
updates are restricted, (2) the operations found in many
query languages are not supported, and (3) the algorithms
are presented so informally that we cannot check their cor-
rectness or completeness.

In this paper we will present an incremental computation al-
gorithm for OODB queries in which (1) any kinds of database
updates can be handled, (2) any expressions in complex
query languages such as ODMG OQL [4] can be accepted,
and (3) the algorithm can be precisely represented. The
contributions of this paper are: (1) the technique for trans-
lating various types of operations in OODB query languages
into single operation, (2) the algorithm that computes dif-
ferential elements for collection expressions correctly and ef-
ficiently, (3) the flexible incremental evaluation method in
which we can use strict updates, lazy updates, and their
combinations, and (4) the demonstration that the combina-
tion of the above can be implemented efficiently.

2. COMPREHENSION QUERY NOTATION
A clear distinction between a query language and a program-
ming language is that the former must allow us to describe
operations on collections concisely. A literature review [21]
covers a wide range of languages for collection types. We
use a query notation based on comprehensions [22, 3] as the
basis of our algorithm. In particular we will employ the
monoid comprehension calculus [6], in which multiple col-
lection types and aggregate operations can be treated uni-



formly.

A set comprehension {x ∗ x|x ∈ S ∧ x > 0} describes the
set of squares of all the positive numbers in a set S. The
resulting set is obtained by evaluating x ∗ x for each x ∈ S
where x > 0 holds.

This notation leads us to a collection query language that
takes the form:

e ::= . . .
| {e1, . . . , en} (n ≥ 0)
| {e|q1, . . . , qn} (n ≥ 0)

in which e is an expression and qi is a qualifier. A qualifier
is either

• a generator of the form v ← e′, where v is a variable
that ranges over the elements of e′, or

• a filter, which is a boolean valued expression.

A comprehension is defined by the following equations:

{e|} = {e}
{e|v ← e′, q1, . . . , qn} = if e′ = {}

then {}
else C(a1) ∪ . . . ∪ C(am)

where C(v) = {e|q1, . . . , qn},
e′ = {a1, . . . , am}

{e|filter, q1, . . . , qn} = if filter

then {e|q1, . . . , qn}
else {}

The following are examples of comprehension expressions:

select(f, e) = {x|x ← e, f(x)}
project(f, e) = {f(x)|x ← e}

flatten(e) = {x|s ← e, x ← s}

A comprehension with multiple generators is equivalent to a
nested loop in an imperative programming language. Thus
flatten({{1, 3}, {5}}) iterates over {1, 3} and {5}, which re-
sults in the set {1, 3, 5}.

We can treat other types of collection such as bag in the
same framework. In addition, aggregate operations such as
sum, and, and or can also be captured by comprehensions.
Each of the data types can be understood as a monoid, an
algebraic structure that is a pair of an associative merge
operator and the left and right identity of the operator. Ta-
ble 1 shows the monoids we use in this paper. A monoid is
idempotent when ∀x.x ◦ x = x.

The definition of comprehension above can easily be ex-
tended so that it can handle other monoids by replacing

M merge identity idempotent

collection set union empty set
√

monoid bag additive union empty bag
primitive sum + 0
monoid and ∧ true

√
or ∨ false

√

Table 1: Monoid Examples

∪ and {} with their merge operators and identities. To dis-
tinguish the monoids we describe them with prefixes that
specify collection types or aggregate operations. For exam-
ple, sum{x|x ← bag{1, 2}} computes the integer value 3.
When no confusion results, we will use {. . .} for set{. . .}.

Other examples are:

length(e) = sum{1|x ← e}
includes(e, a) = or{a = x|x ← e}

intersect(e1, e2) = {x1|x1 ← e1, or{x2 = x1|x2 ← e2}}

A comprehension language can capture most features of
OODB query languages when it is equipped with primitive
values and records in addition to collections. The language
must also support operations on such data types. The lan-
guage now takes the form:

e ::= . . .
| c constant
| v variable
| e1 + e2 also for ∗, =, <, · · ·
| <l1 =e1, . . . , ln =en> record construction
| e.l record projection
| M{e1, . . . , en} monoid
| M{e|q1, . . . , qn} monoid comprehension

M∈{set, bag, sum, and, or}
This can serve as an intermediate language for other query
languages such as OQL, a standardized OODB query lan-
guage. The query “select the employees whose family in-
comes are higher than $50,000” is represented in OQL as
follows:

select e
from e in Employees
where sum(select m.salary

from m in e.family) + e.salary > 50000

This OQL query is translated into the following comprehen-
sion expression:

bag{e|e ← Employees,
sum{m.salary|m ← e.family}+ e.salary > 50000}

Most OQL expressions have a direct translation into com-
prehension expressions [6, 10]. Relational algebra is a special
case of comprehensions in which the values are restricted to
sets of records of primitives.



