

February 14, 2005

RT0598
Security 8 pages

Research Report

WS-Attestation: Efficient and Fine-Grained Remote Attestation
on Web Services

Sachiko Yoshihama, Tim Ebringer, Megumi Nakamura, Seiji
Munetoh, Hiroshi Maruyama

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalties).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.
Other company, product, and service names may be trademarks or service marks of others.

WS-Attestation: Efficient and Fine-Grained Remote Attestation
on Web Services

Sachiko Yoshihama†, Tim Ebringer‡, Megumi Nakamura†, Seiji Munetoh†, Hiroshi Maruyama†
†IBM Tokyo Research Laboratory, 1623-14 Shimotsuruma, Yamato-shi, Kanagawa, Japan
‡Department of Computer Science and Software Engineering, The University of Melbourne

†{sachikoy, nakamegu, munetoh, maruyama}@jp.ibm.com, ‡tde@cs.mu.oz.au

Abstract.
This paper proposes WS-Attestation, attestation
architecture on Web Services framework. We aim at
providing software oriented, dynamic and fine-grained
attestation mechanism that leverages TCG technologies
to increase trust and confidence in integrity reporting. In
addition, the architecture allows efficient binding of
attestation with application context, privacy protection,
as well as infrastructural support for attestation
validation.

1. Introduction
Remote attestation is one of the key functionalities of

trustworthy computing which allows a remote challenger
to verify not only the identity of the other party but also
its behavior. The trusted computing allows establishing a
trust relationship among potentially distrusted distributed
parties, thus enables new types of secure applications.

The Trusted Computing Group (TCG) defines a set of
secure computing subsystems. The center of the TCG
architecture is called the Trusted Platform Module (TPM)
which is a tamper-resistant hardware module. In addition
to serving as a cryptographic co-processor and a
protected storage for secrets and keys, the TPM is used to
measure and report platform integrity in a manner that
cannot be compromised by either platform owners or the
software running on it. TCG defines the trusted bootstrap
process [1] [14] that comprises an iterative process of
measurement, loading, and execution of software
components. When the system is powered-on, the
immutable initial bootstrap code measures next
component and stores the measurement in the TPM
before transferring control to the next component. In
subsequent steps, each component recursively measures
next component and records the measurements in the
TPM, until the operating system is loaded. Each
measurement is taken as a SHA1 secure hash value of
binary image of the component, and stored into Platform

Configuration Registers (PCRs). PCRs are special
purpose registers within the TPM which record integrity
measurements, and are protected from an arbitrary
modification. A PCR supports only the extend operation
to update its value12.

Attestation is the mechanism defined in the TCG
specifications to report the integrity measurements stored
in PCRs. In the attestation process, TPM signs over the
PCR values and the external 160-bit data (such as a nonce
from a challenger) using an RSA private key, whose
confidentiality is protected by TPM. The attestation is an
atomic, protected operation on the TPM and the
attestation signature cannot be forged by malicious
software. Therefore, if the TPM is properly designed and
implemented to adhere to the TCG specifications, and the
platform, including the initial bootstrap code, is properly
integrated with TPM, a remote verifier can have
confidence in the integrity measurement reported by
TPM.

This paper proposes WS-Attestation, attestation
architecture on Web Services framework. It provides a
software oriented, dynamic and fine-grained attestation
mechanism which leverages TCG technologies to
increase trust and confidence in integrity reporting. In
addition, the architecture allows efficient binding of
attestation with application context, as well as
infrastructural support for attestation validation.

The following sections are structured as follows:
Section 2 discusses design principles. Section 3 discusses
architecture of attestation support for Web Services

1 When recording a measurement value v into a PCR, the
value is extended into the PCR, which results a SHA1
hash over concatenation of the current PCR value and the
value v; i.e., the new value of PCR at step i is PCR(i) =
SHA1(PCR(i-1) || v). The initial PCR value after
power-on is PCR(0) = 0.
2 TPM Specification v1.2 supports a new operation to
reset TPM to 0. This is presumably intended to be used in
Microsoft’s NGSCB initiative so that a virtualized
operating system can leverage TCG without a hard reset.

framework. Section 4 discusses profile of Web Services
protocols for attestation. Section 5 discusses prototype
implementation. Section 6 discusses related work. Section
7 concludes this paper.

