

January 28, 2003

RT0507
Security 6 pages

Research Report

Linux with TCPA Integrity Measurement

Hiroshi Maruyama, Taiga Nakamura, Seiji Munetoh, Yoshiaki
Funaki, Yuhji Yamashita

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

Linux with TCPA Integrity Measurement
Hiroshi Maruyama

IBM Tokyo Research Laboratory
1623-14, Shimotsuruma, Yamato-shi

Kanagawa-ken, Japan
maruyama@jp.ibm.com

Yoshiaki Funaki

IBM Yamato Software Laboratory
1623-14, Shimotsuruma, Yamato-shi

Kanagawa-ken, Japan
yfunaki@jp.ibm.com

 Taiga Nakamura
IBM Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato-shi
Kanagawa-ken, Japan

taiga@jp.ibm.com

Yuhji Yamashita
IBM Yamato Software Laboratory

1623-14, Shimotsuruma, Yamato-shi
Kanagawa-ken, Japan
yamasy@jp.ibm.com

Seiji Munetoh
IBM Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato-shi
Kanagawa-ken, Japan
munetoh@jp.ibm.com

ABSTRACT
This paper describes an end-to-end implementation of TCPA
(Trusted Computing Platform Alliance) integrity measurement for
Linux kernel. Integrity measurement of the kernel is done through
a chaining of PCR (Platform Configuration Register) updates
during the bootstrap process of the GRUB kernel loader. The
measured integrity values can be reported to remote servers by a
Java application that uses a digital signature containing the PCR
values. As the hardware platform, we used a stock laptop
computer (ThinkPad T30) that is TCPA-enabled.

1. INTRODUCTION
Today many computer applications have a distributed structure.
Typical examples are client-server systems such as email and Web
applications where the client component plays a vital role for the
overall system to function properly. In such distributed systems,
the remote components need to be trusted. By “trusted” here we
mean that the behavior of the remote component is predictable
according to the intended system design. If the network
environment is potentially hostile, or subject to unexpected
system changes, the distributed system cannot trust the remote
component. For example, the distributed system may rely on the
remote host to maintain a particular set of state. One way to
ensure that the remote component can be trusted is to let the
component prove the integrity of the remote component, i.e., that
the component is a known implementation and is running with a
known configuration of the environment. It is important to
understand that the integrity of the platform (the hardware, the
operating system, the shared libraries, and all the related
configuration files) is essential for the integrity of the application
component because ultimately the component’s behavior relies on
the platform. Therefore, platform integrity is an essential part of
trustworthy distributed computing. In this paper, we consider the
operating system integrity and describe an implementation that
enables a distributed application to securely report the integrity of
the operating system on which its remote component is running.
There are several proposed approaches to software integrity.
Signed code, such as Active X Control with Authenticode [10]
and Java signed applet [12], is one example. Before a code is
installed or executed, a digital signature on the code is verified by
the platform. Only codes with a valid signature according to the
trusted root certificate stored in the platform can be installed and /

or executed. Another approach to software integrity is to use a
periodic scan of installed software for integrity. Integrity tools
such as Tripwire [11] and virus scan software are in this category.
Both approaches are effective to a certain extent in maintaining
the platform integrity, but neither approach provides a direct
means for a distributed system to test the integrity of a remote
host.
TCPA (Trusted Computing Platform Alliance) [1][2] is unique in
defining a security subsystem for network client platforms that
provides the capability of reporting the platform integrity to
remote hosts, called attestation. The TCPA 1.1b specification [1]
was published in 2002 and the first products supporting this
specification were shipped in 2002. In this paper, we describe a
working prototype of a Linux-based system that has the attestation
capability. The platform integrity is measured during the OS
bootstrap process and the measured values are stored in the TCPA
compliant chip (Trusted Platform Module, or TPM). The
measured values are embedded in a signature value so that a
distributed application can test the values.
This paper is organized as follows. In the next section, we give a
brief overview of TCPA attestation. Section 3 shows the detailed
implementation, focusing on the modification on the GRUB OS
loader. Our sample application, including a proposed extension to
XML Signature [5] and Web Services Security [6], is shown in
Section 4. We briefly describe an application prototype that
demonstrates an end-to-end integrity measurement in Section 5,
followed by a discussion in Section 5.

