
June 24, 2002
RT0473
Security 6 pages

Research Report

A 10Gbps Full-AES Crypto Design with a Twisted-BDD S-Box
Architecture

Sumio Morioka and Akashi Satoh

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

A 10 Gbps Full-AES Crypto Design with a Twisted-BDD S-Box Architecture

Sumio Morioka and Akashi Satoh
Tokyo Research Laboratory, IBM Japan Ltd.,

1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken 242-8502, Japan
{E02716,akashi}@jp.ibm.com

Abstract

In this paper, we present a high-speed AES IP-core,
which runs at 780 MHz on a 0.13µm CMOS standard cell
library, and which achieves 10 Gbps throughput in all
encryption modes, including CBC mode. Although the
CBC mode is the most widely used and important,
achieving such high throughput was difficult because
pipelining techniques cannot be applied. To reduce the
propagation delays of the S-Box, the most critical
function block, we developed a special circuit
architecture that we call twisted-BDD, where the fanout
of signals is distributed in the S-Box circuit. Our S-Box is
1.5 to 2 times faster than the conventional S-Box
implementations. The T-Box algorithm, which merges the
S-Box and another primitive function (MixColumns) into
a single function, is also used for an additional speedup.

1 Introduction

DES (Data Encryption Standard) has been used as a de
facto standard cipher for more than 20 years. In 2001,
NIST (National Institute of Standards and Technology)
made Rijndael the new standard cipher AES (Advanced
Encryption Standard) [1,2]. Many circuit architectures for
AES have been proposed recently and their performances
have been evaluated by using ASIC libraries [3,4,5] and
FPGAs [6,7]. However, most of them are simple
implementations according to the AES specification, and
none are yet fast enough for practical use such as optical
communication links with a VPN (Virtual Private
Network) capability and/or a 10 Gbps WDM (Wavelength
Division Multiplex) system.

In particular, no existing AES circuit achieves 10 Gbps
throughput in the CBC (Cipher Block Chaining) mode,
which is the most widely used and important mode,
although more than 10 Gbps throughput was already
reported in simple ECB (Electronic Code Block) mode
[3]. In the CBC mode, a feedback operation is performed,
and therefore pipelining techniques cannot be applied as a
speedup method. Propagation delay reduction for the
combinational circuits is the only speedup method for the
CBC mode.

To reduce the delay of the S-Box, which is the slowest

function block in the entire circuit, we investigated
various design techniques for the S-Box. Although many
techniques for compact S-Box designs have been
proposed [8,9,10], the circuits obtained are too slow. Few
techniques for realizing fast S-Boxes have ever reported
except for the table-lookup method [11], where the S-Box
circuit is automatically synthesized from its truth table by
using EDA tools.

In this paper, we propose a new fast S-Box circuit
architecture named twisted-BDD. In the conventional
BDD (Binary Decision Diagram) [12] representation of
the S-Box, various structural characteristics are observed,
such as the heavy sharing of input-side nodes and the
independence of variable ordering. We tried to decrease
the fanout of the primary input signals and reduce the
propagation delay of the serially connected selectors. The
resulting S-Box is 1.5 to 2 times faster than the
conventional S-Box implementations.

As a result, we achieved a throughput of 10 Gbps at a
780 MHz clock rate using a 0.13µm CMOS standard cell
library, by combining the use of the twisted-BDD
architecture and the T-Box algorithm [1,7] that was
originally developed for high-speed software. As far as
the authors know, this is the first 10 Gbps AES circuit
which can support all encryption modes.

2 The AES Algorithm

2.1 Basic Algorithm

An AES encryption process for 128-bit plain text data
and a 128-bit secret key is shown in Figure 1. A sequence
of four primitive functions, SubBytes, ShiftRows,
MixColumns, and AddRoundKey, are executed Nr-1
times. Each loop is called a round and the concrete value
of Nr is 10, 12, or 14 depending on the key length. Prior
to this main loop, AddRoundKey is executed for
initialization. After executing the main loop, a sequence
of SubBytes, ShiftRows, and AddRoundKey is executed
as the final round.

