
September 9, 2003
RT0548
Computer Science   8 pages

Research Report
Mining Frequent Substring Patterns with Ternary Partitioning

Yuta Tsuboi
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

      

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It 
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of 
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer 
communications and specific requests. After outside publication, requests should be filled only by reprints or 
copies of the article legally obtained (for example, by payment of royalities).



Mining Frequent Substring Patterns with Ternary
Partitioning

Yuta Tsuboi
Tokyo Research Laboratory, IBM Japan, Ltd.

1623-14 Shimotsuruma, Yamato
Kanagawa, Japan

yutat@jp.ibm.com

ABSTRACT
The frequent substring pattern mining problem is the prob-
lem of enumerating all substrings appearing more frequently
than some threshold in a given string. This paper intro-
duces a novel mining algorithm that is faster and requires
less working memory than existing algorithms. Moreover,
the algorithm generates a data structure that is useful for
browsing frequent substring patterns and their contexts in
the original text.
My proposed algorithm is divide-and-conquer approach that
decomposes the mining task into a set of smaller tasks by
using a ternary partitioning technique. After the process of
frequent substring mining, the algorithm generates an in-
complete suffix array which represents a pruned suffix trie
based on the number of occurrences. This incomplete suffix
represents the appearance positions of frequent substring
patterns compactly so that their contexts can be browsed
quickly. Although the average time complexity of this al-
gorithm is O(n log n), a trial performance study shows the
proposed algorithm runs faster than the pattern enumera-
tion using a suffix tree.

Keywords
Substring Pattern Mining, Ternary Partitioning, Suffix Ar-
ray, Suffix Tree

1. INTRODUCTION
The frequent substring pattern mining problem is the prob-
lem of enumerating all frequent substrings as patterns found
in a given string.

Strings are one of the fundamental data structures and ap-
pear in many applications. Natural language sentences,
DNA sequences, and time series of nominal data (e.g. Web
access patterns, customer purchase behavior, etc.) are treated
as strings. Nagao and Mori [14] argued that it is useful to
enumerate and count all substrings in natural language data

to find unknown words, compound words, and collocations.
However, it is practically enough useful when analyzing such
string data to enumerate only frequent substrings. For ex-
ample, Ravichandran [17] employed frequent substrings as
seeds for template in matching in a question answering sys-
tem.

The sequential pattern mining problem [1] is a problem closely
related to the frequent substring pattern mining problem.
The sequential pattern mining problem is to find all frequent
subsequences which include non-consecutive sequences. Al-
though, the sequential pattern mining problem is more gen-
eral than the frequent substring pattern mining problem,
the sequential pattern mining problem does not differentiate
continuous patterns, that is substrings, from non-contiguous
patterns. Therefore, the algorithms for sequential pattern
mining [1, 9] are not appropriate when only enumerating
all continuous patterns. This work focuses on mining all
frequent continuous patterns.

The frequent substring pattern mining problem might seem
to be trivial, since all substrings in an input string can be
traversed in O(n) time (n is the length of the input string)
using a well known data structure, the suffix tree [13]. In ad-
dition, a linear-time on-line algorithm which generates the
suffix tree is known [20]. Therefore, all the frequent sub-
string patterns can theoretically be found in linear time.

However, the generation algorithm for the suffix tree is some-
what complicated, so that it takes more time than simpler
naive algorithms. In addition, this approach is not scalable
for a large amount of input. Although, this linear time al-
gorithm might run faster for a large amount of data, the
generation algorithm uses Θ(n|Σ|) of working space where
|Σ| is the size of the alphabet. Thus, it is not practical to
use the suffix trees for general input strings to enumerate all
frequent substrings.

In this paper, a practical algorithm is introduced for the
frequent substring pattern mining problem. The algorithm
is practical for both scalability and pattern browsing.

The scalability is due to the following two properties:

1. small memory requirement (n computer words)

2. simple enough to run fast



The utility for pattern browsing comes from the following
two properties:

1. compact representation of pattern positions

2. allows binary searches for patterns because of its lexi-
cographically ordered enumeration

The importance of context browsing is because, in general,
only a few of the patterns are useful in frequent pattern
mining. Although the number of patterns is usually nar-
rowed down using statistical measures or some heuristics
during the process of mining or after the process of mining,
the utility of the patterns must ultimately be assessed using
human judgment. Therefore, it is necessary to browse the
contextual information and search for other related patterns
among the patterns to verify their usefulness.