3. PROBLEMS WITH INCREMENTAL
COMPUTATION

A comprehension language can serve as a foundation for
incremental computation of expressions that involve collec-
tions. Assume we have

f(E) = {x ∗ x|x ← E}
When the new elements ∆E are added to E, we can obtain
the new value of f(Enew), where Enew = E ∪∆E, by com-
bining the previous result f(E) and the value of f(∆E) as
follows:

f(Enew) = f(E) ∪ f(∆E)

This implies that we can reuse the value of f(E) to compute
f(Enew).

However, we cannot apply the idea to all the cases for two
major reasons. One reason is that we have to handle prim-
itives and records as well as collections, which prevents us
from using the same idea for incremental computation.

The other reason is that we cannot handle deletion of el-
ements with the same approach. For example, assume we
have E = {−4, 1, 4} and ∆E = {4}. Then f(E) = {16, 1}
and f(∆E) = {16}, thus f(E) − f(∆E) = {1}. However
f(Enew), where Enew = E −∆E, is {16, 1}, which does not
satisfy f(Enew) = f(E) − f(∆E). Even if we use a bag,
which satisfies the equation above, computing f(∆E) from
scratch is often too expensive because the elements of f(∆E)
will not be used in f(Enew).

We will address the first problem in Section 4 and the second
problem in Section 5.

4. TRANSLATION INTO COLLECTIONS
Primitive Values
When a primitive value a is changed into a′ in an expression
g(a), we can obtain the new value g(a′) by first cancelling
the effect caused by the old value a and then introducing the
effect caused by the new value a′. For example, when a = 2,
the expression bag{x ∗ 2|x ← bag{1, a}} yields bag{2, 4}.
When the value of a is changed to 3, the new value of the
expression can be computed by first removing 4, which is
the effect of the old value of a, and then adding 6, which is
the effect of the new value. The result is bag{2, 6}.

This observation leads us to represent a primitive value as a
set whose only element is the primitive value. A change of
the value is realized in two steps: (1) remove the old value
from the set and (2) add the new value to the set. Given
the value representation as a set S, the first step is realized
by:

S1 = S − {eold}
The second step is

S2 = S1 ∪ {enew}

We also have to modify the operations on primitive values
so that they take and produce sets. The modified operator

that corresponds to ′+′ has to be:

add(X1, X2) =

8>>><>>>:
{} if X1 = {}
{} if X2 = {}
{x1 + x2} otherwise

where {x1} = X1,
{x2} = X2

This can be represented by the following comprehension:

{x1 + x2|x1 ← X1, x2 ← X2}

Note that since X1 and X2 are singletons or empty sets, the
result has one element at most. The first example in this
section is expressed as follows:

bag{{x1 ∗ x2|x1 ← x, x2 ← {2}}|x ← bag{{1}, {a}}}

This yields bag{{2}, {4}} when a = 2, which becomes
bag{{2}, {}} in the intermediate state, and finally becomes
bag{{2}, {6}} when a = 3

Records
We can also encode records into collections. The basic idea is
to represent a record as a set of pairs, each of which consists
of a field name and its value1. For example, the record
< name = ”John”, age = 32 > can be represented by r =
{(name, {”John”}), (age, {32})}. The value of age can be
obtained by a comprehension as follows:

{x|(l, a) ← r, l = age, x ← a}

Figure 1 shows the entire encoding algorithm in terms of the
function E [[.]]. Although the sets for representing primitive
values and records are nothing special in that they obey all
the axioms of sets, we denote them by setp and setr so that
the inverse function D[[.]] in Figure 2 can uniquely decode
values.

Booleans
For the translated language in Figure 1, since the booleans
are now represented by {true} and {false}, the definition of
a filter should be changed as follows:

{e|filter, q1, . . . , qn} = if filter = {true}
then {e|q1, . . . , qn}
else {}

1A pair (a,b) can be represented by a set {{a},{a,b}} (Ku-
ratowski’s ordered pair). This makes pairs unnecessary, but
we use them for readability.