SubBytes is a 16-byte (128-bit) input/output nonlinear
transformation that uses one-byte substitution tables
(S-Boxes). Each S-Box is a multiplicative inversion on a
Galois field GF(28) followed by an affine transformation.

The irreducible polynomial used by the field is

1)(348 ++++= xxxxxm . (1)

ShiftRows is a cyclic shift operation in each row of 4
% 4-byte data by 0~3-byte offsets. MixColumns treats the
4-byte data in each column as coefficients of a 4-term
polynomial, and multiplies the data modulo x4+1 with the
fixed polynomial given by

}02{}01{}01{}03{)(23 +++= xxxxc . (2)

AddRoundKey is a simple bit-wise XOR operation on
the 128-bit round keys K0~KNr and the data.

In the decryption process, the inverse operations of
each primitive function are executed. The inverse of
AddRoundKey is AddRoundKey itself. InvSubBytes,
which is the inverse of SubBytes, executes an affine
transformation before the multiplicative inversion.
InvShiftRows is a cyclic rotation in the reverse direction.
InvMixColumns uses the following polynomial for the
multiplications:

}0{}09{}0{}0{)(231 exxdxbxc +++=− . (3)

8 8 8

SubBytes
ShiftRows

MixColumns
AddRoundKey

SubBytes
ShiftRows

MixColumns
AddRoundKey

SubBytes
ShiftRows

AddRoundKey

a00

a10

a20

a30

a b00 a01 03a
a10 a11 13a
a20 a21 23a
a30 a31 33a

00 01 03

10 11 13

20 21 23

30 31 33

b b
b b b
b b b
b b b

a j

S-Box

0

a j1

a j2

a j3

b j0

b j1

b j2

b j3

c()

a00 02a01 a 03a
a10 a11 13a
a20 22a21 a 23a
a30 32a31 a 33a

12a
a00 02a01 a 03a

10a

20a 21a

31a30 a 32a

left rotation by 1

left rotation by 2

left rotation by 3

a01 03a
a11 13a
a21 23a
a31 33a

02a

22a

32a

a ij

b00 0201 03

10 1211 13

20 2221 23

30 3231 33

b b b
b b b b
b b b b
b b b b

b ij

no shift

a00

a10

a20

a30

a01 03a
a11 13a
a21 23a
a31 33a

02a

22a

32a

k00 0201 03

10 1211 13

20 2221 23

30 3231 33

k k k
k k k k
k k k k
k k k k

12a
b00 0201 03

10 1211 13

20 2221 23

30 3231 33

b b b
b b b b
b b b b
b b b b

=

x

8 8 8

AddRoundKey
0K

1K

NrK

NrK -1

Figure 1. AES Encryption Algorithm.

2.2 T-Box for High-Speed Implementations

The T-Box algorithm is a speedup technique for
software where SubBytes and MixColumns are merged in

encryption, and InvSubBytes and InvMixColumns are
merged in decryption [1,7]. In the left half of Figure 2,
the original AES encryption and decryption processes are
shown, while in the other half, the processes for the
T-Box algorithm are shown. Some functions are reordered
in order to merge the functions. Each one-byte S-Box
output of SubBytes and InvSubBytes is multiplied by the
four coefficients of the polynomials (2) and (3)
respectively, and these two one-byte input and four-byte
output relation tables become T-Boxes. The concrete
circuit implementation of this algorithm will be described
in Section 5.1.

Figure 2. Reordering of Primitive Functions for
using the T-Box Algorithm.

3 Issues in Designing Fast S-Box Circuits

3.1 Basic Approaches

There are two approaches for designing S-Box circuits:
(1) construct a multiplicative inversion circuit and an
affine transformation circuit independently, and then
connect these two circuits in serial, and (2) construct a
single circuit directly whose input-output relation is
equivalent to the S-Box.