The remainder of the paper is organized as follows. In Sec-
tion 2, I define the frequent substring pattern mining prob-
lem. In Section 3, I illustrate how to enumerate frequent
substrings using the suffix trees. The overview of the pro-
posed algorithm is shown in Section 4 and the details are
developed in Section 5. In Section 6, I explain the context
browsing and pattern search method. The experimental and
performance results are presented in Section 7. In Section 8,
related work is mentioned. This work is summarized in Sec-
tion 9.

2. PROBLEM STATEMENT
First, string, substring, and other key terms are defined as
follows in this paper.

Definition(String) A string s is an ordered list of charac-
ters written consecutively. The set of the characters is
denoted as Σ. In particular, $ is used for the termi-
nation character where $ /∈ Σ to ensure that no string
is a prefix of another. For any string s , s[i..j] is the
substring of s that begins at position i and ends at po-
sition j of s. In particular, s[i..n] is the suffix of string
s that begins at position i where n denotes the length
of string s.

For example, kuras is the substring s[3..7] of the string
s =sakurasaku$, and kurasaku is the suffix s[3..10] of s. In
addition, a larger substring subi that includes the substring
subj is called a supersubstring pattern of subj .

Next, the frequent substring pattern mining problem is stated
as follows:

Problem Statement Let count(p) be the number of oc-
currences of a substring p in a string s. Given a posi-
tive ξ as the minimum support threshold, a substring
p is a frequent substring pattern of s if count(p) ≥ ξ.
The frequent substring pattern mining problem is the
enumeration of all frequent substring patterns in s.

For instance, if the string s = sakurasaku$ and the threshold
ξ = 2 then all frequent substring patterns are a, ak, aku, k,
ku, s, sa, sak, saku, and u.

ka

k

u

a
s
a
k
u

u

a
s
a
k
u

s

a
k
u

r

r u

r$

$

r$

r$

$

$

$

$

$

a
s
a
k
u

a
s
a
k
ua

s
a
k
u

s

$

a
k
u

Figure 1: A Example of the Suffix Trees

3. SUFFIX TREES
In this section, I briefly introduce the suffix tree [13, 15] and
illustrate how to enumerate frequent substrings using the
suffix trees.

A suffix tree is a trie-like data structure that stores all suf-
fixes of a string s. The difference between the suffix tree
and the suffix trie is path compression, where the suffix tree
eliminates nodes that have only a single child from the suffix
trie [3]. In the worst case, a suffix tree can be built with a
maximum of 2n nodes, though the suffix tree is a more space
efficient data structure than the suffix trie.

Figure 1 shows the suffix tree of the example string s =
sakurasaku$.

In the suffix tree, a path from the root to a node represents
a substring p. For the frequent substring enumeration, it
is necessary to count the number of the leaf nodes that are
descended from the node v. The number of the descendent
leaf nodes, count(v), is recursively calculated by the follow-
ing equation.

count(v) =

(
1 if children(v) = ∅P

c ∈ children(v) count(c) otherwise

where children(v) denotes the child nodes of the node v.
Thus, it takes O(n) time to calculate count(v) for all nodes.

While calculating count(e), the frequent substrings can be
enumerated when count(e) ≥ ξ. Note that an edge repre-
sents compressed nodes that have a single descendant and
the path from the root to the edge represents all the sub-
strings which appear the same number of its end node in s.
Therefore, a node with count(e) ≥ ξ may represent multiple
frequent substrings.

In practice, multiple links at nodes cause a problem for the
implementations of suffix trees. The space requirements are
influenced by |Σ|. Since it is impractical to use an array of
size Θ(|Σ|) at each node for a large alphabet, it is common
to use the alternative data structures (e.g. linked list, or
balanced tree) to balance the constraints of space against
the need for speed [7].



k

a

u

r

a

s

a

k

u

u

r

a

s

a

k

u

s

a

k

u

r

a

s

a

k

u

r

a

s

a

k

u

u

< >

< >

$

$ $

$

r

a

s

a

k

u

$

< >

k

s

a

k

u
$

< >

$

< >

$

< >

$

$

< >

Figure 2: Pruned Ternary Search Tree

Therefore, the implementation issues have barred widespread
use.