E [[c]] = setp{c}
E [[v]] = v

E [[e1 + e2]] = setp{x1 + x2|x1 ← E [[e1]], x2 ← E [[e2]]} also for ∗, =, <, · · ·
E [[ < l1 = e1, . . . , ln = en > ]] = setr{(l1, E [[e1]]), . . . , (ln, E [[en]])}

E [[e.l]] = E [[M{x|(l′, a) ← E [[e]], l = l′, x ← a}]] M is the type of a

E [[M{e1, . . . , en}]] =

� M{E [[e1]], . . . , E [[en]]} for collection types
setp{M{E [[e1]], . . . , E [[en]]}} for aggregate operations

E [[M{e|q1, . . . , qn}]] =

� M{e|Q[[q1]], . . . ,Q[[qn]]} for collection types
setp{M{e|Q[[q1]], . . . ,Q[[qn]]}} for aggregate operations

Q[[v ← e]] = v ← E [[e]]

Q[[e]] = E [[e]]

Figure 1: Encoder

D[[setp{c}]] = c
D[[setr{(l1, v1), . . . , (ln, vn)}]] = < l1 = D[[v1]], . . . , ln = D[[vn]] >

D[[M{v1, . . . , vn}]] = M{D[[v1]], . . . ,D[[vn]]} (M 6= setp or setr)

Figure 2: Decoder

If we replace {false} with {}, the definition becomes:

{e|filter, q1, . . . , qn} = if filter = {}
then {}
else {e|q1, . . . , qn}

= if filter = {}
then {}
else C(a)

where C(v) = {e|q1, . . . , qn},
{a} = filter

= {e|v ← filter, q1, . . . , qn}

In this way we can implement filters as generators, which
makes the equation for filters unnecessary in the definition
of comprehensions. Note that the iteration variable v (or
the value of a) is never used in qi.

5. INCREMENTAL COMPUTATION OF
COMPREHENSION INSTANCES

Comprehension Instances
We will introduce the notion of a comprehension instance for
separating an expression from its value. A comprehension
instance C is an occurrence of a comprehension expression
in an environment, an association of values with variables.
So far we have not clearly distinguished between an expres-
sion and the value it denotes. However, since expressions
can have free variables, their values vary depending on the
environments in which they are evaluated. We describe the
value of C as C.value and the environment of C as C.env.

Let C be a comprehension instance for {e|v ← e′, q1, . . . , qn},
E be that for e′, and Si be that for {e|q1, . . . , qn}. Then the
following equations hold:

C.value = if E.value = {}
then {}
else S1.value ∪ . . . ∪ Sm.value

E.env = C.env

Si.env = C.env ∪ {(v, ai)}
where E.value = {a1, . . . , am}

Therefore we can keep the value of C.value up to date by
modifying it in response to the changes in E.value and
Si.value.

Bag Comprehensions
We first look into the method for computing a bag compre-
hension incrementally. The discussion can be generalized
to any comprehensions whose underlying monoids are anti-
idempotent. As we have mentioned in Section 3, the incre-
mental computation of a bag comprehension is easier than
that of a set comprehension because a bag allows elements
to be duplicated but a set does not.

The problem in maintaining a bag comprehension is when we
remove ak from E.value, creating a comprehension instance
Sk for ak to compute

C.valuenew = C.value− Sk.value



is often too expensive because Sk is discarded just after
Sk.value is used.

We solve this problem by retaining the mapping between ai

and Si, and reusing Si when ai is removed. For that purpose
we use an auxiliary data structure C.map such that

C.map = bag{(a, S such that (v, a) ∈ S.env)|a ← E.value}
Then C.value can be obtained as

C.value = bag{x|(a, S) ← C.map, x ← S.value}
When ak is removed from E.value, the elements to be re-
moved from C.value can be obtained as

∆
−

(C.value) = lookup(C.map, ak).value

where lookup(m, x) selects from m one element (a, b) such
that x = a, and gives b. By defining C.value and its dif-

ferential elements ∆
−

(C.value) in terms of C.map, we can
avoid computing Sk multiple times.

We also maintain the following relationships so that we can
propagate changes among comprehension instances and can
ensure the consistency of entire expressions.

E ∈ C.components

Si ∈ C.components

C ∈ E.dependents

C ∈ Si.dependents

Set Comprehensions
For a set comprehension, we also use the auxiliary data
structure C.map so that we can avoid unnecessary compu-
tation in deleting elements. Since the value of a set compre-
hension is a set, C.value is obtained as

C.value = set{x|(a, S) ← C.map, x ← S.value}

Unlike a bag comprehension, a set comprehension requires
us to manage the input elements that yield the same value.
In the example in Section 3, since both −4 and 4 yielded
the same value 16, we could not exclude 16 from the result
when deleting the input element 4. However, if we delete
both −4 and 4, we have to exclude 16 from the result.

