
April 13, 2005
RT0606
Operations Research 11 pages

Research Report
A More Flexible Algorithm for Two Dimensional Guillotine
Cutting Stock Problem

Toshinari Itoko and Kaiyang Yang
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

A More Flexible Algorithm for Two Dimensional
Guillotine Cutting Stock Problem

Toshinari Itoko1 and Kaiyang Yang2

1 Tokyo Research Laboratory, IBM Japan. itoko@jp.ibm.com
2 Research School of Information Sciences and Engineering, ANU, Australia.

Kaiyang.Yang@anu.edu.au

Abstract. In this paper, we present a novel algorithm for two dimen-
sional guillotine cutting stock problem with application to plate design
in steel industry. The algorithm is based on Column Generation idea de-
veloped by Gilmore and Gomory. In order to apply Column Generation
methodology to our problem and make the algorithm more flexible, we
propose a new pricing heuristic which generates feasible guillotine cut-
ting patterns by Wang’s algorithm. The main features of the algorithm
are (1) it can solve the problems whose stock sizes are uncertain (vari-
ables) (2) it is independent of the definition of feasible patterns except
for guillotine cutting constraint. The flexibility of the algorithm enables
its broader applications to practical problems e.g. plate design in steel
industry etc．The computational results show the effectiveness of the
algorithm.

1 Introduction

The Cutting Stock Problem (CSP) is to cut or fill large materials (stocks) with
all demands of small materials (items) meeting some optimization criteria, e.g.
minimizing wastage etc. CSP has a wide variety of different formulations with
corresponding applications in practice, see the survey [3] by Dyckhoff for details.

In this paper, we concentrate on two dimensional CSPs allowing guillotine
cutting only i.e. edge-to-edge cuts parallel to two edges of stocks and allowing the
dimensions of stock sizes to be variables i.e. dimensions of stocks are determined
“after” designing the cutting patterns (i.e. layout of items). We assume here that
all stocks and items are rectangles which is usually the case in the wood, glass
and metal industry.

Usually, CSPs are formulated as an Integer Programming (IP) of the follow-
ing form:

Minimize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≥ di (i = 1, . . . , m),

xj ∈ Z+ (j = 1, . . . , n).

cj : cost of pattern j
xj : # of pattern japplied
di : demand of item i
aij : # of item i in pattern j
m : # of item types
n : # of feasible patterns

Unfortunately, this formulation has an exponential number of variables xj and
columns aj := (a1j , . . . , amj)T subject to m. In order to overcome this diffi-
culty, Gilmore and Gomory developed the column generation approach which
solved Linear Programming (LP) relaxation of the above-mentioned IP for one
dimensional CSP [5]. Regarding the problem solved in [5], all the costs are fixed
to 1 (i.e. minimizing the number of used stocks) and the feasible patterns are
described by inequalities ∀j, ∑m

i=1 aij li ≤ L where li denotes the length of i-th
item and L denotes the length of the stocks. This simple problem setting reduces
the pricing problem to a Knapsack problem.

Farley presented improved algorithms based on the Gilmore and Gomory
approach to three staged two dimensional CSP in [4]. The Farley’s pricing al-
gorithm is based on lexicographical search which is still hard to be applied to
n-staged two dimensional CSP.

In this paper, we propose a more “flexible” algorithm which can handle n-
staged cases. The algorithm is able to deal with problems whose stock sizes are
variables and also it can be easily applied to complicated feasible cutting pattern
definition such as certain two different items can not be cut from the same stock
etc.

Our algorithm is based on column generation and includes a new pricing
heuristic. The heuristic generates new candidate cutting patterns (candidate
columns to be added) by employing Wang’s algorithm [8].

Our algorithm does not solve pricing problem to optimality since that may
not make any sense (= columns) in order to solve the original IP to optimality.
We take the solution of LP as a guideline to collect “good” columns i.e. might be
selected in the solution process of original IP. The computational results shows
the effectiveness of the proposed ideas.