2. Design Principles
This section discusses principles that are taken into

account in the design of the attestation support in Web
Services.

2.1. Fine granular, dynamic, verifiable, and
efficient attestation

Although TCG provides a hardware-based root of trust,
the platform integrity measurement and reporting it
conveys little information compared with the complex
state of a running system. In WS-Attestation, we aim at
complementing TCG attestation with fine granularity,
dynamicity, and verifiability.

Fine granularity. Trusted bootstrap, as defined in TCG,
is designed to measure binary images of executables and
components (e.g., BIOS configurations) during the
bootstrap sequence. However, today’s computing systems
are complicated and include properties that cannot be
meaningfully measured from their binary image. For
example, behavior of Linux systems can significantly
differ because of parameters specified in configuration
files, even if they run on the identical OS kernel and the
executable image is the same. It is not practical to
measure configuration files with SHA1 hash values; as
most of the Linux configuration files are text based, the
system administrator can easily break the integrity of a
configuration files by adding a white-space or a blank
line, even though the semantics of the configuration file
is not changed. Therefore it is important that attestation
can provide not only binary measurements but also
semantic information, e.g., platform configuration
retrieved by a software-based attestation agent.
Dynamicity. Trusted bootstrap measures integrity of
executable components up to the operating system.
However, various executables and data loaded on the
operating system and on the application layer affect
behavior of a running system [3]. It is important that the
WS-Attestation can support rich semantic attestation
information while leveraging root-of-trust defined in
TCG.
Verifiability. TPM stores measurement of components in
PCRs in the form of composite hash values. Each
composite hash value represents a list of components that
are measured and ‘extended’ into a PCR. It is assumed
that one PCR is used to measure quite a few components;
e.g., TCG defines minimum 16 PCRs for PC platforms,
and 8 of them are reserved for measuring BIOS, while the

other 8 are used for measuring the OS and the application
layer. As the number of components measured by a PCR
becomes bigger, and as the number of possible revisions
of each component becomes bigger, the number of
permutations that constitute a PCR value becomes
factorial; It becomes very difficult for a verifier to
validate the platform integrity from a PCR value.
Efficiency. As information conveyed and validated in an
attestation becomes more detailed, the attestation process
can become overly expensive. On the other hand, we
cannot simply separate attestation from the application
context, because an entity sending an application message
may not be in the same state as what was attested, thus
may not be trusted anymore. It is important to increase
efficiency while maintaining a cryptographic binding
between attestation and application context.

2.2. Attestation Supporting Infrastructure
As a large number of vulnerabilities are found every

day [5], software vendors release security patches quite
frequently. A typical security patch consists of multiple
files that replace vulnerable components on the system.
Each patch may fix one or more vulnerabilities. Thus it
becomes increasingly difficult to make educated
decisions as to whether vulnerability is present in a
particular file. A well organized infrastructural support is
therefore essential to enable validation measurement of
each component on the system.

Finally, each entity requesting attestation may not be
capable of validating attestation information. We assume
presence of trusted third party validation services that
validate attestation on behalf of requesters. We aim at
defining communication models between the attestation
requester, responder, and the validation service.