4. ALGORITHM OVERVIEW
In the previous section, how to enumerate frequent substring
patterns using the suffix trees was illustrated, along with the
versatility limitations of the suffix trees due to their exces-
sive demands for working memory space. In this section and
the next, I introduce and elaborate on a practical algorithm
that outperforms the approach using the suffix trees.

The main idea of the proposed algorithm is based on a
divide-and-conquer approach. It recursively decomposes the
mining task into a set of smaller tasks using a ternary par-
titioning technique [5]. Let S = [suffix1, · · · , suffixn] be an
array of all suffixes (s[1..n], s[2..n], · · · , s[n− 1..n], s[n]) in a
string s. The array S is divided based on the dth char-
acter of the suffixes into smaller arrays. In other word,
given a partition value v, S is divided into 3 smaller ar-
rays, S=,S<, andS> where S= includes suffixes whose dth
character equals v, S< includes suffixes whose dth character
is lexicographically smaller than v, and S> includes suffixes
whose dth character is larger than v. If the size of S, n=,
is greater than or equal to a minimum support threshold ξ
(i.e. n= ≥ ξ), then it is a frequent substring pattern that
begins at position 1 and ends at position d of suffixi ∈ S=.

This process is recursively invoked for S< and S> based on
the dth character and for S= based on the d+1th character.
The recursion stops when the size of the partitioned arrays
(n<, n=, n>) is smaller than ξ. This reduces the search space
based on the fact that any supersubstring pattern of a non-
frequent pattern cannot be frequent. In addition, the recur-
sion of an equal segment will stop if v is the terminal symbol
$ because the substring patterns can not be extended over
the terminal symbol.

Here is the pseudo-code of this recursive algorithm.

The input parameters are described as follows:

S contains the suffixes of s whose 1..d− 1th characters are iden-
tical.

m is the number of the suffixes in S

d is the character position of the suffixes that will be compared.

ξ is the minimum support threshold

The following function is invoked as mine(S, n, 1):

mine(S, m, d)
if m < ξ then

return
end
select a partitioning value v
partition S

by comparing suffixi[d] (suffixi ∈ S) with v
to form S<,S=,S>

(their sizes are n<, n=, n>)
mine(S<, n<, d)
if n= ≥ ξ and v 6= $ then

print suffixi[1..d](suffixi ∈ S=) as pattern
mine(S=, n=, d + 1)

end
mine(S>, n>, d)

This mining process is identical to walking through a pruned
ternary search tree are stored in which all of the suffixes of s.
The nodes of this ternary search tree are ignored where the
number of descendent leaf nodes is smaller than ξ. Figure 2
shows the pruned ternary search tree for the example string
s = sakurasaku$.

The algorithm is similar to the multikey quicksort proposed
by Bentley and Sedgewick [6] except for the pruning phase.
The multikey quicksort is an effective sorting algorithm for
a set of vectors, such as strings. In a similar way, the pro-
posed algorithm partially sorts the vectors while ignoring
the terminal elements of vectors that are not frequent. Just
as for the multikey quicksort, the expected time complexity
of the proposed algorithm is O(n log n) if the partition value
is chosen as the median of all of the dth character of suffixes
S.

5. IMPLEMENTATION OF THE ALGORITHM
Although the array of suffixes S is used for the overview
of the algorithm in Section 4, this naive approach is ineffi-
cient since the size of S is Θ(n(n − 1)/2). In this section,
I present a space efficient implementation using the indexes
that represent each suffixes of the string.

The key idea in the following implementation is that the fre-
quent substrings are enumerated during the process of build-
ing the incomplete suffix array. The solution involves using
suffice arrays to retain that substring information. A suffix
array [12, 7] is an array of the integer indexes in the range
1 to n, specifying the lexicographic order of the n suffixes
of string s , and this is a very space efficient representation
of a suffix trie. The suffix array requires only n computer
words for an input string of the length, n. The proposed
algorithm builds an incomplete suffix array because of the
partial sorting properties which were mentioned at the last
section.



