
RT 0529 (04/03/2003)
Computer Science

IBM Research Report

Handler Cloning for Optimizing Exception Handling

Takeshi Ogasawara

IBM Research Division
Tokyo Research Laboratory
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It
has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside
publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties).
Some reports are available at http://www.research.ibm.com/resources/paper search.html. Copies may be requested from IBM T.J.
Watson Research Center, 16-220, P.O. Box 218, Yorktown Heights, NY 10598 or send email to reports@us.ibm.com.

IBM
Research Division
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

This page intentionally left blank.

Handler Cloning for Optimizing Exception
Handling

Takeshi Ogasawara
IBM Tokyo Research Laboratory

Abstract

Handler cloningis a technique for optimizing exception handling. For a specific
exception handler catching and rethrowing multiple classes of exceptions, it creates a
clone of the original handler and registers the clone as a handler that catches only a
single class or subset of the classes for the original handler. The rethrown exceptions
from the clone are determined at the compile time.

1 Background

Language-supported exception handling mechanisms, such as in Ada [1], Modula-3 [2],
and C++ [4], allow a programmer to write exception handlers for a region of the program.
Java [3] is one of the modern languages that support exception handling. Using exceptions
to change the control flows of the program is popular in Java [8, 9].

Optimizing exception handling is critical for programs that frequently throw excep-
tions. There are many exception-intensive Java programs [6] in various categories. These
programs suffer from the overhead of exception handling. There are two sources for this
overhead. One is the overhead of throwing the exceptions. The majority of this overhead
consists of creating exception objects and initializing them. The other is the overhead of
catching exceptions. The majority of this overhead consists of traversing the stack frame-
by-frame and searching for the appropriate exception handler.

The problem is that we should avoid any penalty onthe normal pathwhile at the same
time optimizing the exception-handling path. Here, the normal path is the code that is
executed when no exceptions are thrown, while the exception-handling path is the code
that is executed only when an exception is thrown. For the existing techniques [7],stack

1

unwindingandstack cutting, either the normal path or the exception-handling path can be
optimized.

We proposed a novel approach,exception-directed optimization (EDO)[6]. During
the program execution, the runtime part of EDO profiles the exception-handling path and
requests the optimization of the Java methods that frequently throw and catch exceptions.
The compiling part of EDO then optimizes the methods and removes the overhead for
exception handling, for the throwing and catching of exceptions. For a standard benchmark
suite, SPECjvm98, EDO significantly improved two exception-intensive tests, jack and
javac, by 18.3% and 13.8%, respectively, with no degradation for exception-rare tests.

To remove the overhead of exception handling, EDO first inlines the methods on the
targetexception path. The exception path is the sequence of the method invocations when
an exception is thrown and caught, which includes all the methods from the thrower to
the catcher. EDO then analyzes the classes of the exceptions at the throwing points and
finds their corresponding exception handlers. Finally EDO links the throwing points to
the corresponding handlers. For the optimized exception paths, there is no overhead for
catching exceptions. If the exception objects are not used, the code creating and initializing
the objects is dead code and is eliminated by the compiler optimization. In that case, there
is no overhead for throwing exceptions.

The problem is that EDO cannot find the corresponding handlers if the classes of the
exceptions cannot be determined. A typical example is whenfinally blocks rethrow the
exceptions that they have caught. The Java Virtual Machine Specification [5] defines that
a special exception handler is created for eachfinally block that catches any classes of
exceptions and rethrows them. Since the special handler can catch any class of exceptions,
the analysis of the program by the JIT compiler cannot resolve the class of these exceptions.
Therefore, even though the runtime part of EDO detects such a special handler as frequently
executed, the compiling part cannot map the rethrown exceptions to the corresponding
handler. For such special handlers, the overhead of exception handling remains. In general
the same problem exists for any exception handlers that can catch two or more exception
classes and rethrow the exceptions.

2 Handler Cloning

We proposehandler cloningto enable EDO to optimize in the problematic case explained
in the previous section. The idea is to create a clone of the targetfinally block and to
register the clone as a new handler catching the exception classes that are actually known
to be caught and rethrown by thefinally block.

Figure 1 shows an example of how the handler cloning transforms the program to op-

2

try { /* first try block */
try { /* second try block */

:
if (cond) {

throw new E();
}

} catch (Any e) { /* finally */
/* some action 1 */
throw e;

}
} catch (E e) {

/* some action 2 */
}

(a) The original program

try { /* first try block */
try { /* second try block */

:
if (cond) {

throw new E();
}

} catch (E e) { /* clone */
/* some action 1 */
throw e;

} catch (Any e) { /* finally */
/* some action 1 */
throw e;

}
} catch (E e) {

/* some action 2 */
}

(b) Handler cloning

1|
2|
3|
4|
5|
6|
7|
8|
9|

10|
11|
12|
13|

1|
2|
3|
4|
5|
6|
+|
+|
+|
7|
8|
9|

10|
11|
12|
13|

Figure 1: An example of handler cloning

timize the overhead of exception handling for afinally block. For the sake keeping the
explanation simple, the exception handler corresponding to thefinally block is explicitly
drawn in this figure, though it is implicitly generated by the system [5] and does not ap-
pear at the source code level. We first explain why the overhead of exception handling still
remains for the targetfinally block after performing EDO and then the handler cloning
enables EDO to optimize this overhead.