To handle those situations correctly, we use another auxil-
iary data structure C.counts such that

C.counts = set{(x, count(C.map, x))|x ← C.value}
The function count(m, x) is defined as follows:

count(m, x) = sum{1|(a, S) ← m, y ← S.value, x = y}
C.counts maintains the mapping between an element in the
result C.value and the number of duplicates that yielded the
element.

When ak is removed from E.value, the elements to be re-
moved from C.value can be obtained as

∆
−

(C.value) = set{x|x ← lookup(C.map, ak).value,
lookup(C.counts, x) =
count(lookup(C.map, ak).value, x)}

The expression checks if an element to be removed satis-
fies the condition that the number of duplicates in C.value
is same as the number of duplicates in S.value. The tech-
nique here can be generalized to any comprehensions whose
underlying monoids are idempotent.

6. UPDATE PROPAGATIONS
Strict Updates
Given the incremental evaluator update(c) for a compre-
hension instance c, we can update the value of an entire
expression by propagating changes among comprehension
instances. When the value of a comprehension instance c
is changed, the value of another comprehension instance c′

that depends on c should also be updated. Figure 3 shows
the algorithm that directly implements this idea. The al-
gorithm updates the value of a comprehension instance and
propagates the update along the edges of the dependency
graph. This algorithm is strict in that the algorithm up-
dates the value of an entire expression whenever the value
of a piece of the expression is changed. Since comprehen-
sion instances that are not involved in the change are not
evaluated, this algorithm is incremental.

Lazy Updates
Although StrictUpdate(c) correctly updates the values of
expressions, it has two problems. One is that because a
single comprehension instance can depend on multiple other
instances, it may be evaluated more than once for a single
change. This makes the update propagation inefficient. The
other problem is that the algorithm always computes the
latest value even if the value will not be used. When the
value is overwritten, the previous value becomes useless.

The two problems can be solved by delaying updates until
the value is actually required. To avoid traversing the entire
graph when the value is required, we use an algorithm that
consists of two phases (Figure 4). The first phase propa-
gates the invalid marker along the dependency graph. The
second phase makes all of the components of a comprehen-
sion instance valid, then evaluates the instance itself. The
first phase visits an edge of the dependency graph at most
once, and the second phase computes the new value of an
instance at most once. Thus the algorithm does not do the
same work multiple times. This algorithm computes the lat-
est value only when the second phase is invoked. The idea
behind this algorithm is presented as the Adaptive Propa-
gator in Feiler and Tichy [7].

Hybrid Updates
Unfortunately, the lazy update algorithm makes the response
time worse when collections are dominant in an expression.
The second phase updates all the invalid comprehensions
at once. If we have many unprocessed elements in collec-
tions, this phase takes long time, which lessens the effect of
incremental computation.



StrictUpdate(c: comprehension instance) {
update(c);
for each c′ ∈ c.dependents

StrictUpdate(c′);
}

Figure 3: Strict Update

LazyUpdatePhase1(c: comprehension instance) {
if c.valid = true {

c.valid := false;
for each c′ ∈ c.dependents

LazyUpdatePhase1(c′);
}

}

LazyUpdatePhase2(c: comprehension instance) {
for each c′ ∈ c.components

if c′.valid = false {
LazyUpdatePhase2(c′);
c′.valid := true;

}
update(c);

}

Figure 4: Lazy Update

One solution is to delay changes of primitive values only; ad-
dition and deletion of elements are processed immediately.
Since the effect of updates in primitive values is always over-
written when the value is changed, it is clear that delaying
computation of primitive values is effective to improve the
performance. The resulting algorithm is a combination of
the strict updates and the lazy updates shown in Figure 5.
For primitive values, the lazy algorithm is applied; otherwise
the strict algorithm is used. Note that the hybrid update
algorithm is not always the best solution because it has the
same problem as the strict updates.

7. IMPLEMENTATION
We implemented an experimental system using Cincom Vi-
sualWorks 3.1, a Smalltalk development environment. We
use OQL instead of a comprehension language as a surface
language. The system takes OQL queries as an input and
translates them into byte codes that will generate the ab-
stract syntax trees (ASTs) whose nodes are comprehensions.
When a query, which is now a compiled Smalltalk method,
is invoked, the generated AST constructs comprehension in-
stances, each of which holds its initial value as well as de-
pendency relationships.