?<= > =

a b c dbegin
(pivot)

end

(a) starts partitioning from both sides

< >=

a bc d

(b) exchanges the equal regions

< >=

a bc d

(c) the end of ternary partitioning

Figure 3: Ternary Partitioning

Since the outline of the algorithm was already described the
above, the remainder of this section shows the proposed al-
gorithm implementation as concretely applied to the strings
of C++ programs. Note that the following sample code
follows the same style as the Program 1. A C program to
sort strings which appears in the paper describing multikey
quicksort [6].

The reader is assumed to be familiar with the C++ pro-
gramming language [19]. In the following sample code, an
input string str is of string type and the suffix array idx is a
vector of the size type of the string. Both are freely acces-
sible from the main function as global variables or member
variables. The input strings are assumed to end with the
terminal symbol $ and the constant value EOS is a value
type of string and is used to represent $ in this sample
code. The minimum support threshold minsup is the size
type of idx and is also freely accessible, like the str and
the idx. Note that it is assumed that minsup > 2 in this
implementation.

typedef string::size_type s_t;

typedef string::value_type v_t;

typedef vector<s_t>::size_type i_t;

string str;

vector<s_t> idx;

i_t minsup;

The initial element values of the suffix array idx are the
positions of the input str as follows:

for(s_t i = 0; i < str.size(); i++) {

idx.push_back(i);

}

Here is the complete mining algorithm:

void mine(i_t begin, i_t end, s_t depth, bool equal=false)
{

i_t count = end - begin;
if(count < minsup) {

return;
} else if (equal) {

printPattern(begin, count, depth);
}

i_t pivot = selectPivot(begin, end);
swap(idx[begin], idx[pivot]);
v_t t = getValue(begin, depth);
i_t a = begin+1, c = end-1;
i_t b = a , d = c;
v_t r;
while(true) {

while(b <= c && ((r=getValue(b, depth)-t) <= 0)) {
if (r == 0) { swap(idx[a], idx[b]); a++; }
b++;

}
while(b <= c && ((r=getValue(c, depth)-t) >= 0)) {

if (r == 0) { swap(idx[c], idx[d]); d--; }
c--;

}
if(b > c) {

break;
}
swap(idx[b], idx[c]);
b++;
c--;

}
i_t range = min(a - begin, b - a);
vectorSwap(begin, b - range, range);
range = min(d - c, end - d - 1);
vectorSwap(b, end - range, range);

range = b - a;
mine(begin, begin + range, depth);

if(t != EOS) {
mine(begin+range, range+a+end-d-1, depth+1, true);

}
range = d - c;
mine(end - range, end, depth);

}

The above main function is initially called as:

mine(0, str.size(), 0);

The followings are the auxiliary functions of the main mining
function:

The getValue function returns the depthth character of the
suffix i :

v_t getValue(i_t i, s_t depth)

{

return str[idx[i] + depth];

}

The vectorSwap function moves sequences of equal elements
from their temporary positions on both sides of the idx. Be-
cause this vector swap is a kind of tricky, Figure 3 illustrates
this process.



void vectorSwap(i_t i, i_t j, i_t len)

{

while(len-- > 0) {

swap(idx[i], idx[j]);

i++;

j++;

}

}

Although the partitioning value can be selected in many
ways, this selectPivot function returns the index of the par-
titioning value at random.

i_t selectPivot(i_t begin, i_t end)

{

return begin + rand() % (end - begin);

}

The printPattern function outputs the frequency of a sub-
string pattern and the pattern itself to the standard output
stream.

void printPattern(i_t offset,i_t count,v_t depth)

{

cout << count << "\t"

<< str.substr(idx[offset], depth)

<< endl;

}

6. PATTERN BROWSING
Usually, the outputs of frequent pattern mining algorithms
are only the patterns found and their degree of support.
However, not all the patterns are interesting. The valuable
patterns still have to be selected by humans. Thus, it is
necessary to browse the patterns and their contextual in-
formation for the patterns to verify their significance. In
particular, for natural language data, the contextual infor-
mation helps in the disambiguation of word senses.

From that perspective, the proposed algorithm has a good
utility because the incomplete suffix array provides a com-
pact representation of the pattern positions, and the lex-
icographically ordered enumeration of patterns allows for
binary searches among them.

To describe pattern positions, the following three positive
integers should be output: (1) the length of the substring
pattern depth, (2) the offset of the suffix array idx, and (3)
the count of the appearances of the pattern. These three
integers plus the incomplete suffix array are sufficient to
describe all of the appearance positions of the pattern and
the string representation of the pattern.