In Method (1), circuit area reduction using
mathematical theorems over Galois fields (GF) is possible.
Various methods for constructing compact inversion
circuits over GF have been studied, based on Fermat’s
Little Theorem, the extended Euclid’s Algorithm and so
on [11]. In particular, the composite field (or tower field)
inversion [8] is effective over GF(28), and it can be used

SubBytes
ShiftRows

MixColumns

SubBytes
ShiftRows

Plain Text

Cipher Text

Plain Text

Cipher Text

InvSubBytes
InvShiftRows

InvShiftRows
InvSubBytes

InvMixColumns

0K

iK

NrK

NrK

0K

iK

Encryption

Decryption

SubBytes
ShiftRows

MixColumns

SubBytes
ShiftRows

Plain Text

Cipher Text

Plain Text

Cipher Text

InvSubBytes
InvShiftRows

InvShiftRows
InvSubBytes

InvMixColumns

0K

iK

NrK

Nr

0

i

AddRound
-Key

AddRound
-Key K

K

rounds
Nr -1

rounds
Nr -1

rounds
Nr -1

rounds
Nr -1

Merge

Merge

K

to create compact AES implementations [9,10]. However,
these methods are not suitable for achieving 10 Gbps AES
circuits due to the large propagation delay.

In Method (2), a fast implementation is possible. The
S-Box circuit can be obtained from its truth table by using
two-level logic such as SOP (Sum of Products), POS
(Product of Sums), PPRM (Positive Polarity Reed-Muller
form), etc. [13], or by making a decision diagram such as
a BDD [12] or an FDD [14]. In many actual AES
implementations the table-lookup method is used [11],
where the S-Box circuit is automatically synthesized
using EDA tools.

Our evaluation results of these various S-Boxes on a
0.13µm CMOS standard cell library are shown in Table 1.
The BDD and table look-up implementations are the
fastest of all. These results are obtained in the following
steps: (i) implement these S-Boxes as hard-coded VHDL
sources (primitive cells are directly called), (ii) adjust cell
strengths by a logic synthesis tool without changing
circuit structures and (iii) evaluate circuit size and speed
using the synthesis tool and static timing analyzer (STA).
Although the absolute values of delay/size can vary
depending on the ASIC libraries and synthesis tools, the
ratios of the circuits’ speeds were almost the same, as far
as the authors’ tests showed.

Table 1. Comparison of S-Box Architectures.
(0.13µm CMOS standard cell, 1 gate = 2 way-NAND)

 Delay (ps) Size (gate)
Composite field 2,190 354
PPRM 1,010 2,148
SOP 770 1,567
Table look-up 700 1,528
BDD 690 1,399
Proposed method
(Twisted BDD)

 430

2,818

3.2 Analysis and Issues for BDD Implementation

We selected the BDD architecture as a candidate to
achieve the throughput of 10 Gbps, but the speed was not
yet adequate. We noticed the following structural
characteristics of the S-Box/T-Box BDDs (Figure 3).

I. Large numbers of selectors in the first and second
stage from the primary inputs.

II. Heavy sharing of the input side selectors.
III. Few shared selectors on the output side. The third

stage to the 7th stage selectors form a large 25:1
selector.

IV. The variable ordering of the BDD does not much
affect the overall structure and size of the BDD.

These phenomena are often observed in functions
involving multiplicative inverses over GF, even if other
decision diagrams are used. One of the main reasons is
that the truth table of the S-Box/T-Box is an almost
perfect random number table. There are few common

parts (terms) in the S-Box/T-Box table, and therefore, few
circuits (BDD nodes) can be shared.

As a result, the following issues become the obstacles
for speeding up the BDD S-Box/T-Box circuit.

1. Extremely large fanout (up to 150) of the two
primary inputs that drive the first and second stage
selectors.

2. Large fanout (nearly 30) of each output signal of
the first stage selectors, which drives a total of 150
of the second stage selectors.

3. Large propagation delay of the output side
selectors, where 2:1 selectors are connected
serially in five stages.

Figure 3. S-Box Implementation using Conventional
BDDs.