Maintenance of dependencies between objects, change no-
tifications, and automatic updates are well represented by
the Observer pattern [8] in an object oriented system. Vi-
sualWorks provides a framework for the Observer pattern,
namely the dependency mechanism, but we implemented
our own mechanism because we wanted to separate change
notifications from value updates. When they are synchronous,
the computation is strict. When they are asynchronous, the

HybridUpdatePhase1(c: comprehension instance) {
if c.type = setp {

LazyUpdatePhase1(c);
} else {

update(c);
for each c′ ∈ c.dependents

HybridUpdatePhase1(c′);
}

}

HybridUpdatePhase2(c: comprehension instance) {
LazyUpdatePhase2(c);

}

Figure 5: Hybrid Update

computation is lazy.

Although we have only one kind of operation, which is com-
prehensions, we implemented them in multiple ways so that
we can take advantage of the features of underlying data
and operations. For example, since a set that represents a
constant never changes, we can implement it in terms of a
constant itself. We made constants behave as if they were
sets by adding a method whose meaning is to access a set
element but whose implementation is to return the constant
object itself. Another example is the implementation of a
primitive value. Since a set that represents a primitive value
contains one element at most, we can implement it as an
object whose only instance variable is to hold a value. This
object is much lighter than general sets, which can hold any
number of objects. We can also make a set for a record ef-
ficient by adding to the object indexes that make access to
field values fast.

We also optimized our implementation by taking OQL-specific
features into account. For example, the group by clause,
which converts a bag into a set of bags, can be implemented
efficiently using the knowledge that any two converted bags
are disjoint.

8. EVALUATION
Evaluation Method
We evaluated the performance of our system by compar-
ing (a) applications built on our incremental computation
mechanism and (b) equivalent programs hand written in
Smalltalk. A hand written Smalltalk program updates its
results using procedural logic. Note that the hand writ-
ten programs were implemented in a straightforward way;
they were not optimized. To investigate the effect of lazy
updates, we executed applications built on our mechanism
in two modes: (a1) using only strict updates, and (a2) us-
ing both strict and lazy updates (hybrid updates). Since in
our applications, collections are dominant, we excluded lazy
only updates.

All the applications share the same underlying database.
The data model is shown as a UML class diagram in Fig-
ure 6. In the data model, Order, Sale, and CashReceipt
are primary transactions while OrderLineItem, SaleLineItem,
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Figure 6: Benchmark Data Model

and Payment are transactions subsequent to Order, Sale and
CashReceipt. Transaction objects are being inserted into the
database while the benchmark is running but the other ob-
jects are fixed. We insert Orders, Sales, and CashReceipts
in the same ratio 1:1:1. For each primary transaction, five
subsequent transactions are generated. We used the OQL
queries shown in Figure 7.

Note that although the only change to the underlying database
is the addition of elements, the queries cause other types of
change by means of the sum operator, the group by clause,
and the binary operators on primitive values.

Results
The performance evaluation was conducted on a 300 MHz
Pentium-II PC with 128MB memory under Windows NT
4.0. Table 2 shows the ratio of the processing time of our
incremental framework to that of the hand written Smalltalk
programs. The Order Statistics and Unpaid Sales queries
achieve performance comparable to hand written programs.
However, the General Ledger application is slow compared
with the other queries. The reason is that the hand written
General Ledger program uses few expensive operations such
as table searches or collection iterations. Lazy updates are
effective only in the Unpaid Sales application because it uses
a complex condition in the where clause.

Figures 8, 9, and 10 indicate how the ratio changes with the
amount of data inserted. The ratio is almost stable in the
General Ledger and Order Statistics queries. For the Un-
paid Sales application, the performance of our framework
becomes closer to that of the hand written program as the
amount of data increases. This is because VisualWorks does
not handle large collections efficiently and thus the perfor-

mance of the hand written program is dominated by the
collection operations, which our framework also depends on.

9. RELATED WORK
Database View Maintenance
The algorithms for computing queries incrementally are known
as incremental view maintenance techniques. Techniques for
relational models have been studied extensively [11]. Re-
cently incremental algorithms for nested collections have
been attracting attention. Examples are: Gluche et al. [9],
Baekgaard and Mark [2], Kawaguchi et al. [16], and Liu et
al. [18]. However they addressed problems that arise only
when elements are added or deleted; modification of record
attributes were out of their scope.