2.3. Privacy Protection.
There are two types of privacy need to be considered in

attestation: identity and integrity of the platform being
attested.
Identity Privacy. It has been one of the key objectives of
TCG attestation to protect privacy of platform identity
while establishing trust. TCG defines two mechanisms for
identity privacy: the Privacy-CA and Dynamic
Anonymous Attestation (DAA). Since current TCG
specifications already address identity privacy issues, we
do not focus on the identity privacy in this paper.
Integrity Privacy. The most unique aspect of attestation
is that it proves not only the identity of the platform but
also the integrity and state of the platform. Although it is
useful information for a legitimate verifier to judge
trustworthiness of a platform, it might also become a
source of vulnerability if distrusted parties can perform
attestation. For example, by investigating OS version and
applied security patches, an attacker can quickly deduce

the most effective attack techniques. Therefore, it is
important, especially in cross-organizational transactions,
that a platform can prove its trustworthiness to
anonymous challengers without disclosing its
configuration details. This is addressed in section 3.5.

3. WS-Attestation Architecture
Figure 1 shows architecture of attestation support on

Web Services. The attested platform is a platform that is
being attested. The attestation requester initiates
attestation request, which may or may not be able to
validate attestation response by itself. The validation
service is a trusted third party authority that validates (or
sometimes performs) attestation on behalf of the
requester. The validation service refers to the integrity
database for validating integrity of each component
measurement. The Privacy CA or the DAA issuer is
responsible for certification of AIKs generated on attested
platforms.

Figure 1 WS-Attestation Architecture

3.1. Attested Platform
The platform being attested implements various forms

of integrity measurements and is capable of responding to
an attestation request. It is also assumed that the attested
platform implements appropriate security mechanisms
and policies that is to be required by the attestation
requester, and presence of such implementation can be
measured and reported in the attestation process.

Integrity measurements consist of the following
mechanisms.

TCG Trusted Boot. TCG trusted boot starts
measurement from the hardware-based root of trust, and
measures all components up to the OS.
Run-time measurement at OS. While the system is
running, various behavior, such as module loading or
application execution, are monitored and measured by

the operating system and recorded into PCRs. Integrity
Measurement Architecture [3] realizes such
measurement on the Linux kernel.
Run-time measurement at Middleware. Various forms
of middleware constitute today’s computing systems.
However, it is not practical to extend OS to measure
integrity of data that are used by middleware, because
that requires rebuilding OS each time when needing to
support a new type of middleware or data. We think that
it is desirable that each middleware layer measures data
that is loaded or used by itself. An example of the
measurement at middleware is a Java™ Virtual Machine
(JVM) that measures integrity of Java class files when
each class is loaded.

Care needs to be taken, though, that a chain of trust
needs to be maintained from the root-of-trust to the
component being measured. That is, 1) the integrity of the
base code up to OS is measured in the trusted bootstrap
sequence, 2) the integrity of a middleware is measured by
OS, 3) and finally, the integrity of a file being loaded by
the middleware is measured by the middleware. The
record of measurements (stored in TPM) must prove that
each component is measured by a component that is
already measured, and the measurement record is not
forgeable.
Measurement by Agents. System properties that are not
measured by the binary measurement may be measured
and reported by an agent. An example of such an agent is
a local daemon that reads system configuration files, and
composes a structured message that describes the
properties of the configuration (e.g., network setting,
minimum password length, etc.). Similar to the
middleware level measurement, the chain of trust from
the root-of-trust to agents needs to be maintained.

3.2. Attestation Measurements and Credentials
There are several forms of information exchanged in

attestation processes that are different in levels of
confidence and granularity.
Attestation Signature. The TCG attestation signature is
an RSA signature value generated by an AIK over
concatenation of the target data and PCR values. Since
the signature operation is an atomic operation performed
by TPM, and values in PCR and use of the AIK is also
protected by TPM, a TCG attestation signature proves
that the signed PCR values are not compromised, and
represents the state of the attested platform at the time of
signing.
Platform Measurement Description (PMD). The PMD
is structured data that describes the state of the platform
in a fine-grained and semantic manner. A PMD would
include the log of measurements that are recorded during
the trusted bootstrap and run-time, to describe which
components have been measured by PCRs. Such a log