The string representation of the pattern can be described as
s[idx[offset]..idx[offset]+depth]. All positions of the pat-
terns are described as idx[offset], · · · , idx[offset + count],
so that the context of patterns can be quickly collected using
that positional information and the original string.

parameter fixed value data type
1 minsup(0.0001% – 0.001%) data size(5 and 4.4MB) papers, DNA
2 data size(1 – 20MB) minsup(0.001%) papers

Table 1: Experimental Parameters

7. EXPERIMENTS
7.1 Experimental Methodology
Table 1 summarizes these two experiments.

To show the effectiveness of the approach, I conducted two
experiments to compare the enumeration using the suffix
tree and the proposed algorithm.

The Ukkonen algorithm [20] was employed to build the suffix
trees. As I mentioned in Section 3, the space requirements
of the suffix trees depends on the data structure used for
multiple links at each node. In these experiments, both
balanced trees 1 and sorted vectors 2 were used. Given k
is the number of children at a node, the implementation
using the balanced trees requires O(log k) time for additions
and searches among its children. The suffix tree node using
sorted vector requires O(k) time for additions and O(log k)
time for searches.

The implementation choice of the presented algorithm (ternary-
partitioning) is how to select the partitioning value. In these
experiments, I employed two selection methods, one select-
ing a random value as used in the sample code (rand), in
the selectPivot function, and the other selecting the median
of the sampled points as a pseudo-median (pseudomedian).

Both algorithms were implemented in C++ programming
language and compiled by gcc (version 3.2) with optimiza-
tion flag -O3, and executed on Windows2000 (Pentium4
1.5GHz and 1.5GB main memory).

Two types of input data were employed, a natural language
text and a DNA sequence. For the natural language text
data, English papers in the Computer Science domain were
concatenated as one long string. Those papers were down-
loaded from the e-Print archive 3. The size of the alphabet
|Σ| was 89 which included control characters and the total
amount of data was 20MB. For the DNA sequence, the unan-
notated sequence of E. coli, strain K-12, substrain MG1655,
version M52 was used, as available from the genome center
at the University of Wisconsin 4. The alphabet |Σ| size was
4 (AGTC) and the data size was 4.4MB.

In the first experiment, the scalabilities of both approaches
were compared as the minimum support threshold ratios de-
creased from 0.001% to 0.0001% on both the English papers
and the DNA sequence. The minimum support threshold
ratio is derived from the ratio between the minimum sup-
port count and the data size. For example, the minimum
support count decreases from 52 to 5 for 5MB of string data.

In the second experiment, the scalabilities of both approaches

1map in C++ Standard Template Library
2the AssocVector developed by Alexandrescu[2]
3<http://www.arxiv.org/>
4<http://www.genome.wisc.edu/sequencing/k12.htm>



0

50

100

150

200

250

300

350

400

450

500

0.00010.00020.00030.00040.00050.00060.00070.00080.00090.001

T
im

e 
(s

ec
)

Minimum Support (%)

suffixtree (balancedtree)
suffixtree (sortedvector)

ternary-patitioning (rand)
ternary-patitioning (psudomedian)

Figure 4: Execution Time with threshold, e-print
paper (5MB)

0

50

100

150

200

250

300

350

400

450

500

550

0.00010.00020.00030.00040.00050.00060.00070.00080.00090.001

T
im

e 
(s

ec
)

Minimum Support (%)

suffixtree (balancedtree)
suffixtree (sortedvector)

ternary-patitioning (rand)
ternary-patitioning (psudomedian)

Figure 5: Execution Time with threshold, E. coli
genome sequence (4.4MB)

were compared as the data size increased from 1MB to 20MB
for the English papers. The minimum support ratio was
fixed at 0.001% in the second experiment.

7.2 Results and Discussion
The empirical performance is depicted in Figure 4, 5 for the
first experiment and in Figure 6 for the second experiment.
These execution times are the averages of three trial and do
not include the reading time for the input strings from disk
storages.

