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Abstract 
  

In this paper, we present a high-speed AES IP-core, 
which runs at 780 MHz on a 0.13µm CMOS standard cell 
library, and which achieves 10 Gbps throughput in all 
encryption modes, including CBC mode. Although the 
CBC mode is the most widely used and important, 
achieving such high throughput was difficult because 
pipelining techniques cannot be applied. To reduce the 
propagation delays of the S-Box, the most critical 
function block, we developed a special circuit 
architecture that we call twisted-BDD, where the fanout 
of signals is distributed in the S-Box circuit. Our S-Box is 
1.5 to 2 times faster than the conventional S-Box 
implementations. The T-Box algorithm, which merges the 
S-Box and another primitive function (MixColumns) into 
a single function, is also used for an additional speedup.  
  
1 Introduction 
  

DES (Data Encryption Standard) has been used as a de 
facto standard cipher for more than 20 years. In 2001, 
NIST (National Institute of Standards and Technology) 
made Rijndael the new standard cipher AES (Advanced 
Encryption Standard) [1,2]. Many circuit architectures for 
AES have been proposed recently and their performances 
have been evaluated by using ASIC libraries [3,4,5] and 
FPGAs [6,7]. However, most of them are simple 
implementations according to the AES specification, and 
none are yet fast enough for practical use such as optical 
communication links with a VPN (Virtual Private 
Network) capability and/or a 10 Gbps WDM (Wavelength 
Division Multiplex) system. 

In particular, no existing AES circuit achieves 10 Gbps 
throughput in the CBC (Cipher Block Chaining) mode, 
which is the most widely used and important mode, 
although more than 10 Gbps throughput was already 
reported in simple ECB (Electronic Code Block) mode 
[3]. In the CBC mode, a feedback operation is performed, 
and therefore pipelining techniques cannot be applied as a 
speedup method. Propagation delay reduction for the 
combinational circuits is the only speedup method for the 
CBC mode. 

To reduce the delay of the S-Box, which is the slowest 

function block in the entire circuit, we investigated 
various design techniques for the S-Box. Although many 
techniques for compact S-Box designs have been 
proposed [8,9,10], the circuits obtained are too slow. Few 
techniques for realizing fast S-Boxes have ever reported 
except for the table-lookup method [11], where the S-Box 
circuit is automatically synthesized from its truth table by 
using EDA tools. 

In this paper, we propose a new fast S-Box circuit 
architecture named twisted-BDD. In the conventional 
BDD (Binary Decision Diagram) [12] representation of 
the S-Box, various structural characteristics are observed, 
such as the heavy sharing of input-side nodes and the 
independence of variable ordering. We tried to decrease 
the fanout of the primary input signals and reduce the 
propagation delay of the serially connected selectors. The 
resulting S-Box is 1.5 to 2 times faster than the 
conventional S-Box implementations.  

As a result, we achieved a throughput of 10 Gbps at a 
780 MHz clock rate using a 0.13µm CMOS standard cell 
library, by combining the use of the twisted-BDD 
architecture and the T-Box algorithm [1,7] that was 
originally developed for high-speed software. As far as 
the authors know, this is the first 10 Gbps AES circuit 
which can support all encryption modes. 
  
2 The AES Algorithm 
  

2.1 Basic Algorithm 
  

An AES encryption process for 128-bit plain text data 
and a 128-bit secret key is shown in Figure 1. A sequence 
of four primitive functions, SubBytes, ShiftRows, 
MixColumns, and AddRoundKey, are executed Nr-1 
times. Each loop is called a round and the concrete value 
of Nr is 10, 12, or 14 depending on the key length. Prior 
to this main loop, AddRoundKey is executed for 
initialization. After executing the main loop, a sequence 
of SubBytes, ShiftRows, and AddRoundKey is executed 
as the final round. 

SubBytes is a 16-byte (128-bit) input/output nonlinear 
transformation that uses one-byte substitution tables 
(S-Boxes). Each S-Box is a multiplicative inversion on a 
Galois field GF(28) followed by an affine transformation. 



The irreducible polynomial used by the field is 
  

1)( 348 ++++= xxxxxm .    (1) 
  

ShiftRows is a cyclic shift operation in each row of 4 
% 4-byte data by 0~3-byte offsets. MixColumns treats the 
4-byte data in each column as coefficients of a 4-term 
polynomial, and multiplies the data modulo x4+1 with the 
fixed polynomial given by 
  

}02{}01{}01{}03{)( 23 +++= xxxxc .  (2) 
  

AddRoundKey is a simple bit-wise XOR operation on 
the 128-bit round keys K0~KNr and the data. 