Attested
Platform

Validation
Service

Attestation
Requester

 Vulnerability
Database

Integrity
Database

Software
Repository

Privacy
CA or DAA

issuer

allows the verifier to validate integrity of every
component running on the system. The verifier can also
verify that hash of all components in the log matches the
PCR values in the attestation signature. Since the PCR
values in the attestation signature are not forged, as long
as TPM is genuine and not in direct contact with an
attacker who performs hardware-level attacks, we can use
these values to verify the PMD that is generated by
potentially distrusted software.
Attestation Credentials. As PMDs become richer,
validating the PMD at each transaction may take too
much time and becomes a bottleneck. To realize efficient
attestation, we propose the notion of attestation
credentials. An attestation credential has properties that
are asserted by an authority, and may have expiration
period. A typical attestation credential is issued by a
trusted authority that asserts some properties (e.g.,
hasKnownVulnerability=’false’) about an attested
platform. An attestation credential may bind a particular
set of PCR values to the properties. Upon a challenge by
an attestation requester, the attested platform may present
the attestation credential along with the attestation
signature signed over the challenge. By verifying the
challenge, the PCR values and attestation credentials, the
attestation requester can verify, without knowing the
details of measurement description, that the attested
platform’s current state is represented by the PCR values
in the attestation signature, and the PCR values represent
the properties that are asserted in the attestation
credential. The attestation credential also help protecting
integrity privacy of the attested platform from potentially
distrusted attestation requesters, especially by utilizing
PCR obfuscation technique described in Section 3.5.

Figure 2 Attestation Models

3.3. Attestation model
An attestation requester (AR), an attested platform

(AP), and a verification service (VS) play central roles in
an attestation, especially in verification of integrity of the
attested platform. This section discusses four attestation
models each of which is built on a different trust model,
and has advantages and disadvantages.

Direct Attestation. Figure 2 (a) shows the Direct
Attestation Model in which an attestation requester
challenges the attested platform, which then returns the
measurements back to the requester. The attestation
requester validates information by itself, which has the
advantage of not requiring that any other party need be
trusted. This model has two notable disadvantages. 1)
The attestation requester has to be capable of validating
the attestation response; 2) the attested platform has to
disclose all of its integrity information to the requester,
which violates its integrity privacy to potentially
distrusted attestation requesters.
Attestation with Pulled Validation. The second model
(Figure 2 (b)) is similar to the Direct Attestation, except
that the attestation requester consults the validation
service to validate the PMD, and does not have to be
capable of validating attestation. Integrity and privacy of
the attested platform is not protected in this model. An
additional disadvantage is that this model may suffer
from the performance bottleneck of the validation
service, because for every attestation the validation
service needs to be contacted.
Attestation with Pushed Validation. In the attestation
with pushed validation model (Figure 2 (c)), the attested
platform pushes the attestation to the validation service,
to request an attestation credential. Upon a challenge
from the attestation requester, the attested platform sends
the attestation credential along with the attestation
signature over the challenge, thus allowing the attestation
requester to verify that the attested platform has the
properties asserted in the credential. The advantages of
this model are that 1) the attested platform does not have
to disclose integrity information to the attestation
requester; 2) the attestation requester does not have to be
capable of validating attestation, 3) the performance
bottleneck at the validation service is of less concern,
because once an attestation credential is returned from the
validation service, the attested platform can re-use the
credential for subsequent transactions. Finally, the
attested platform can choose which validation service to
disclose its integrity information to, thus helping maintain
the privacy of platform.
Delegated Attestation. In the delegated attestation model
(Figure 2 (d)), the attestation requester requests a
validation service to perform attestation on behalf of the
requester, and then send only the validation result in the

(d) Delegated Attestation

1: n

4:Cred
3: [PMD, n,
PCR]AIK

2: n

VS

AR AP

3: n

4: Cred, [n, PCR]AIK

2:Cred

AR AP

VS 1: [PMD, n, PCR]AIK

(c) Pushed Validation

AR AP
1: n

2: [PMD, n, PCR]AIK 3: PMD

AR AP
1: n

VS

2: [PMD, n, PCR]AIK

4:Cred

(a) Direct Attestation (b) Pulled Validation

* AR: Attestation Requester, VS: Validation Service, AP: Attested Platform

form of a credential. The advantages of this model are
that 1) the integrity privacy of the attested platform is
protected; 2) the attestation requester does not have to be
capable of validating attestation.