The structure of this paper is organized as the following. Section 2 shows the
framework of our algorithm based on column generation and Section 3 presents
the detail of the algorithm including the new pricing heuristic. Section 4 presents
its application to the steel cutting industry. In Section 5, we show the results of
experiments illustrating the effectiveness of the algorithm.

2 Column Generation Based Approach

Column generation is a method to solve huge LP assuming that constraints
which define the columns are given. Column generation is often used to solve LP
relaxation of IP as which combinatorial optimization problems are formulated.
Vehicle routing and crew scheduling problems are well-known applications of
column generation (See e.g. [6]).

Column generation is one variant of simplex method. In order to handle the
vast number of columns, a small subset of the columns is considered firstly and
other columns, whose corresponding variables become new basis (i.e. can improve
the objective value), are added in each iteration. The problem considered with
subset of columns is called restricted master problem, and the original problem
with all columns is called master problem. According to the duality theorem of

LP, only the columns with negative reduced costs will decrease the objective
value.

Column generation based algorithm for IP can be described in the following
general framework:

Step 1. Set up restricted master problem with initial columns.
Step 2. Solve LP relaxation of restricted master problem.
Step 3. Find columns with negative reduced cost.
Step 4. Add some/all of them to restricted master problem.
Step 5. If there are no columns to be added, go to Step 6.

Otherwise go back to Step 2.
Step 6. Obtain integer solution by some means.

Reduced cost of column j is defined as c̄j := cj −
∑m

i=1 ȳi aij where ȳi is
the i-th element of the dual optimal solution for the current LP relaxation of
restricted master problem. c̄j < 0 means to cut off the dual optimal solution
from the feasible region of the current LP dual problem. This is the outline of
the proof that only the columns with negative reduced cost will decrease the
objective value.

Searching for columns with negative reduced costs is called pricing problem
or subproblem. Pricing problem of CSP can be described as the following opti-
mization problem.

Maximize
m∑

i=1

ȳiai − c

subject to a := (a1, . . . , am)T is a feasible column (pattern).

If the cost of pattern c is fixed to 1 or defined by wastage, this pricing problem
becomes a CSP called constrained CSP. Constrained CSP is the problem of
cutting one stock into items with values not exceeding demands and the total
value maximized. By setting the value of item i to be ȳi or ȳi + vi where vi is
the dimension of item i, we can verify the equality relationship between pricing
problem and constrained CSP.

Dynamic programming [2] and recursive (tree search) algorithm [7] are two
most effective methods to solve constrained CSP to optimality. That is to say,
the corresponding pricing problem can be solved to optimality accordingly.

However, in our problem the cost c changes dynamically with the cutting
pattern. So, in Step 3 instead of finding the exact column with least reduced
cost, we propose a heuristic method to find columns with “near” least reduced
costs.

3 Pricing Heuristics

The complete algorithm is described as the following, and the details for pricing
heuristic are stated in Step 3a – 3d.

Step 1. Set up restricted master problem with initial columns.
Step 2. Solve LP relaxation of the restricted master problem.
Step 3. Find columns with negative reduced cost.

a. Sort items (rows) in decreasing order of their dual solution of LP.
b. [Pattern generation based on Wang’s algorithm]:

Add items to seeds in the order one by one and generate maximum
number N MAX PATTERNS of candidate patterns (columns).

c. Sort candidate patterns in increasing order of their reduced costs.
d. [Optional] Sort candidate patterns with negative reduced costs in

increasing order of their costs.
Step 4. Add new columns to restricted master problem in the order until there

are no columns with negative reduced cost or the number of added
columns reaches the maximum number N ADD MAX. If there are no
further columns to be added, go to Step 5.
Otherwise, go back to Step 2.

Step 5. Solve IP to get integer solution.

Since reduced cost c̄j is defined as cj −
∑m

i=1 ȳi aij and aij (the number of
item i in pattern j) is always a nonnegative integer, the larger dual solution ȳi is,
the less reduced cost c̄j would be. In other words, patterns including items with
larger dual solutions are more likely to have less reduced cost. So we choose the
seeds (items) for generating patterns in decreasing order of their dual solutions
in Step 3a.