In the decryption process, the inverse operations of 
each primitive function are executed. The inverse of 
AddRoundKey is AddRoundKey itself. InvSubBytes, 
which is the inverse of SubBytes, executes an affine 
transformation before the multiplicative inversion. 
InvShiftRows is a cyclic rotation in the reverse direction. 
InvMixColumns uses the following polynomial for the 
multiplications: 
  

}0{}09{}0{}0{)( 231 exxdxbxc +++=− .  (3) 
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Figure 1. AES Encryption Algorithm. 
  

2.2 T-Box for High-Speed Implementations 
  

The T-Box algorithm is a speedup technique for 
software where SubBytes and MixColumns are merged in 

encryption, and InvSubBytes and InvMixColumns are 
merged in decryption [1,7]. In the left half of Figure 2, 
the original AES encryption and decryption processes are 
shown, while in the other half, the processes for the 
T-Box algorithm are shown. Some functions are reordered 
in order to merge the functions. Each one-byte S-Box 
output of SubBytes and InvSubBytes is multiplied by the 
four coefficients of the polynomials (2) and (3) 
respectively, and these two one-byte input and four-byte 
output relation tables become T-Boxes. The concrete 
circuit implementation of this algorithm will be described 
in Section 5.1. 
  

 

Figure 2. Reordering of Primitive Functions for 
using the T-Box Algorithm. 

   
3 Issues in Designing Fast S-Box Circuits   

3.1 Basic Approaches 
  

There are two approaches for designing S-Box circuits: 
(1) construct a multiplicative inversion circuit and an 
affine transformation circuit independently, and then 
connect these two circuits in serial, and (2) construct a 
single circuit directly whose input-output relation is 
equivalent to the S-Box. 

In Method (1), circuit area reduction using 
mathematical theorems over Galois fields (GF) is possible. 
Various methods for constructing compact inversion 
circuits over GF have been studied, based on Fermat’s 
Little Theorem, the extended Euclid’s Algorithm and so 
on [11]. In particular, the composite field (or tower field) 
inversion [8] is effective over GF(28), and it can be used 
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to create compact AES implementations [9,10]. However, 
these methods are not suitable for achieving 10 Gbps AES 
circuits due to the large propagation delay. 

In Method (2), a fast implementation is possible. The 
S-Box circuit can be obtained from its truth table by using 
two-level logic such as SOP (Sum of Products), POS 
(Product of Sums), PPRM (Positive Polarity Reed-Muller 
form), etc. [13], or by making a decision diagram such as 
a BDD [12] or an FDD [14]. In many actual AES 
implementations the table-lookup method is used [11], 
where the S-Box circuit is automatically synthesized 
using EDA tools. 

Our evaluation results of these various S-Boxes on a 
0.13µm CMOS standard cell library are shown in Table 1. 
The BDD and table look-up implementations are the 
fastest of all. These results are obtained in the following 
steps: (i) implement these S-Boxes as hard-coded VHDL 
sources (primitive cells are directly called), (ii) adjust cell 
strengths by a logic synthesis tool without changing 
circuit structures and (iii) evaluate circuit size and speed 
using the synthesis tool and static timing analyzer (STA). 
Although the absolute values of delay/size can vary 
depending on the ASIC libraries and synthesis tools, the 
ratios of the circuits’ speeds were almost the same, as far 
as the authors’ tests showed. 
  
Table 1. Comparison of S-Box Architectures. 
(0.13µm CMOS standard cell, 1 gate = 2 way-NAND) 

  Delay (ps) Size (gate) 
Composite field 2,190  354 
PPRM 1,010 2,148 
SOP  770 1,567 
Table look-up  700 1,528 
BDD  690 1,399 
Proposed method 
(Twisted BDD) 

  
 430 

  
2,818 

  
3.2 Analysis and Issues for BDD Implementation 
  

We selected the BDD architecture as a candidate to 
achieve the throughput of 10 Gbps, but the speed was not 
yet adequate. We noticed the following structural 
characteristics of the S-Box/T-Box BDDs (Figure 3).  

I. Large numbers of selectors in the first and second 
stage from the primary inputs. 

II. Heavy sharing of the input side selectors.  
III. Few shared selectors on the output side. The third 

stage to the 7th stage selectors form a large 25:1 
selector. 