3.4. Attestation Supporting Infrastructure
One infrastructure for supporting attestation we

constructed was the integrity database, which allows
attestation verifiers to query integrity and vulnerability of
each measured component.

Many OSes support mechanisms to distribute software
components and patches in precompiled packages. For
instance, RedHat's Package Manager (RPM) is the
standard way of distributing and deploying components
of RedHat's Linux distribution. When a different version
is then distributed, the executable images in the package
almost always have a new hash value. Thus, the exact
version of an RPM package can often be deduced from
the hash values of its executable files.

A relatively recent endeavor in platform security is the
Online Vulnerability and Assessment Language [11],
sponsored by MITRE and supported by various operating
system vendors, including RedHat. OVAL is a language
for expressing the preconditions necessary for a
vulnerability to exist. Although the exact semantics differ
depending on the operating system platform, the RedHat
variant references particular RPM packages.

A hash database of RPM packages was built by simply
unpackaging RPMs and generating hash values of all
ELF executables. By parsing OVAL vulnerability
descriptions and correlating these with RPM package
versions, we were then able to deduce which executable
hash values would indicate the presence of
vulnerabilities.

We found that a verifier with a database like the one
could verify the RPM-providence of all the executable
images loaded. Furthermore, by cross-referencing with
OVAL vulnerabilities, they could determine the presence
of vulnerabilities, merely from the hash values.

3.5. Privacy Protection: PCR Obfuscation
As we discussed in Section 2.3, attestation may need to

address two types of privacy issues: identity and integrity.
This paper focuses on privacy of integrity information.
One problem of attestation is that it provides detailed
configuration information that is very useful to an
attacker, since they may instantly learn which attack tools
will be effective against the platform, or when a platform
has changed its configuration. The solution to this
problem is to extend each PCR register with a random
value at random times, yet at the same time recording
these random values in the log. The resulting PCR value
is unpredictable; provides no information about
configuration details to the attacker. However, with the
log of all measurement by PCR, a legitimate verifier can
still verify integrity of all other components, and that the
current PCR value matches with what is derived from the
log, including extra random extensions.

In the attestation models with a third-party validation
service, the validation service may issue a credential to
the measurement log including random extensions, and
the credential asserts that some properties are true only
when the attested platform has a particular set of PCR
values. The attestation requester that receives the
credential and the current PCR values cannot derive
detailed configuration from PCR values, but it can verify
that the current PCR values prove the properties asserted
in the attestation credential.

Random extension of PCRs may be performed any
number of times, as long as the log of extension is
maintained. Especially important is that the extension is
performed more frequently than release of security
patches components that run on the system. If a patch that
fixes vulnerability is released, by observing PCRs before
and after the patch release, an attacker can infer whether
the patch is applied to the platform and will be able to
make an educated decision on attack tactics.

3.6. Secure Context Establishment
Several approaches are possible to bind the state of an

attested platform to an application context.

Figure 3 Integrity Database ER Diagram

First, the attestation requester and the attested platform
may establish a secure communication channel before
attestation. WS-Trust [6] defines a key exchange protocol
to exchange a shared secret, which enables the binding
between attestation and subsequent transactions by
adding Hashed Message-Authentication Code (HMAC)
to the messages. Care needs to be taken to protect the
shared secret from being bound to the distrusted attested
platforms; not only must the attestation requester discard
the shared secret when the attestation fails, but the
attested platform must also discard the shared secret when
its state changes. Especially when the application is
terminated, or the system is rebooted, the attested
platform must exchange a new shared secret and start the
attestation process again; it must be verified before a key
exchange that the attested platform and its applications
are implemented to relinquish shared secrets at
termination. However, if the state of the attested platform
changes without terminating the application, e.g., as a
result of additional kernel module being loaded, change
of such state is difficult to detect at the application layer.
To prevent the use of a shared secret in a context that is
not expected, the secret should expire and be renewed in
an every short window of time. This has the obvious side-
effect of reducing performance.