In Step 3c, we collect columns with the smallest (negative) reduced costs to
improve the LP solution as possible. In addition, in Step 3d, we suggest selecting
columns with the least costs so that we may obtain better solutions of original
IP. (The effectiveness is shown later in Sect. 5.4.)

By using seed items, we generate lots of feasible patterns in Step 3b. The
generation process is based on Wang’s algorithm, which produces guillotine fea-
sible cutting patterns by successive horizontal or vertical builds of two smaller
patterns. Since we build up two patterns in guillotine feasible way, all newly gen-
erated patterns are guillotine feasible. We introduce representation such as H(a,
b) and V(a, b) which denote the pattern produced by horizontal and vertical
build of item a and b relatively, e.g. Fig. 1 – 3.

a b

Fig. 1. H(a, b)

a

b

Fig. 2. V(a, b)

b

c
a

Fig. 3. H(a, V(b, c))

To reduce the number of generated patterns, we reject undesirable patterns
based on cutoff ratio β, which is the maximum ratio of inner waste area to the

Inner waste

outer waste

+ (total) waste

Fig. 4. Inner and outer waste

product area (product area = stock area − outer waste area), see Fig. 4. Also
we reject duplicated patterns. For example, H(H(a, a), H(b, b)) and H(H(H(a,
a), b), b) are the same patterns generated in the second and third iteration
respectively, so we need to reject this pattern after at least the third iteration.

Incorporating these devices, our pattern generation algorithm is described in
Fig. 5.

L: List of generated patterns.
si: Item with i-th largest dual solution.
nlast: Size of L at the end of last iteration.
L := ∅, nlast := 0, N := 0.
For i: 1 to m,

L ← single plate pattern of item si,
While N < size of L,

N := size of L,
For j: 1 to N ,

For k: nlast + 1 to N ,
For each direction D (i.e. D := H and V),

check feasibility of D(L[j], L[k]),
check desirability of D(L[j], L[k]),
If D(L[j], L[k]) is feasible and desirable,

L ← D(L[j], L[k]).
nlast := N .

Return.
Note: Whenever n = N MAX PATTERNS, return at the moment.

Fig. 5. Pattern generation based on Wang’s algorithm

4 Application to Plate Design in Steel Industry

In this part, we shows the application of the algorithm to plate design in steel
industry.

Plate design is a CSP which has the following three difficulties. First of all,
stocks are not given in advance; whereas stocks (“products” may be more suit-
able) are designed in the algorithm. Secondly, the definition of feasible cutting

patterns is very complicated since products must satisfy many quality require-
ments and only the existing machines are available and so on. Third, the costs
of products are not simple since not only the calculation of waste is difficult
but also soft constraints have to be considered. We have already shown that our
algorithm could handle these difficulties.

In the rest of this paper, we show the effectiveness of the algorithm by com-
putational experiments. Before presenting the results of the experiments, we give
the problem settings.

Since the real problem setting is too complicated to be explicitly presented in
this paper, we have the simplified setting as the following. Maximum width and
length of products are set to 3,500 and 50,000 respectively. These constraints
must be satisfied strictly. Also minimum width and length of products are 2,500
and 25,000 respectively. These values are only used to define waste area, see Fig.
6. The costs are defined by waste area. Only the guillotine cuts are allowed and

2,500

25,000

25,000

25,000

2,500

2,500

Fig. 6. Dimension of product and waste area

only one vertical cut is permitted to imitate practical setting. By one vertical
cut constraint, at most 4-staged cutting patterns are generated.

5 Computational Experiment

Two kinds of experiments were carried out for different purposes. One is property
test to show the characteristics of our algorithm including the following four
experiments:

(1) Relationship between LP and IP optimal values,
(2) Adding multiple columns,
(3) Starting with more initial columns,
(4) Sorting candidate columns by their costs.

The other one is comparison test to examine the performance of our algorithm
comparing with Wang’s original algorithm and its simple extension.

We have three input data S, M, L which have small, medium and large
number of items respectively (Table 1). We used data M for the first three
property tests and all data for the other tests.