2. Integrity Measurement in TCPA
TCPA (Trusted Computing Platform Alliance) is an industry
forum to define open specifications of security subsystems for
client platforms. It was formed by HP, Intel, Microsoft, Compaq,
and IBM in 1999. Its version 1.1b core specification, published in
Feb. 2002, has a detailed description of a security chip called
TPM (Trusted Platform Module).

2.1 Trusted Platform Module (TPM)
TPM has two important functions. One is to securely store the
most important security information, that is, cryptographic keys.
Once a public key / private key pair is generated the private key
never leaves the TPM. In this regard, TPM is similar to a
smartcard embedded in a platform.

The other function of TPM is to measure the integrity of the
platform. This is a unique feature of TCPA.
The simplified structure of a trusted platform is shown in Figure 1.
The platform has an embedded TPM, which has a factory
generated key pair called the endorsement key. The endorsement
key is a unique to the platform and will never be changed. The
platform manufacture issues a certificate for the endorsement key,
certifying that the platform is a genuine TCPA platform.

Figure 1. Trusted Platform in TCPA
The endorsement key is only used for taking the ownership of the
platform. Application specific keys can also be stored in the TPM.
One special type of key, called attestation identity key, is used
exclusively for attestation. TPM also has a set of special volatile
registers called platform configuration registers (PCRs). These
160 bit-long registers are used for keeping track of the integrity
information during a bootstrap process.

2.2 Measured Bootstrap
Figure 2 illustrates the process of measured bootstrap in TCPA.
When a TCPA platform is powered on or reset, all PCRs are
cleared to zero. Then a trusted portion of the BIOS ROM is
executed. This portion, called the core root of trust of
measurement (CRTM), is responsible for measuring the integrity
of the BIOS. The measured value is used for updating the PCRs.
This operation, called PCR_Extend, is defined as follows:

PCR_New = PCR_Extend(v) = hash(PCR_Old + v)
where “+” denotes bit-string concatenation. Then the BIOS
measures the integrity of the next component, which is the
operating system in Figure 2, and extends the PCRs. Likewise, the
OS can extend the PCRs by the integrity values of libraries,
executables, and / or configuration files. At the end of this
bootstrapping process, the PCRs will have values that are unique
to this particular bootstrap sequence of these particular versions of
the BIOS, the operating system, and any other resources that have
been measured. In other words, the PCR values represent the
integrity of the platform. Note that even though any program can
extend the PCRs, it is impossible for a malicious program to set
the PCRs to arbitrary values because the only way to change the
PCR values is through the PCR_Extend operation and the initial
PCR values are already determined by the bootstrap sequence
from the unmodifiable portion of the BIOS.
The recent models of IBM ThinkPad (models T30, R32, and X30)
have TCPA 1.1b compliant chip on the system board. In addition,
the unmodifiable part of the BIOS in these models measure the

integrity of the BIOS and then the BIOS measures the Master
Boot Record of the bootstrap device. We use this capability for
implementing Linux with integrity measurement.

Figure 2.Measured bootstrap process in TCPA

2.3 Reporting Integrity Measurement Value
For a remote system to trust a platform, the platform’s PCR values,
which represent the platform configuration, need to be reported
reliably to the remote system. The TCPA specification defines a
set of functions for reporting PCR values to the application.
Among them, the "quote" operation provides cryptographic
reporting of PCR values. When a remote server sends a
TPM_Quote request with a 160 bit challenge, the TPM embedded
in the platform digitally signs the current PCR values together
with the given challenge and returns the signature to the server:
 Quote_value = TPM_Quote(PCR_composite, challenge)

= sign (version, ordinal, hash(PCR_composite), challenge)
where version is the value of 4 bytes long that contains the
version of supported TCPA, ordinal is a constant 4-byte string
that corresponds to the ASCII "QUOT" string, and
PCR_composite is a structure that contains the indices and values
of the PCR values to be reported. Only attestation keys can be
used for this operation. By verifying the signature and the
certificate associated with the attestation key, the server will know
that the PCR values originate from a certified platform and the
PCR values have not been tampered with.
If the reported PCR values are known to the server that they
represent a trusted configuration of the platform, the server can
trust the platform. If the client platform may have many different
configurations, the server needs to maintain a large database of
possible trusted client configurations. Instead of that each
distributed application maintains its own list of trusted client
configurations, a trusted third party can provide a service to
maintain such a database, to which the server can ask whether a
particular set of PCR values is trusted.