Second, on each application message, the attested
platform can present the attestation credential to the
requester along with the attestation signature. The PCR
composite hash value included in the attestation signature
proves the state of the attested platform at the time of
signing, and therefore that the properties asserted in the
credential are still in effect. The freshness of the
attestation signature has to be verifiable; e.g., by having a
signature over the timestamp and the application message
body. If the attestation signature is performed on a SOAP
response message, the entire application protocol should
include a challenge-and-response scheme. Although
performing attestation signature on each message requires
extra processing power on each party, this mechanism
allows verifying the latest state of the attested platform
without needing to maintain shared secret keys between
peers. Once an attestation credential is issued, the
credential can be re-used until it expires or is revoked. An
attestation credential may be valid even for multiple
attested platforms as long as they have identical integrity
measurements.

4. WS-Security Attestation Profile
In order for WS-Attestation to be widely adopted and

interoperable, it is considered to be important that WS-
Attestation matches the model and framework of the
existing WS-Security standards. Therefore, rather than
invent a new protocol for attestation, we leverage existing

Web Services standards and define a profile for
supporting attestation on top of these standards.

4.1. Attestation Signature
Attestation signature, which is generated by

TPM_Quote operation of the TPM, is considered a
special form of the RSA signature. In order to handle the
attestation signature in WS-Security as an XML digital
signature, we define a new signature method. The method
is identified by the URI and specified in the Algorithm
attribute of the SignatureMethod element of the XML
digital signature.

In order to verify an attestation signature, the verifier
needs to be informed of the TPM_QUOTE_INFO
structure that is being signed. In the proposed signature
method, this structure is concatenated to the signature
value that is included in the SignatureValue element as
TPM_QUOTE_INFO || [TPM_QUOTE_INFO]AIK
(where || denotes concatenation and [x]Key denotes a
signature over x with the Key).

In the XML Digital Signature which defines extensible
XML schema, it is also possible to add the
TPM_QUOTE_INFO structure as a separate XML element.
However, adding this structure to the signed value has
two advantages. First, the same signature method can be
used in protocols other than WS-Security where messages
have no or little extensibility to include an additional
element of information. Second, provider-model crypto
API such as Java Cryptographic Extension (JCE) [7]
supports different crypto algorithms under the same
generic API. Such generic API cannot be extended to add
an extra parameter without losing advantage of
plugability. By including the TPM_QUOTE_INFO in the
signature value, the crypto provider can receive the
necessary information for verification of an attestation
signature through a generic API.

4.2. Attestation Token
To communicate integrity measurements attestation

credentials on WS-Security framework, three types of
security tokens are defined.
Measurements. The simplest form of an attestation token
conveys binary measurements recorded in PCRs. The
measurement token can be used to provide a list of PCR
values. On verification, the verifier should verify that the
PCR values match the composite PCR hash in the
attestation signature.
Platform Measurement Description. The Platform
Measurement Description (PMD) conveys finer grained
and more semantic information of the state of the
platform being measured. An example of a PMD includes
lists of components and their SHA-1 hash values that are
measured by TPM. In addition, a PMD may include
properties of a platform that are not measured by TPM;

for example, operating system configurations and
parameters that are read by an attestation agent on the
platform.
Attestation Credentials. A credential may be issued by a
trusted third party to assert some properties of an attested
platform. A credential may be identity-based, integrity-
based, or both. An attestation credential refers to a
credential that asserts some properties of an entity that
possesses particular measurements. For example, an
attestation credential may assert the level of
trustworthiness of an attested platform which PCR has a
particular set of values. An integrity-based credential can
be represented in various forms; e.g., an X.509 attribute
certificate and a SAML Assertion [8] are well-
standardized formats for this purpose.