Table 1. Data size

data S data M data L

types 16 46 212
items 51 335 587

We implemented our algorithm in C++ language with open source library
developed in COIN-OR project [1]. We use COIN/Clp and COIN/Cbc modules
to solve LP and IP respectively. We run the program on the personal computer
(CPU 1.6GHz, RAM 1.0GB).

Throughout property tests, we fix the maximum number of patterns allowed
to be N MAX PATTERNS = 5000 and cutoff ratio β = 0.1. Throughout all tests,
IP solving process is always limited to maximum 3 minutes.

5.1 Relationship between LP and IP Optimal Values

Fig. 7 shows the relationship between LP optimal value and IP optimal value
in each iteration of our algorithm (maximum number of columns to be added
N ADD MAX = 1). If LP optimal value decreases rapidly, IP optimal value

0.0E+002.0E+094.0E+096.0E+098.0E+091.0E+101.2E+101.4E+101.6E+10

0 50 100 150 200columns
optimal value

IPLP

Fig. 7. Correlation of LP and IP optimal values

also decreases in such way. However, the gap between LP optimal value and IP
optimal value remains large at the end.

5.2 Adding Multiple Columns

Fig. 8 and 9 are the plots of IP best objective values within 3 minutes and
LP optimal value in the cases of single column adding (N ADD MAX = 1) and
multiple column adding (N ADD MAX = 10) respectively. The variation of IP

N_ADD_MAX = 1

0.0E+005.0E+081.0E+091.5E+092.0E+09

0 50 100 150 200columns
optimal value

IPLP

Fig. 8. Single column addition

N_ADD_MAX = 10

0.0E+005.0E+081.0E+091.5E+092.0E+09

0 100 200 300 400 500 600columns
optimal value

IPLP

Fig. 9. Multiple columns addition

best objective value is from 3 minutes running time limit.
Adding multiple columns in each iteration greatly reduces the gap between

LP and IP near the end. More precisely, adding multiple columns improves the
final IP solution because LP optimal values are not very different in both cases:
2.06e+8 in the single case and 2.11e+8 in the multiple case.

By increasing maximum number of columns to be added N ADD MAX; 1 →
10 → 40 → 100, it is found that adding more columns improves the quality of
IP solution as shown in Fig. 10 and 11. Also adding more columns increases the

0.0E+001.0E+082.0E+083.0E+084.0E+085.0E+086.0E+087.0E+088.0E+089.0E+081.0E+09

0 500 1000 1500 2000 2500columnsIP best objec
tive value in
3 min ADD 1ADD 10ADD 40ADD 100

Fig. 10. Effect of multiple columns (1)

0.0E+001.0E+082.0E+083.0E+084.0E+085.0E+086.0E+087.0E+088.0E+089.0E+081.0E+09

0 20 40 60 80 100 120iterationsIP best objec
tive value in
3 min ADD 1ADD 10ADD 40ADD 100

Fig. 11. Effect of multiple columns (2)

columns to be considered (Fig. 10), however, it decreases the total number of
iterations (Fig. 11).

5.3 Starting with More Initial Columns

We generate more initial columns (than only the identical columns) by using
the algorithm shown in Fig. 5 with three different small cutoff ratios; β =
0.001, 0.005, 0.01, and run our algorithm under N ADD MAX = 250. Table 2
shows that with more initial columns, it needs less iterations to get the results.
IP optimal values may not become better because LP optimal values (i.e. the

Table 2. Effectiveness of more initial columns

cutoff ratio initial columns iterations IP best objective LP optimal

default — 46 20 2.06e+08 2.05e+08

case 1 0.001 655 10 2.53e+08 2.04e+08
case 2 0.005 2338 6 2.51e+08 2.09e+08
case 3 0.01 5000 3 2.12e+08 2.11e+08

lower bound of IP optimal values) are slightly increasing.

5.4 Sorting Candidate Columns by their Costs

The effectiveness of sorting candidate columns by their costs are examined for
three cases: N ADD MAX = 100, 250, 625.