On the scalability tests with varying thresholds, the pro-
posed approach (ternary-partitioning) outperformed the suf-
fix tree approach (suffixtree) on both natural language text
(Figure 4) and DNA sequence data (Figure 5). On aver-
age, the proposed approach is 28.7 seconds faster for the
text and 17.8 seconds faster for the DNA data than the suf-
fix tree approach. The reason why the performances of both
approachs are close may be that the output cost of substring
patterns is relatively higher at the low minimum support lev-

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19

T
im

e 
(s

ec
)

String Length (M)

suffixtree (balancedtree)
suffixtree (sortedvector)

ternary-patitioning (rand)
ternary-patitioning (psudomedian)

Figure 6: Execution Time with String Length

algorithm memory usage (MB)
suffixtree(balancedtree) 693
suffixtree(sortedvector) 391
ternary-partitioning(both) 26

Table 2: Memory Usage for 5MB of text

els. For example, the number of the frequent patterns over
the threshold is 604K with a threshold of 0.0003%, 989K
with 0.0002%, and 3.8 M with 0.0001%. The amount of
memory used for each algorithm is described in Table 2.

On the scalability tests with varying data sizes, the proposed
approach scaled much better than the suffix tree approach
(Figure 6). On average, the new approach is five times faster
than the suffix tree approach. Note that the implementa-
tions of the suffix tree have cause swapping at more than 6
MB of data (balanced tree) or 12 MB of data (sorted vector).

The selection methods in the proposed algorithm or the
data structure used in suffix tree implementations caused
little performance difference. For the suffix tree approach,
the sortedvector approach is faster and more space efficient
than the balancedtree approach. This result is because the
cost of balancing is somehow high in the implementation of
balancedtree in C++ [4]. For the proposed approach, the
pseudomedian outperformed the rand.

Overall, the presented ternary-partitioning algorithm is much
more scalable than the algorithm using suffix trees. This re-
lationship between the suffix tree approach and the proposed
approach is similar to the relationship between linear-time
sorting algorithms and quicksort. According to Sedgewick [18],
although the linear-time algorithms, like the radix sort, are
sometimes good for special applications, they are not as
good as quicksort for general use. In the same way, the
suffix tree is not as fast as expected.

8. RELATED WORK
Krishnan et al. [16] introduced a count-suffix tree, which
stores a count for each substring in the tree instead of stor-



ka

u

a

s

a

k

u

u

a

s

a

k

u

s

a

k

u

r

a

s

a

k

u

r

a

s

a

k

u

u

r$

$

r$

r$

$

$

$

$

a

s

a

k

u

$

k s

a

k

u

$

Figure 7: Pruned Suffix Trie

ing the pointers to the occurrences of the substring in the
original string. They used the pruned count-suffix tree for
the selectivity estimation of the substring query. Although
the frequent pattern enumeration may be sped up by using
this pruned count-suffix tree, either the on-line or the lin-
ear time properties of the Ukkonen’s algorithm [20] must be
abandoned to build the count-suffix tree.

Kasai et al. [10] proposed a linear time algorithm that tra-
verses all substrings using a suffix array. Their algorithm
runs in linear time with additional information stored in a
data structure, called the height array. However, it needs the
suffix array to be prepared in advance, so that this approach
requires much more computational cost than our approach.

Nagao and Mori [14] proposed a data structure that enu-
merates all substrings and argued that it is useful for ex-
tracting unkown words, compound words, and collocations.
Actually, their proposed data structure is equal to the suffix
array and the height array [12].

The partitioning-based divide-and-conquer method has re-
cently garnered attention in the data mining community.
Although the traditional data mining algorithms adopt an
Apriori-like candidate-generation-and-test approach, this par-
titioning based divide-and-conquer method led to new ways
of thinking about data mining. Han et al. [8] proposed a
novel data structure, an FP-tree which compresses a database
and uses a divide-and-conquer method to decompose the
mining task into a set of smaller tasks for mining limited
patterns in conditional databases. Pei et al. [9] introduced
a divide-and-conquer approach for the sequential pattern
mining problem, called PrefixSpan. PrefixSpan narrows the
search space based on the prefixes of sequential patterns in
a recursive manner. It uses each frequent item to partition
the sequential database into a set of smaller databases shar-
ing the item as the prefix of the patterns to be found. Then
it recursively searches for frequent subsequence patterns in
each smaller database.