Kuno and Rundensteiner [17] considered modification of at-
tribute values, but this can be treated independently of ad-
dition or deletion of elements because in their language col-
lections and the other types do not interact. Fegaras [5]
suggested that by extending the monoid calculus with ob-
ject identities, we can handle the modification of attributes
as well as addition and deletion of collection elements in a
single framework. However, he left constructing an actual
algorithm to future research.

To our knowledge, Ali et al. [1] is the only work that pre-
sented an incremental algorithm that can handle modifica-
tions, additions, and deletions in a complex object-oriented
query language like OQL. However, although their algorithm
is very complicated, they did not formally show the ratio-
nale behind the algorithm, which prevents us from checking
the correctness or completeness of their algorithm.



Hand Written Incremental Framework
Application Strict Updates Strict & Lazy Updates

Time (Tb) Time (Ta1) Ratio (Ta1/Tb) Time (Ta2) Ratio (Ta2/Tb)

General Ledger 0.65 s 5.14 s 7.9 4.94 s 7.6
Order Statistics 3.56 s 7.62 s 2.2 7.67 s 2.2
Unpaid Sales 10.81 s 17.28 s 1.6 13.79 s 1.3

(Number of primary transactions = 8K)

Table 2: Performance Comparison

Query: General Ledger
struct(
accountsReceivable:

(sum(select i.price * i.quantity
from s in sales, i in s.saleLineItems)

- sum(select r.checkAmount
from r in cashReceipts)),

cash:
sum(select r.checkAmount

from r in cashReceipts),
costOfGoodsSold:

sum(select i.product.cost * i.quantity
from s in sales, i in s.saleLineItems))

Query: Statistics on Product Orders
select struct(

product: product.name,
month: month,
total: sum(select p.i.quantity

from p in partition))
from order in orders, i in order.orderLineItems
group by product: i.product,

month: order.date.monthIndex

Query: Unpaid Sales
select struct(

name: s.order.customer.name,
no: s.no)

from s in sales
where (sum(select i.price * i.quantity

from i in s.saleLineItems)
- sum(select p.amount

from p in s.payments)) > 0

Figure 7: Benchmark Queries
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Figure 8: Performance Comparison (General
Ledger)
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Figure 9: Performance Comparison (Order Statis-
tics)
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Figure 10: Performance Comparison (Unpaid Sales)

Incremental Attribute Evaluation
An attribute grammar supplies its accompanying semantics
in terms of the equations that define attribute values associ-
ated with the grammar symbols. By dynamically maintain-
ing the equations in response to changes to the attribute val-
ues, we can preserve the semantic correctness of a program
in the language. This idea was explored extensively in the
context of language-aware programming environments [20].

Hudson [14] presented an algorithm in which attribute eval-
uation can be deferred until the values are actually needed.
He then applied the lazy evaluation algorithm to an object-
oriented language [15]. Zanden et al. [25] also gave both a
strict and a lazy incremental algorithms for manipulating
data structures with pointer variables. Our work is actually
an extension of their approaches, but applied to a language
equipped with collections as a first-class data type.

Yellin and Strom [24] designed a functional language that
can be evaluated incrementally. The language can handle
bags as well as records, and thus their approach is similar
to ours. One difference is that their notion of change is re-
stricted to addition and deletion of bag elements, while our
framework accepts any types of data updates. Another dif-
ference is that they attached independent incremental pro-
cedures to 15 operators, which makes analyzing the entire
algorithm very hard, while our algorithm has to handle only
one operator.

10. CONCLUDING REMARKS
We have presented an incremental query evaluation algo-
rithm that can handle any kinds of database updates and
can accept any expressions in complex query languages by
translating diverse OODB queries into uniform comprehen-
sion expressions. Since we have to consider only one opera-
tion, the problems with incremental computation of OODB
queries are manageable. We have also shown that the al-
gorithm can be implemented efficiently. It achieves perfor-
mance comparable to hand written update programs.

Since our work is essentially an application of incremental
attribute evaluation techniques to collection languages, we
can use the ideas developed in those two areas to improve
our algorithm. For example, the algorithm shown in this pa-
per does not use any sophisticated techniques in managing
dependencies, but we can achieve faster incremental com-
putation by handling non-local dependencies directly [13].
Another technique we can use is the meaning-preserving
transformation between two collection expressions [6, 23].
Although their transformation rules are designed to increase
the performance of queries in a non-incremental setting, we
believe we can use them to improve the performance of our
incremental algorithm.
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