4 The Proposed Twisted-BDD S-Box/T-box
Circuit Architecture

4.1 Twisted variable ordering between primary
outputs

In the proposed twisted-BDD architecture (Figure 4),
eight BDDs are arranged in parallel, where each BDD
corresponds to each primary output. No node is shared
between these BDDs and their variable ordering is
twisted (rotated) as shown in Figure 4 so that each
primary input i (0[i[7) drives the ((8+i-j mod 8) + 1)-th
input of BDDj. Each primary input signal is propagated to
the next BDDs by passing through drivers (inverters).

As a result, the fanout of each primary input and each
driver’s output is significantly decreased from 150 down
to 30, because the first and second stage selectors are
distributed equally between each primary input. Because
the BDD structure and its size are almost independent of

in0 in1 in2 in3 in4 in5 in6 in7

out0

out7

out1

2:1MUX

12MUX

149MUX 16MUX
8MUX

4MUX
2MUX

1MUX

0

1

0

1

× 8
× 8

× 8
× 8

× 8

the variable ordering, as described in Section 3.2, the
fanout of each primary input is almost the same. In the
same manner, the fanout of each output of the first stage
selectors is decreased from 30 down to 5.

4.2 Parallel Decoding of Selector Control Signals

As shown in Figure 5, we replaced the 25:1 selectors on
the output side in each BDD with a combination of a
select-signal decoder (5-bit binary to 25-bit one-hot
conversion) and a data selection part (1 stage ANDs and 5
stage ORs). As a result, the delay of the 25:1 selectors is
reduced, because the decoding of the select-signals and
the signal processing in the first and second stage
selectors are performed in parallel.

4.3 Use of Negative-Output Selectors and Drivers

We used negative-output primitive-gates for
implementing the selectors in each BDD and drivers to
reduce the circuit delay and to decrease the number of
gates. Because most of the CMOS primitive gates with
positive outputs usually consist of a negative output gate
followed by an inverter, primitive gates with negative
output are faster and smaller.

4.4 Evaluation Results and Discussion

As shown in Table 1, the S-Box speed is increased 1.5
to 2 times by the proposed method. We obtained a 430-ps
delay S-Box on a 0.13µm CMOS standard cell library,
and this is the fastest we know of. In spite of the
incorporated highly parallel circuit structure shown in
Figure 4, the total circuit size remains only double the
original BDD, because in the original BDD, the selectors
in the 3rd to the 7th stage are already unshared and
separated between primary outputs.

We believe that further improvement in speed will be
quite difficult if any of the other logic circuit structures
described in Section 3.1 are used, for the following two
reasons:

First, if any two-level logic such as SOP is used, the
number of prime terms increases (for example, 150 terms
in SOP) and the fanout of the prime inputs becomes large.
However, in contrast to our twisted-BDD, distributing
and reducing fanout are difficult, because each primary
input signal drives almost the same number of prime
selectors.

Second, if any decision diagram other than BDD is
used, the propagation delay of each node becomes much
larger. For example, if FDD is used, each node is
implemented by AND+XOR, and this is much slower
than a 2:1 selector used as a BDD node. A fast 2:1
selector cell is available in most ASIC libraries.

in0

in7

in1

out0

out7

out1

BDD0

BDD1

BDD7

1 2 3 4 5 6 7

3 4 5 6 7 0
2

0
1

2
3

4

6
5

Figure 4. The Proposed Twisted-BDD Architecture.

in3 in4 in5 in6 in7

out

5 5 Decoder2 →

out

in3 in4 in5 in6 in7

5 2

Executed
simultaneously

in0 in1 in2

0

1

0

1

in0 in1 in2

0

1

0

1

inputs

Executed serially

Figure 5. Speedup by Parallel Decoding of

Selector Control Signals.

5 Implementation Results of 10 Gbps AES
Circuit

5.1 Combining T-Box Algorithm and Twisted
S-Box/T-Box Circuit Architecture

To achieve 10 Gbps throughput with a 780 MHz clock,
we used the T-Box algorithm described in Section 2.2,
together with our twisted-BDD method. The reason was
to minimize the delay of the MixColumns and
InvMixColumns operations.