IV. The variable ordering of the BDD does not much 
affect the overall structure and size of the BDD.  

These phenomena are often observed in functions 
involving multiplicative inverses over GF, even if other 
decision diagrams are used. One of the main reasons is 
that the truth table of the S-Box/T-Box is an almost 
perfect random number table. There are few common 

parts (terms) in the S-Box/T-Box table, and therefore, few 
circuits (BDD nodes) can be shared. 

As a result, the following issues become the obstacles 
for speeding up the BDD S-Box/T-Box circuit. 

1. Extremely large fanout (up to 150) of the two 
primary inputs that drive the first and second stage 
selectors. 

2. Large fanout (nearly 30) of each output signal of 
the first stage selectors, which drives a total of 150 
of the second stage selectors. 

3. Large propagation delay of the output side 
selectors, where 2:1 selectors are connected 
serially in five stages. 

  
 

  

Figure 3. S-Box Implementation using Conventional 
BDDs. 

  
4 The Proposed Twisted-BDD S-Box/T-box 
Circuit Architecture   

4.1 Twisted variable ordering between primary 
outputs 
  

In the proposed twisted-BDD architecture (Figure 4), 
eight BDDs are arranged in parallel, where each BDD 
corresponds to each primary output. No node is shared 
between these BDDs and their variable ordering is 
twisted (rotated) as shown in Figure 4 so that each 
primary input i (0[i[7) drives the ((8+i-j mod 8) + 1)-th 
input of BDDj. Each primary input signal is propagated to 
the next BDDs by passing through drivers (inverters). 

As a result, the fanout of each primary input and each 
driver’s output is significantly decreased from 150 down 
to 30, because the first and second stage selectors are 
distributed equally between each primary input. Because 
the BDD structure and its size are almost independent of 
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the variable ordering, as described in Section 3.2, the 
fanout of each primary input is almost the same. In the 
same manner, the fanout of each output of the first stage 
selectors is decreased from 30 down to 5. 
  
4.2 Parallel Decoding of Selector Control Signals 
  

As shown in Figure 5, we replaced the 25:1 selectors on 
the output side in each BDD with a combination of a 
select-signal decoder (5-bit binary to 25-bit one-hot 
conversion) and a data selection part (1 stage ANDs and 5 
stage ORs). As a result, the delay of the 25:1 selectors is 
reduced, because the decoding of the select-signals and 
the signal processing in the first and second stage 
selectors are performed in parallel. 
  
4.3 Use of Negative-Output Selectors and Drivers 
  

We used negative-output primitive-gates for 
implementing the selectors in each BDD and drivers to 
reduce the circuit delay and to decrease the number of 
gates. Because most of the CMOS primitive gates with 
positive outputs usually consist of a negative output gate 
followed by an inverter, primitive gates with negative 
output are faster and smaller.  
  
4.4 Evaluation Results and Discussion 
  

As shown in Table 1, the S-Box speed is increased 1.5 
to 2 times by the proposed method. We obtained a 430-ps 
delay S-Box on a 0.13µm CMOS standard cell library, 
and this is the fastest we know of. In spite of the 
incorporated highly parallel circuit structure shown in 
Figure 4, the total circuit size remains only double the 
original BDD, because in the original BDD, the selectors 
in the 3rd to the 7th stage are already unshared and 
separated between primary outputs. 

We believe that further improvement in speed will be 
quite difficult if any of the other logic circuit structures 
described in Section 3.1 are used, for the following two 
reasons: 

First, if any two-level logic such as SOP is used, the 
number of prime terms increases (for example, 150 terms 
in SOP) and the fanout of the prime inputs becomes large. 
However, in contrast to our twisted-BDD, distributing 
and reducing fanout are difficult, because each primary 
input signal drives almost the same number of prime 
selectors. 

Second, if any decision diagram other than BDD is 
used, the propagation delay of each node becomes much 
larger. For example, if FDD is used, each node is 
implemented by AND+XOR, and this is much slower 
than a 2:1 selector used as a BDD node. A fast 2:1 
selector cell is available in most ASIC libraries. 
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Figure 4. The Proposed Twisted-BDD Architecture. 
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5 Implementation Results of 10 Gbps AES 
Circuit 
  

5.1 Combining T-Box Algorithm and Twisted 
S-Box/T-Box Circuit Architecture 
  

To achieve 10 Gbps throughput with a 780 MHz clock, 
we used the T-Box algorithm described in Section 2.2, 
together with our twisted-BDD method. The reason was 
to minimize the delay of the MixColumns and 
InvMixColumns operations. 