As shown in Table 3, there is not so much difference for data S and M no
matter if sorting columns by their costs or not. However, looking at the result
for data L, it seems very effective for handling large number of items.

Table 3. Effectiveness of sorting candidate columns by their costs

IP best objective value (lower bound)
ADD sort by data S data M data L

100 RC 1.41e+07 3.03e+08 (2.15e+08) 2.15e+09 (8.70e+08)
RC&C 4.35e+07 4.62e+08 (optimal) 7.70e+08 (4.55e+08)

250 RC 5.91e+06 2.06e+08 (2.06e+08) ———— (8.31e+08)
RC&C 5.33e+06 2.08e+08 (2.05e+08) 7.72e+08 (5.58e+08)

625 RC 5.44e+06 2.12e+08 (2.07e+08) ———— (4.67e+08)
RC&C 4.58e+06 2.27e+08 (2.16e+08) 1.54e+09 (4.25e+08)

(RC: Reduced Cost, C: Cost, ADD: N ADD MAX.)

5.5 Comparison with Wang’s Algorithm

In order to examine the performance of our algorithm, we compare with other
two algorithms. They are Wang’s Algorithm and its simple extension, which
separates given items into subsets of items and apply Wang’s Algorithm for
each the subsets. In this examination, our algorithm starts with more initial
columns (β = 0.005) and sorts candidate columns by both reduced costs and
costs. The comparison of these three algorithms are shown in Table 4.

Table 4. Comparison of three algorithms

parameters IP best objective value (lower bound)
ADD cutoff data S data M data L

CG 100 —– 4.58e+06 2.34e+08 (optimal) 6.18e+08 (4.40e+08)
250 —– 4.58e+06 2.35e+08 (2.02e+08) 5.43e+08 (4.58e+08)

EW —– 0.05 5.33e+06 2.00e+08 5.31e+08
—– 0.1 6.61e+06 2.33e+08 9.60e+08

WA —– 0.01 6.64e+07 2.74e+08 (2.71e+08) ———— (7.59e+09)
—– 0.05 4.54e+06 ———— (1.08e+09) ———— (9.17e+09)

(CG: Column Generation based algorithm of ours, EW: Extended Wang’s algorithm,
WA: Wang’s Algorithm, ADD: N ADD MAX.)

Wang’s algorithm performs very well for small data, however it does not work
well for large data i.e. no feasible solutions are obtained within 3 minutes for
data L.

Extended Wang’s algorithm and our algorithm have about even performance
enough to apply to the practical problems. More tuning up of both algorithms
will improve the performance.

For data L, our algorithm takes at most 315 seconds and extended Wang’s
algorithm takes at least 733 seconds. However this means nothing because the
running time is highly dependent on the performance of IP solver and the com-
plexity of checking pattern feasibility, where Extended Wang’s algorithm solves
more IPs and our algorithm generates more patterns respectively.

6 Conclusion

In this paper, we have presented a new algorithm for multiple staged two dimen-
sional guillotine cutting stock problem. The algorithm is based on Column Gen-
eration approach by Gilmore and Gomory and applies a new heuristic method.
Therefore, it can deal with very complicated problems in steel industry. Compu-
tational results shows the algorithm is well-behaved in application to practical
problems.

References

1. COIN-OR: http://www.coin-or.org/.
2. N. Christofides and C. Whitlock. An algorithm for two-dimensional cutting prob-

lems. Operations Research, 25(1):30–44, 1977.
3. H. Dyckhoff. A typology of cutting and packing problems. European Journal of

Operational Research, 44:145–159, 1990.
4. A. A. Farley. Practical adaptation of the Gilmore-Gomory approach to cutting stock

problems. OR Spektrum, 10:113–123, 1988.
5. P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-

stock problem. Operations Research, 9:849–859, 1961.
6. M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations

Research, to appear.
7. K. V. Viswanathan and A. Bagchi. Best-first search methods for constrained two-

dimensional cutting stock problems. Operations Research, 41(4):768–776, 1993.
8. P. Y. Wang. Two algorithms for constrained two-dimensional cutting stock prob-

lems. Operations Research, 31(3):573–586, 1983.