Hardware

BIOS

OS

Application

CRTM Extend PCR w ith
BIOS image

Extend PCR w ith
OS image

Extend PCR w ith
Application image

At this point, PCR must
contain predictable values

(otherwise, platform has been
tampered w ith)

Reset PCRHardware

BIOS

OS

Application

CRTM Extend PCR w ith
BIOS image

Extend PCR w ith
OS image

Extend PCR w ith
Application image

At this point, PCR must
contain predictable values

(otherwise, platform has been
tampered w ith)

Reset PCREndorsement
Key

Platform Configuration
Registers (PCRs)

Platform

Attestation
Identity Keys Other Keys

Trusted Platform Module (TPM)

Endorsement
Key

Platform Configuration
Registers (PCRs)

Platform

Attestation
Identity Keys Other Keys

Trusted Platform Module (TPM)

Server application

1. External data
(nonce)

2. Quote result
(PCRs signed
by identity key)

3. Match the PCR
values with known

trusted values

PCRs

Platform

Identity
Keys

TPM

TPM_Quote Server application

1. External data
(nonce)

2. Quote result
(PCRs signed
by identity key)

3. Match the PCR
values with known

trusted values

PCRs

Platform

Identity
Keys

TPM

TPM_Quote

Figure 3.Reporting PCR values reliably to remote hosts

Note that TCPA identity is essentially the pseudonym generated
inside the TPM chip. The private part of the identity key never
gets out of the chip in plaintext. The public key is exported and
signed by a Certificate Authority the user has chosen. This CA is
called privacy CA, because only this CA can relate the identity
key to individual TPM chip.

3. Linux Kernel Measurement in Boot Loader
IBM’s TCPA-enabled ThinkPad currently supports measured
bootstrap in the sense that its unmodifiable part of the BIOS
measures the remainder of the BIOS and the BIOS also measures
the MBR (Master Boot Record) of the bootstrap device (usually
the hard drive). However, no further measurement is done for any
commercial operating systems today to our knowledge.
For measuring the integrity of an operating system, an OS boot
loader should take the responsibility according to the TCPA PC
Specific Implementation specification [2], because the BIOS does
not usually directly load the operating system. Instead, the BIOS
loads a portion of a boot loader (which resides in the MBR) into
the memory and transfers the control to the loaded code. In order
for the boot loader to properly measure the integrity of the
operating system, the boot loader needs to satisfy the following
requirements:
1) If the boot loader has multiple stages, an executing stage

must be able to measure the next stage and extend the PCR
value prior to transferring the control to it.

2) The boot loader should be able to measure the O/S image
and all security-critical configuration files before transferring
the control to the O/S.. This implies that the boot loader must
have at least a partial implementation of the file system on
which these files are stored. .

For Unix-like operating systems for PC, several boot loaders are
available now under the GPL license, such as LILO (LInux
LOader) [7], GRUB (GRand Unified Bootloader) [8] and
XOSL (Extended Operating System Loader) [9]. We adopt
GRUB for our prototyping of a trusted boot loader because it is
widely used and it looked feasible to modify it so that the
modified boot loader satisfies the above requirements.

3.1 Boot Sequence in GRUB
GRUB is divided into multiple stages, that is, Stage 1, Stage1.5,
and Stage 2. This is due to the restricted size of disk space in the
current PC Architecture. Stage 1 code was designed to fit in the
MBR space that is 446 bytes long. Stage 1.5 contains the file
system implementation, so it is significantly larger
(approximately 10KB) and placed in the sectors right after the
MBR which are normally unused space. Since Stage 1.5 can now

access the file system, Stage 2 code and the GRUB configuration
file can be placed anywhere in the filesystem.
Figure 4 shows the boot sequence of GRUB. BIOS loads Stage 1
(MBR) data from the hard drive into memory and jumps to the
starting point of Stage 1. Stage 1 loads the first sector of Stage 1.5
and jumps to it. This Stage 1.5 loads the rest of Stage 1.5 sectors
into memory and jumps to it. Now Stage 1.5 has filesystem
interface and finds and loads Stage 2 into memory, and then
jumps to the start address of Stage 2. At this point, GRUB checks
the configuration file and displays an O/S selection menu to the
users. After the user selects an O/S, GRUB loads the selected O/S
image into memory and starts the O/S boot process.