4.3. Attestation via WS-Trust
Each of attestation models consists of credential

exchange between the attestation requester, the attested
platform and the validation service. Rather than defining
a proprietary protocol for attestation, we leverage WS-
Trust [6]. In a WS-Trust message, a requester may
request a particular type of a security token, with an
optional challenge. Upon a successful response, the
responder returns the requested security token. The
challenge in the request should be returned back to the
requester with a responder’s signature over it, thus
proving that the response is fresh and is not replayed
from past records. WS-Trust messages can be used in
each of messaging in four attestation models. For
example, in the delegated attestation model (Figure 2),
four exchanged messages are structured as follows
(described in an informal format).

1: Security Token Request from AR to VS
 TokenType(Attestation Credential)

 Challenge(n1)
2: Security Token Request from VS to AP
 Token Type(PMD, PCR), Challenge(n2)
3: Security Token Response from AP to VS
 [Token(PMD, PCR), Challenge(n2)]AIK-AP
4: Security Token Response from VS to AR
 [Token(Attestation Credential)

 Challenge(n1)]KeyVS

5. Prototype
Figure 4 shows the structure of the prototype system.
The integrity of the Linux OS is measured by the

modified boot loader, and loadable modules and
executables are measured by IMA (version?). The
measurements (SHA1 hash values of files) are stored in
PCRs as well as in the kernel-held measurement list.

Figure 4 Prototype System

Linux Intrusion Detection System (LIDS) is used to
improve the OS level security of client machine. LIDS is
a kernel patch and admin tools which enhances the OS
security by enforcing Mandatory Access Control (MAC)
policies on operating system resources.

The prototype service is implemented in Java, and runs
on the OSGi (Open Service Gateway initiative) platform,
which is an open-standard framework for Java based
applications and services. We extended IBM Service
Management Framework (SMF), one of the OSGi
implementations, to measure each bundle JAR file when it
is loaded and record the measurement into PCR and the
log.

We also extended the WS-OSGi, light-weight
SOAP/WS-Security engine for OSGi platforms, to
support the attestation signature tokens described in
Section 4. The attestation signature and verification
operation are implemented as a JCE crypto provider, thus
allows WS-Security engine to switch between an ordinary
RSA signatures the attestation signature simply by
specifying the signature algorithm and the key storage as
a set of options. The attestation requester, attested
platform, and validation services are implemented as
services on the OSGi platform and communicates each
other using the WS-Trust protocol. PMDs returned by the
attested platform consists of stored measurement log in
the XML format, while an attestation credentials are
implemented as a SAML attribute assertion signed by the
validation service. The integrity database is built on DB2
and queried by the validation service by SQL over JDBC.
The integrity database currently supports RPM packages
only; data entries are generated from RPM package
repository for RedHat Enterprise Linux 3 (REL3) and
OVAL repository for this OS, thus capable of validating
integrity of REL3 systems.

6. Related Work
Related work includes previous efforts to establish

trust relationship between parties measuring, reporting
and verifying system integrity.

AEGIS system by Arbough et al [2] provides secure
bootstrapping architecture on PC system that maintains

Authenticated Boot Loader

Secure OS (Linux + IMA + LIDS)

OSGi(SMF) / Java Runtime
Trusted Bundles WS-OSGi Bundle

Trusted Platform Module (TPM)

integrity chain from the lowest trustable layer of a
system. Secure bootstrap is different from trusted
bootstrap in a sense that its objective is not to allow
remote verification of the system integrity; in the secure
bootstrapping, the system aborts bootstrap process upon
integrity check failure.

Sailer et al leverages TCG in Integrity Measurement
Architecture (IMA)[3], to enhance the role of the TPM
not only to measure static state of a system but also
dynamic state. IMA is implemented as a Linux Security
Module to measure each executable, library, or kernel
module upon loading and record the SHA1 hash values
into TPM and the log. As mentioned earlier, we leverage
TCG and IMA to build Linux based attested platforms.