The 32-bit data path of our circuit implementation 
using the T-Box algorithm is shown in Figure 6. The 
complete circuit consists of four identical blocks and data 
registers (Figure 6 shows only one combinational logic 
block). The encryption path and decryption path are 
separated and unshared. In both paths, data is stored in a 
register and the encryption and decryption are done by 
iterative execution of the round operation, which 
corresponds to the combinational circuit block. If only a 
slower clock is available, it is still possible to achieve 10 
Gbps throughput by duplicating the combinational circuit 
blocks and connecting them in serial, i.e., by using the 
unrolling technique.  

In the encryption path shown in the upper half of 

Figure 6, the output of the data register is connected to 
multiple T-Boxes following the ShiftRows operation. In 
Figure 6, T-Boxes Sk and S-1

k compute S(x)%k and 
S-1(x)%k respectively, where S(x) is the S-Box and k is a 
constant value. Then the outputs of the T-Boxes and the 
round-key data are XORed and returned to the data 
register, except for the final round operation. Because the 
final operation is different from the other rounds 
(MixColumns is unnecessary, and an initial-data load and 
multiple-mode support are required), an independent 
computation path exists in parallel. 

In summary, each 8-bit block of the data register drives 
5 T-Boxes, and 80 T-Boxes are used in the complete 
circuit. Each T-Box is constructed using the twisted-BDD 
architecture. However, in the encryption path, some 
T-Boxes can be shared, so only 48 T-Boxes are used in 
the whole circuit. 
  
5.2 Implementation Results and Discussion 
  

We achieved 10 Gbps throughput and a 780 MHz clock 
cycle on a 0.13µm CMOS standard cell library. We did 
not implement any key scheduler under the assumption 
that the round-keys are stored in an external register file, 
but on-the-fly generation of round-keys is possible 
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Figure 6. Our Data-path Implementation of the T-Box Algorithm. 



without difficulty.  
The evaluation of the speed and size of our 

implementation was done by the same method described 
in Section 3.1. The power consumption was estimated by 
a simulation-based method. In this method, a timing 
simulation is performed using a synthesized net-list and a 
given set of test input data, and the number of switching 
events for all internal gates are counted. The effects of 
dynamic hazards is reflected in the power estimation 
results.  

The T-Box architecture is almost 20% faster than the 
basic algorithm in Section 2.1 (Table 2), although strong 
T-Box drivers are necessary. The circuit size and power 
are still reasonable. Much of the critical path delay is used 
by the T-Box (Table 3) and this shows that it will be 
difficult to achieve the maximum throughput without 
using the twisted-BDD architecture.  

Regarding the T-Box design, the twisted-BDD 
architecture is suitable for a high clock-speed AES 
implementation because of its low propagation delay (see 
Table 1 in Section 3.1). 
  
Table 2. Performance of our AES Circuit in CBC 
Mode. 
(0.13µm CMOS standard cell, 1gate = 2way-NAND) 

  Size 
(gates) 

Max 
Clock 
freq. 
(MHz) 

Through
-put 
(Gbps) 

Power 
(Watts, 
780 MHz, 
1.5V) 

Twisted-BDD 
+ T-Box 

Algorithm 
(Encryption) 

  
167,566 

  
909 

  
11.6 

  
1.92 

Twisted-BDD 
+ T-Box 

Algorithm 
(Decryption) 

  
282,494 

  
885 

  
11.3 

  
3.31 

Twisted-BDD 
+ Basic 

Algorithm 
(Decryption) 

  
 61,841 

  
699 

  
 8.9 

  
(1.02) 

  
Table 3. Delay of Each Primitive Function in 
Decryption Circuits. 
(0.13µm CMOS standard cell, 1gate = 2way-NAND) 

  Twisted-BDD 
+ T-Box 

Algorithm 

Twisted-BDD 
+ Basic 

Algorithm 
Register delay    110 ps    100 ps 

AddRoundKey and 
InvMixColumns 

 ---  700 

T-Box drivers  260  --- 
Inv T-Box or Inv S-Box  430  430 

Sum of T-Box results and 
AddRoundKey 

 100  --- 

Register input selector   50   50 
Register setup-time  180  150 

Total 1,130 1,430 

6 Conclusion 
  

In this paper, we presented a high-speed AES circuit 
design, running at speeds over 780 MHz and achieving 10 
Gbps throughput in all encryption modes including the 
CBC mode. To reduce the propagation delay of the 
S-Boxes, we developed a special logic circuit architecture 
named twisted-BDD, where the fanout of signals is 
distributed in the S-Box. The T-Box algorithm that 
merges the S-Box and MixColumns function is also used. 
As far as the authors know, this is the first 10 Gbps AES 
circuit which can support all encryption modes.  
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