Figure 4. Boot sequence of GRUB

3.2 Measurement Steps in GRUB
The chain of measurement must also reflect this bootstrap
sequence: The Stage 1 must measure the first sector of the Stage
1.5, and the first block of the Stage 1.5 must measure the rest of
the Stage 1.5. Then the Stage 1.5 measure the stage 2, which
finally measures the operating system. Because the Stage 1 and
the first sector of the Stage 2 have a severe size limitation,
inserting integrity measurement codes to these stages was our
major challenge.
Stage 1 code, which is loaded from the MBR, has to measure the
first sector of the Stage1.5. This means that we must compute the
hash of the loaded sector and call the TPM_Extend function of the
TPM. However, the original GRUB code already used up almost
all of the 446 bytes allocated for the MBR. Fortunately, we could
call a BIOS service that does exactly this. Still, we were forced to
discard the support of an older drive format (the C.H.S. mode as
opposed to the LBA mode).
Basically, each step of a trusted boot must 1) load the next stage
data from the hard drive into memory, 2) measure the loaded
memory image and extend the PCR value using the measured
value, and 3) jump to the entry point of the next stage.
The next stage, the first sector of Stage 1.5, has the same space
limitation as Stage 1 and was modified in the almost same way as
Stage 1. The remaining part of Stage 1.5 has no such space
limitation and it was easier to add the capability of measuring the
next stage, Stage 2.
Stage 2 is responsible for measuring several things. First, Stage 2
measures the configuration file of GRUB (grub.conf). This
file is used for specifying bootable O/S images that will be
presented in the selection menu. Second, Stage 2 is required to
measure the O/S image that is selected to boot. Third, Stage 2 is

Active Partition

Stage1 (MBR)
Stage1.5

HDD

Stage2
grub.conf

OS image

BBB (CRTM)
POST

Stage1

Stage1.5

Stage2

OS image

Memory

PowerOn

also responsible for measuring any other security-critical files
(configuration files, library files, etc.). To enable these
measurements, we have extended grub.conf in the following
two ways;. (1) all loading commands such as “kernel” measures
the target image automatically, and (2) we added the “measure”
command that measures any file specified in its argument. See
Figure 6 for a sample configuration file.

Figure 5. Example of grub.conf

During these steps, we used PCR#8 for measuring Stage 1.5,
Stage 2, and the O/S files.
The size of the modification is summarized in the following table.

Component Language LOC changed

Stage 1 (stage1.S, stage1.h) Assembler 150

Stage 1.5, first sector Assember 150

Stage 1.5, the rest C 50

Stage 2, C 650

Measuring OS Kernel and Configurations
In our implementation, the chain of the measurement process
covers OS kernel, security-critical files such as OS configuration
files, security policy files, and, a few executables such as Java
virtual machine. However, if a large number of files were
measured, the number of possible PCR values of trusted
configuration would be combinatorial and therefore the server-
side database of the trusted PCR values would be unmanageable.
Instead, we let the OS kernel be responsible for maintaining the
integrity of less security-critical files and resources. We apply the
Linux Security Module (LSM) [13] and the Security-Enhanced
Linux (SELinux) [14] to the kernel.We apply LSM and SELinux
to the kernel. If an appropriate SELinux policy file is used, the
combination of LSM and SELinux should provide a better
protection against unwanted modifications on any parts of the
system, such as executables, libraries, and other data files (see
Figure 6)

Figure 6. Boot sequence of SELinux

Note that the integrity measurement done at the bootstrap time
does not guarantee the integrity of the measured code after
bootstrap. If the O/S does allow some program to modify the
already-measured portion of the system, the PCR values stored in
the TPM no longer reflect the correct integrity status. Therefore, a
strong protection against illegal modification at the OS level is
very important.

4. Reporting Integrity Metrics to Remote
Applications
After the operating system (Linux) is successfully booted through
the process of integrity measurement, any application can be
executed on this platform as long as it is authorized by the access
control enforcement mechanism within the OS. In a networked
environment, the platform is accessed by an application running
on the remote server. In both cases, the user of the device may
want to provide the server with the value of the integrity metrics
as a proof that the application component is running in a platform
with the expected configuration. This is one of the most important
parts of TCPA functionalities because it conveys hardware-
shielded security information to the application, even beyond
network, thus contributes to serve an end-to-end security
mechanism.
In this section, we describe how to make use of the integrity
reporting functions from the application layer perspective.