The 32-bit data path of our circuit implementation
using the T-Box algorithm is shown in Figure 6. The
complete circuit consists of four identical blocks and data
registers (Figure 6 shows only one combinational logic
block). The encryption path and decryption path are
separated and unshared. In both paths, data is stored in a
register and the encryption and decryption are done by
iterative execution of the round operation, which
corresponds to the combinational circuit block. If only a
slower clock is available, it is still possible to achieve 10
Gbps throughput by duplicating the combinational circuit
blocks and connecting them in serial, i.e., by using the
unrolling technique.

In the encryption path shown in the upper half of

Figure 6, the output of the data register is connected to
multiple T-Boxes following the ShiftRows operation. In
Figure 6, T-Boxes Sk and S-1

k compute S(x)%k and
S-1(x)%k respectively, where S(x) is the S-Box and k is a
constant value. Then the outputs of the T-Boxes and the
round-key data are XORed and returned to the data
register, except for the final round operation. Because the
final operation is different from the other rounds
(MixColumns is unnecessary, and an initial-data load and
multiple-mode support are required), an independent
computation path exists in parallel.

In summary, each 8-bit block of the data register drives
5 T-Boxes, and 80 T-Boxes are used in the complete
circuit. Each T-Box is constructed using the twisted-BDD
architecture. However, in the encryption path, some
T-Boxes can be shared, so only 48 T-Boxes are used in
the whole circuit.

5.2 Implementation Results and Discussion

We achieved 10 Gbps throughput and a 780 MHz clock
cycle on a 0.13µm CMOS standard cell library. We did
not implement any key scheduler under the assumption
that the round-keys are stored in an external register file,
but on-the-fly generation of round-keys is possible

32-bit encryption block

K KNr1~

K0

T-Box
-1

8 8 8 8

8 8 8 8

32

8 8 8 8

8 8 8 8 8 8 8 8
32
32

1

2:1
8 8 8 8

2:1 2:1 2:1

8 8 8 8

1

Se Sb Sd S9 Se Sb Sd Sd S9 Se Sb Sb Sd S9 Se S1 S1 S1 S1S9
-1-1 -1 -1 -1 -1 -1 -1 -1-1 -1-1-1-1 -1 -1 -1 -1 -1 -1

S2 S3 S2 S3 S2 S3 S3 S2

8 8 8 8

8 8 8 8 32

S1 S1 S1 S1

8 8 8 8

8 8 8 8 8 8 8 8
32
32

1

2:1
8 8 8 8

2:1 2:1 2:1

1

32-bit decryption block

ECB/CBC
Init

0KKNr -1 ~

KNr

ECB/CBC

Init

T-Boxes for
main loop

S-Boxes for
final loop

Cipher text outputTo data register

From data register through ShiftRows Plain text input

Encryption
mode control

Figure 6. Our Data-path Implementation of the T-Box Algorithm.

without difficulty.
The evaluation of the speed and size of our

implementation was done by the same method described
in Section 3.1. The power consumption was estimated by
a simulation-based method. In this method, a timing
simulation is performed using a synthesized net-list and a
given set of test input data, and the number of switching
events for all internal gates are counted. The effects of
dynamic hazards is reflected in the power estimation
results.

The T-Box architecture is almost 20% faster than the
basic algorithm in Section 2.1 (Table 2), although strong
T-Box drivers are necessary. The circuit size and power
are still reasonable. Much of the critical path delay is used
by the T-Box (Table 3) and this shows that it will be
difficult to achieve the maximum throughput without
using the twisted-BDD architecture.

Regarding the T-Box design, the twisted-BDD
architecture is suitable for a high clock-speed AES
implementation because of its low propagation delay (see
Table 1 in Section 3.1).