Kudo et al. [11] extends the PrefixSpan algorithm to enu-
merate frequent substring patterns. The algorithm parti-
tions the suffix array into smaller suffix arrays, such that
the number of the smaller arrays is the same as the size of

alphabet. Thus, their approach is identical to searching a
pruned suffix trie which stores all of the suffixes of s. Fig-
ure 7 shows an example using the pruned suffix trie of s =
sakurasaku$. The nodes are pruned if the number of descen-
dent leaf node is smaller than ξ = 2.

The presented approach adopts a patitioning-based divide-
and-conquer method. In particular, the PrefixSpan algo-
rithm is closely related to my algorithm. The difference
besides the different problem to be solved is that the pre-
sented approach does not create new databases or indexes
at the time of partitioning. PrefixSpan and Kudo’s algo-
rithm both generate a set of smaller databases (or indexes
for the pseudo-projection procedure). The in-place property
of the ternary partitioning technique achieves more space
efficiency.

9. CONCLUSIONS
This study introduced the frequent substrings pattern min-
ing and presented a novel algorithm for solving this problem.
The empirical result shows the proposed algorithm outper-
forms the approach using the suffix trees which might seem
to be the magical tool for substring problems. In particular,
the proposed algorithm scales much better than those using
suffix trees. In addition, the proposed algorithm has conve-
nient properties for browsing the frequent patterns and their
contextual information.

10. ACKNOWLEDGMENTS
The author would like to thank Mr. Tetsuro Shibuya for his
help in the implementation of the suffix trees and the DNA
sequence data.

11. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential

patterns. In P. S. Yu and A. L. P. Chen, editors, Proc.
11th Int. Conf. Data Engineering, ICDE, pages 3–14.
IEEE Press, 6–10 1995.

[2] A. Alexandrescu. Modern C++ Design: Generic
Programming and Design Patterns Applied.
Addison-Wesley, 2001.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison-Wesley, 1999.

[4] J. L. Bentley. Programming Pearls. Addison-Wesley,
second edition, 2000.

[5] J. L. Bentley and M. D. McIlroy. Engineering a sort
function. In Software–Practice and Experience (SPE),
volume 23, pages 1249–1265, 1993.

[6] J. L. Bentley and R. Sedgewick. Fast algorithms for
sorting and searching strings. In Proceedings of the
Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 319–327, 1997.

[7] D. Gusfield. Algorithms on Strings, Trees and
Sequences. Cambridge University Press, 1997.

[8] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In ACM SIGMOD Intl.
Conference on Management of Data. ACM Press,
2000.



[9] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. Prefixspan: Mining
sequential patterns efficiently by prefix-projected
pattern growth. In Proc. 2001 Int. Conf. on Data
Engineering (ICDE’01), pages 215–224, Heidelberg,
Germany, April 2001.

[10] T. Kasai, H. Arimura, and S. Arikawa. Efficient
substring traversal with suffix arrays. Technical report,
Department of Informatics, Kyushu University, 2001.

[11] Kudo Taku, Kaoru Yamamoto, Yuta Tsuboi, Yuji
Matsumoto. Text mining using linguistic information.
In IPSJ SIGNL-148 (in Japanese), 2002.

[12] U. Manber and G. Myers. Suffix arrays: A new
method for on-line string searches. In 1st ACM-SIAM
Symposium on Discrete Algorithms, pages 319–327,
1990.

[13] E. M. McCreight. A space-economical suffix tree
construction algorithm. Journal of ACM,
23(2):262–272, 1976.

[14] M. Nagao and S. Mori. A New Method of N-gram
Statistics for Large Number of n and Automatic
Extraction of Words and Phrases from Large Text
Data of Japanese. In the 15th International
Conference on Computational Linguistics, 1994.

[15] M. Nelson. Fast string searching with suffix trees. Dr.
Dobb’s Journal, 1996.

[16] P. Krishnan and Jeffrey Scott Vitter and Bala Iyer.
Estimating alphanumeric selectivity in the presence of
wildcards. In Proceedings of ACM SIGMOD
Conference on Management of Data, pages 282–293,
1996.

[17] D. Ravichandran and E. Hovy. Learning surface text
patterns for a question answering system. In Annual
Meeting of the Association for Computational
Linguistics, 2002.

[18] R. Sedgewick. Algorithms in C++ (second edition).
Addison-Wesley, 1992.

[19] B. Stroustrup. The C++ Programming Language, 2d
edition. Addison-Wesley, 1991.

[20] E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14(3):249–260, September 1995.