4.1 TCPA Supporting Software
Figure 7 shows the supporting software of TCPA. An application
accesses TCPA functions via these software components, which
wrap communication with TPM, manage resource objects, and
provide standardized interfaces. Note that each component of the
Service Providers provides high level APIs for upper layers, while
the Core Services serve as a common interface to TPM with
advanced features such as multi-threaded access, memory
management, etc. Each component software stack is measured
and/or protected by the OS kernel and its access control policy,
which are also measured during the measured boot.

title Measured SELinux
root (hd0,0)
measure (hd0,1)/etc/security/policy.12 8
measure (hd0,1)/opt/jdk/jre/lib/security/java.policy 8
measure (hd0,1)/opt/jdk/jre/lib/security/java.security 8
kernel –pcr=8 /vmlinuz-2.4.20-selinux ro \
root=/dev/dha1 enforcing=1
…

Kernel

…/selinux/Policy.12SELinux

init /etc/inittab
/etc/rc.sysinit

dhcpd
syslogd

xinetd
● ● ● Processes

Enforced

Boot

Figure 7. TCPA Supporting Software

4.2 Signature with integrity measurement
values
As described in Section 2.3, the results of integrity measurements
are stored in the PCRs inside the TPM and are reported by the
quote function. Actually, this usage of the quote function is not
limited to the response to the server challenge. One of the ways to
use the platform integrity metric is to include the metric in a
digital signature. To realize this idea, we defined a signature
algorithm for XML Signature [5] that includes the PCR values.
The PCR values represent the software configuration of the
platform at the time of the signing. If there is any question about
the signature (such as a virus might have been active when the
signature was done), a signature verifier is able to examine the
PCR values associated with the signature whether there have been
known vulnerabilities in the specific platform configuration
(BIOS and OS revisions, configuration files, antivirus definition
files etc.).

4.2.1 Signing algorithm
We have defined our new signature algorithm as a concatenation
of a structure representing the current PCR values (quoteInfo) and
the signature value on the structure as follows.
SignatureValue =
quoteInfo | SignatureOnQuoteInfo

The first part of the signature value (quoteInfo) is a 48 byte data
object as defined by TCPA_QUOTE_INFO as follows:
typedef struct tdTCPA_QUOTE_INFO{

TCPA_VERSION version;
BYTE fixed[4];
TCPA_COMPOSITE_HASH digestValue;
TCPA_NONCE externalData,

} TCPA_QUOTE_INFO;
Where
z version is TCPA version as defined in Section 4.5 of

TCPA 1.1b. Specifically, its first two octets MUST be 0x01
and 0x01.

z fixed is always the ASCII string “QUOT”.
z digestValue is the result of the composite hash

algorithm using the current values of the requested PCR
indices.

z externalData is the SHA-1 hash of the octet stream of
the canonicalization of <SignedInfo>

The second part of the signature value is the actual RSASSA-
PKCS1-v1.5 signature value on the TCPA_QUOTE_INFO data
structure. This part is at least 256 byte long because the length of
an attestation key is at least 2048 bits.

4.2.2 Verification algorithm
A verifying application of XML Signature with TCPA PCR
Values needs to split the base64-decoded <SingatureValue> into
two parts. The first part consists of the first 48 bytes of the octet
string and the second part is the rest. The verifying application
verifies the following things.
1. The first part contains a valid TCPA_QUOTE_INFO

structure. This means the first two octets of the version field
must be 0x01 and 0x01, and the fixed field must be ASCII
“QUOT”.

2. The externalData field of the first part is the SHA-1 hash
value of the canonicalized <SignedInfo>.

3. The second part MUST be the RSASSA-PKCS1-v1.5
signature of the first part according to the given public key.

The verifying application can then verify the PCR values (the
digestValue field) in the TCPA_QUOTE_INFO structure against
known trusted values. If the value is known to be trusted, the
server can conclude that it is communicating with a trusted
platform. Otherwise, the server may reject the request according
to its policy.

4.2.3 Implementing PCR-enabled signature in JCE
We implemented this as a new signature algorithm (called
“SHA1withRSATcpa”) in a Java Crypto Environment (JCE)
provider. This way, the application does not need to be modified
to use the signature with PCR values.