Table 2. Performance of our AES Circuit in CBC
Mode.
(0.13µm CMOS standard cell, 1gate = 2way-NAND)

 Size
(gates)

Max
Clock
freq.
(MHz)

Through
-put
(Gbps)

Power
(Watts,
780 MHz,
1.5V)

Twisted-BDD
+ T-Box

Algorithm
(Encryption)

167,566

909

11.6

1.92

Twisted-BDD
+ T-Box

Algorithm
(Decryption)

282,494

885

11.3

3.31

Twisted-BDD
+ Basic

Algorithm
(Decryption)

 61,841

699

 8.9

(1.02)

Table 3. Delay of Each Primitive Function in
Decryption Circuits.
(0.13µm CMOS standard cell, 1gate = 2way-NAND)

 Twisted-BDD
+ T-Box

Algorithm

Twisted-BDD
+ Basic

Algorithm
Register delay 110 ps 100 ps

AddRoundKey and
InvMixColumns

 --- 700

T-Box drivers 260 ---
Inv T-Box or Inv S-Box 430 430

Sum of T-Box results and
AddRoundKey

 100 ---

Register input selector 50 50
Register setup-time 180 150

Total 1,130 1,430

6 Conclusion

In this paper, we presented a high-speed AES circuit
design, running at speeds over 780 MHz and achieving 10
Gbps throughput in all encryption modes including the
CBC mode. To reduce the propagation delay of the
S-Boxes, we developed a special logic circuit architecture
named twisted-BDD, where the fanout of signals is
distributed in the S-Box. The T-Box algorithm that
merges the S-Box and MixColumns function is also used.
As far as the authors know, this is the first 10 Gbps AES
circuit which can support all encryption modes.

References
[1] J. Daemen et al., “AES Proposal: Rijndael,”

http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf.
[2] “Advanced Encryption Standard (AES)”,

http://csrc.nist.gov/encryption/aes/index.html
[3] T. Ichikawa et al., “Hardware Evaluation of the AES

Finalists,” Proc. Third AES Candidate Conference, pp.
279-285, 2000.

[4] H. Kuo et al., “Architectural Optimization for a 1.82
Gbits/sec VLSI Implementation of the AES Rijndael
Algorithm,” Proc. CHES2001, LNCS Vol. 2162, pp. 53-67,
2001.

[5] B. Weeks et al., “Hardware Performance Simulation of
Round 2 Advanced Encryption Standard Algorithm,”
http://csrc.nist.gov/encryption/aes/round2/NSA-AESfinalr
eport.pdf.

[6] M. McLoone et al., “High Performance Single-chip FPGA
Rijndael Algorithm Implementations,” Proc. CHES2001,
pp. 68-80, 2001.

[7] V. Fischer et al, “Two Methods of Rijndael
Implementation in Reconfigurable Hardware,” Proc.
CHES2001, LNCS Vol. 2162, pp. 81-96, 2001.

[8] J. Guajardo and C. Paar, "Efficient Algorithms for Elliptic
Curve Cryptosystems," Proc. of 17th Annual Intl.
Cryptology Conf. (CRYPTO'97), LNCS Vol. 1294, pp.
342-356, 1997.

[9] A. Rudra, et al., “Efficient Rijndael Encryption
Implementation with Composite Field Arithmetic,” Proc.
CHES2001 LNCS Vol. 2162, pp. 175-188, 2001.

[10] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A
Compact Rijndael Hardware Architecture with S-Box
Optimization,” Proc. of ASIACRYPT2001, LNCS Vol.
2248, pp. 239-254, 2001.

[11] U. Mayer, C. Oelsner and T. Kohler, “Evaluation of
Different Rijndael Implementations for High-end
Servers,” Proc. of IEEE Intl. Symp. On Circuits and
Systems (ISCAS2002), 2002.

[12] R.E. Bryant, “Graph-Based Algorithms for Boolean
Function Manipulation,” IEEE Transactions on
Computers, Vol. C-35, No. 8, pp. 677-691, 1986.

[13] T. Sasao, "AND-EXOR expressions and their
optimization", in Sasao, editor: Logic Synthesis and
Optimization, Kluwer Academic Publishers, 1993.

[14] U. Kebshull and W. Rosenstiel, "Efficient Graph-Based
Computation and Manipulation of Functional Decision
Diagrams," European Design Automation Conf. '93, pp.
278-282, 1993.