More recent work of Sailer [4] utilizes the integrity
measurements and attestation to protect remote access
points, to enforce corporate security policies on remote
clients in a seamless and scalable manner. Cisco and IBM
have announced an enterprise network security solution
[12] based on their current products: Cisco’s Network
Admission Control (NAC) protects the network
infrastructure by enforcing security policy compliance on
all devices seeking to access network computing
resources. The integrated security solution leverages IBM
Tivoli Compliance Manager (TSCM) which inspects
device configurations, thus denies network access to the
devices that are not compliant to the corporate security
policies. The compliance checks are based on software
agents (e.g., whether anti-virus software is up to date, or
the OS is running the latest software patches), but NAC’s
extensible architecture would allow incorporating further
attestation mechanisms in the future.

Terra by Garfinkel et al [13] realizes isolated trusted
platforms on top of a virtual machine monitor, and allows
attestation by a binary image of each virtual machine,
e.g., virtual disks, virtual BIOS, PROM, and VM
descriptions.

Recent efforts on mitigating drawbacks of TCG
attestation include Haldar’s proposal [9], which leverages
language-based security and virtual machines to enable
semantic attestation, e.g., attestation of dynamic,
arbitrary, and system properties as well as behavior of the
portable code. Property-based Attestation [10] by Sadeghi
and Stüble proposes an attestation model with a trusted
third party that translates low-level integrity information
into a set of properties.

7. Conclusion
This paper presents our proposal on WS-Security

support for attestation. Although attestation is a generic
technique to allow remote verification of platform
integrity, our proposal is based on TCG, which is the
most promising and available technology at the moment
of this writing. This paper shows a set of profiles that

seamlessly works on existing WS-Security standards. We
also take privacy protection into account, as well as
provide infrastructural support for efficient, accurate, and
fine granular attestation validation.

Acknowledgements
The authors wish to thank many people of IBM

Corporation for comments and insights on an earlier
version of this paper.

References
1. Trusted Computing Group, TPM Main Specification

http://www.trustedcomputinggroup.org/
2. Arbaugh, W.A., Farber., J., Smith., J.M., A Secure

and Reliable Bootstrap Architecture, in IEEE
Computer Society Conference on Security and
Privacy. IEEE, 1997, pp.65-71.

3. Sailer, R., Zhang, X., Jaeger, T., Van Doorn, L.,
Design and Implementation of a TCG-Based
Integrity Measurement Architecture, IBM Research
Report RC23064, January 16, 2004.

4. Sailer, R. et al., Attestation-based Policy
Enforcement for Remote Access, IBM Research
Report RC23205, May 4, 2004.

5. http://www.cert.org/stats/cert_stats.html
6. Web Services Trust Language (WS-Trust),

http://www-
106.ibm.com/developerworks/library/specification/
ws-trust/

7. Java Cryptographic Extension (JCE),
http://java.sun.com/products/jce/

8. Assertion and Protocol for the OASIS Security
Assertion Markup Language (SAML),
http://www.oasis-open.org/

9. Haldar, V., Chandra, D., Franz, M., Semantic
Remote Attestation – A Virtual Machine directed
approach to Trusted Computing, the 3rd Virtual
Machine Research and Technology Symposium,
May 2004.

10. Sadeghi, A., Stuble, C., Property-based Attestation
for Computing Platforms: Caring about properties,
not mechanisms, New Security Paradigm
Workshop (NSPW), 2004

11. Open Vulnerability and Assessment Language,
http://oval.mitre.org/

12. IBM and Cisco: White Paper, October 2004,
http://www-3.ibm.com/security/cisco/docs/wp-ibm-
cisco-iisfcn.pdf

13. Garfinkel, T., et al., Terra: A Virtual Machine-
Based Platform for Trusted Computing, the 19th
ACM Symposium on Operating Systems
Principles, 2003.

14. TCG Specification Architecture Overview,
Revision 1.2 28 April 2004.