5. Demonstration Scenario
In order to show the end-to-end integrity value reporting
capability, we implemented a demonstration prototype using Web
service. Figure 8 shows the structure of this demo system. The
client, which is our Linux-based system with TCPA attestation,
sends a request to a Web service. The Web service needs to
authenticate the client based on a digital signature attached to the
SOAP message, as defined in the OASIS WS-Security
specification [6]. In this signature, which is defined as XML
Signature, we use the Signature algorithm described in Section
4.2. Therefore, all the messages originated from this client will
have the platform measurement values.

XML/Web Services

Trusted Platform Module (TPM)

Device driver & libraries

Core Services

Service Providers

JCA/JCE

Java VM

Kernel
mode

User
mode

System
Process

User
Process

TCB

Policy

Measurement and/or
policy enforcement

Application

XML/Web ServicesXML/Web Services

Trusted Platform Module (TPM)Trusted Platform Module (TPM)

Device driver & librariesDevice driver & libraries

Core ServicesCore Services

Service ProvidersService Providers

JCA/JCEJCA/JCE

Java VMJava VM

Kernel
mode

User
mode

System
Process

User
Process

TCB

PolicyPolicy

Measurement and/or
policy enforcement

ApplicationApplication

Figure 8. Demo system configuration
When receiving a request from this client, the server does the
normal verification of the signature. Our signature algorithm first
verifies the signature and then compares the measurement value
with the known trusted values in the local database.
Figure 9 shows the client GUI. This client is implemented on top
of a cellular phone emulator. The right hand side window shows
the SOAP request/response messages. We envision that the
platform integrity measurement will become more important for
mobile devices such as ThinkPad, PDAs, and even mobile phones,
because these mobile devices are easier to be lost or stolen.

Figure 9. Screen capture of demo client GUI

6. CONCLUSION
We showed a Linux-based system that measures its integrity
during a bootstrap process and reports the integrity metric to
remote servers. . An application can include the measured values

in a digital signature so that the integrity of the system software
can be verified at the signature verification time. The modification
on the O/S boot loader was minimum and there is no change on
the O/S itself except for the TPM device driver and related API
that is implemented.
The implementation is a proof that the TCPA integrity
measurement really works. Although we need to do thorough
investigations what pieces of the O/S should be measured to
ensure the overall integrity of the platform, this is certainly a first
concrete step towards trusted platforms.

7. Acknowledgement
We thank R. Catherman for his implementation of TCPA support
software for Linux and also for his comments. We also thank
Frank Seliger for his valuable discussions.

8. REFERENCES
[1] Trusted Computing Platform Alliance, TCPA Main

Specification v.1.1b, February, 2002.
http://www.trustedcomputing.org/docs/main%20v1_1b.pdf

[2] Trusted Computing Platform Alliance, TCPA PC Specific
Implementation Specification v1.00, September 2001.
http://www.trustedcomputing.org/docs/TCPA_PCSpecificSp
ecification_v100.pdf

[3] Chris Wright, Crispin Cowan, James Morris, Stephen
Smalley, Greg Kroah-Hartman, “Linux Security Modules:
General Security Support for the Linux Kernel,” USENIX
Security Symposium, 2002.

[4] Stephen Smalley, Chris Vance, and Wayne Salamon,
“Implementing SELinux as a Linux Security Module,”
http://www.nsa.gov/selinux/module-abs.html, Dec., 2001.

[5] W3C Recommendation, XML Signature,
http://www.w3.org/Signature/, Feb. 2002.

[6] OASIS TC draft, Web Services Security Core,
http://www.oasis-open.org/committees/wss/, Dec. 2002.

[7] LILO, http://brun.dyndns.org/pub/linux/lilo/.

[8] GNU GRUB, http://www.gnu.org/software/grub/.

[9] XOSL, http://www.xosl.org/.

[10] Microsoft, Authenticode,
http://www.microsoft.com/security/tech/authenticode/default.
asp.

[11] Tripwire Open Source Project, http://www.tripwire.org/.

[12] Li Gong, Java (TM) 2 Platform Security Module,
http://lsm.immunix.org/

[13] Security-Enhanced Linux Architecture,
http://www.nsa.gov/selinux/indexjava.sun.com/j2se/1.4/docs/
guide/security/spec/security-spec.doc.html .