Figure 1a shows a code fragment suffering from the overhead of exception handling.
The exception handling is performed in this code as follows. The code creates and throws
an exception of classE at Line 5, implicitly calling a method that saves the information of
what methods have been invoked for the thread,fillInStackTrace(). If the exception
is thrown, since Line 5 throwing the exception is surrounded by twotry blocks, the inner
or secondtry block is first examined. The handler for thefinally block at Line 7 is
associated with the secondtry block and is checked if it can catch the exception of classE.
Since this handler can catch any exception class of exceptions, it is executed and the same
exception is thrown again at Line 9 when the handler is finished. Next the outer or first
try block is examined. The handler at Line 11 is associated with the firsttry block and
is checked to see if it can catch the exception of classE. Since this handler is declared to
catch exceptions of classE, it is executed.

For the original code,exception-directed optimization (EDO)[6] can analyze that the
class of exceptions thrown at Line 5 isE and that these exceptions are caught by the finally
block at Line 7. Then it removes the throwing code and links the throwing point (Line 5) to

3

try { /* first try block */
try { /* second try block */

:
if (cond) {

/* some action 1 */
/* some action 2 */

}

} catch (Any e) { /* finally */
/* some action 1 */
throw e;

}
} catch (E e) {

/* some action 2 */
}

1|
2|
3|
4|

++|
++|
6|
+|
+|
+|
7|
8|
9|

10|
11|
12|
13|

(a) Replace throw with goto (b) Align the code and remove the unnecessary code

try { /* first try block */
try { /* second try block */

:
if (cond) {

throw new E();
}

} catch (E e) { /* clone */
/* some action 1 */
throw e;

} catch (Any e) { /* finally */
/* some action 1 */
throw e;

}
} catch (E e) {

/* some action 2 */
}

1|
2|
3|
4|
5|
6|
+|
+|
+|
7|
8|
9|

10|
11|
12|
13|

Link

Link

Remove

Remove

Figure 2: Optimization by EDO

the entry of the finally block (Line 7). However, EDO analyzes that the class of exceptions
thrown at Line 9 can be any class. Therefore, it cannot match this throwing point to the
handler catching only the exception classE at Line 11. As a result, since the exception
object has to be created at Line 5 because the object is used for rethrowing at Line 9,
the overhead of throwing exceptions remains. The overhead of catching exceptions also
remains since the handler that can catch the exception thrown at Line 9 must be searched
for.

Figure 1b shows the code after performing the handler cloning. The lines between 6
and 7 are added to the original Figure 1a. The handler cloning focuses on thefinally

block (Line 7) that throws the exception classE and another handler (Line 11) that catches
the exception at runtime. The handler cloning generates a copy of thefinally block and
then registers the copy as an additional handler that catches the exception classE prior to
thefinally block. The additional handler also rethrows the exception.

Figure 2 shows the optimization of the example by using EDO. EDO can analyze that
the class of exceptions thrown by the new handler created by the handler cloning (Lines
denoted by+) is E and these exceptions are caught by the handler at Line 11. Therefore,
it removes the throwing code and links the throwing points to the entries of the matching
handlers, as shown in Figure 2a. Since EDO can determine that the exception created at
Line 5 is not used, the code creating the exception can be eliminated. Figure 2b shows
the optimized code after performing the handler cloning and EDO. Line 5 creating the
exception is removed. The sequence of the code instructions executed when the program

4

execution reaches Line 5 in Figure 2a appears between 4 and 6. By combining handler
cloning with EDO, the overhead of exception handling for the example code is successfully
removed.

3 Summary

In this paper, we explained the idea of handler cloning to address the problem where EDO
cannot optimize the overhead of exception handling because the problem is throwing a
larger set of exception classes than the handler can catch. Combining handler cloning with
EDO, we showed that EDO can successfully remove this overhead.

References

[1] B, T. P., R, G. A. Implementing Ada exceptions.IEEE Software 3, 5
(Sept. 1986), 42–51.

[2] C, L., D, J., G, L., J, M., K, B., N, G.
Modula-3 report (revised). Tech. Rep. SRC Research Report 52, Digital Equipment
Corporation, Systems Research Center, 1989.

[3] G, J., J, B., S, G. The Java Language Specification. The Java Series.
Addison-Wesley, Reading, Massachusetts, Aug. 1996.

[4] K, A., S, B. Exception handling for C++ (revised). InProceedings
of the C++ Conference(Apr. 1990), USENIX Association, pp. 149–176.

[5] L, T., Y, F. The Java Virtual Machine Specification. The Java Series.
Addison-Wesley, Reading, Massachusetts, Sept. 1996, ch. 4.9.6.

[6] O, T., K, H., N, T. A study of exception handling and its
dynamic optimization in Java. InProceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA-2001)
(New York, NY, USA, 2001), ACM Press, pp. 83–95.

[7] R, N., P J, S.A single intermediate language that supports multiple
implementations of exceptions. InACM SIGPLAN ’00 Conference on Programming
language design and implementation(New York, NY, USA, May 2000), ACM Press,
pp. 285–298.

5

[8] R, B. G., S, D., K, U., G, M., S, N. A static study of
Java exceptions using JESP. Tech. Rep. dcs-tr-406, Rutgers University, Department of
Computer Science, 1999.

[9] S, S., H, M. J. Analysis and testing of programs with exception han-
dling constructs.IEEE Trans. Softw. Eng. 42, 9 (2000), 849–871.

6

